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Abstract—In today's rapidly evolving digital landscape, 

ensuring the security of networks and systems has become more 

crucial than ever before. The ever-present threat of hackers and 

intruders attempting to disrupt networks and compromise online 

services highlights the pressing need for robust security 

measures. With the continuous advancement of security systems, 

new dangers arise, but so do innovative solutions. One such 

solution is the implementation of Network Intrusion Detection 

Systems (NIDSs), which play a pivotal role in identifying 

potential threats to computer systems by categorizing network 

traffic. However, the effectiveness of an intrusion detection 

system lies in its ability to prepare network data and identify 

critical attributes necessary for constructing robust classifiers. In 

light of this, this paper proposes, DeepShield, a cutting-edge 

NIDS that harnesses the power of deep learning and leverages a 

hybrid feature selection approach for optimal performance. 

DeepShield consists of three essential steps: hybrid feature 

selection, rule assessment, and detection. By combining the 

strengths of machine learning and deep learning technologies, a 

new solution is developed that excels in detecting network 

intrusions. The process begins by capturing packets from the 

network, which are then carefully preprocessed to reduce their 

size while retaining essential information. These refined data 

packets are then fed into a deep learning algorithm, which 

employs machine learning characteristics to learn and test 

potential intrusion patterns. Simulation results demonstrate the 

superiority of DeepShield over previous approaches. NIDS 

achieves an exceptional level of accuracy in detecting malicious 

attacks, as evidenced by its outstanding performance on the 

widely recognized CSE-CIC-DS2018 dataset. 

Keywords—Network intrusion detection system; IDS; cyber 

security; machine learning; deep learning 

I. INTRODUCTION 

The Internet has evolved into a necessary tool and one of 
the most reliable sources of knowledge about the modern 
world. It can be considered a crucial component of education 
and business. Therefore, preserving data across the Internet 
becomes challenging [1]. Nowadays, internet security is a 
serious problem [2]. Over the last decade, computer networks 
have grown in complexity, usage, and size. Cloud computing 
and the Internet of Things (IoT) have evolved into entirely new 
types of devices and networks [3]. These networks and systems 
have grown in size and complexity, so their security has 
become a critical concern [4]. According to CyberEdge group 
statistics, the number of attacks on large enterprise networks 
worldwide has increased significantly in recent years [5]. 
Advanced Persistent Threats (APT), malware, and denial of 
service attacks are examples of these attacks [6]. APTs are 
particularly hazardous and expensive since they are long-term, 

targeted operations carried out by sophisticated perpetrators 
targeting the public sector and business enterprises in order to 
exfiltrate data and cause infrastructure damage [7]. According 
to cybersecurity studies, these attacks were active for an 
average of 184 days in 2018 (the duration of attack 
effectiveness before it is detected) [8]. 

As a primary layer of defense against computer system 
vulnerabilities and attacks, a robust security model implements 
industry-standard security standards such as authorization, 
access control, confidentiality, and other security requirements 
[9]. Nevertheless, attacks are likely to continue to present a 
threat due to vulnerabilities in the system, operational errors, 
and other issues [10]. Intrusion Detection Systems (IDSs) are 
critical in identifying and alerting system administrators to 
intrusions into computers and networks [11]. The IDS can be 
installed on individual servers within a network, at a 
centralized location, or distributed around the network [12]. A 
Network Intrusion Detection System (NIDS) is a kind of IDS 
intended to track attacks across multiple hosts instead of a 
single host. These systems monitor network operations using 
network telemetries, such as network traffic, network flow 
metadata, and host event logs, to identify attack events [13]. 

In the realm of NIDS, the convergence of machine 
learning, artificial intelligence, meta-heuristic algorithms, deep 
learning, feature selection, association rule mining, and fault 
diagnosis plays a pivotal role in fortifying cybersecurity 
defenses and safeguarding critical network infrastructures 
against evolving cyber threats. Machine learning and artificial 
intelligence techniques enable IDSs to continually learn and 
adapt to new attack patterns, enhancing their accuracy in 
distinguishing between normal and malicious network 
activities [14-17]. The integration of meta-heuristic algorithms 
optimizes the performance of intrusion detection models, fine-
tuning parameters and reducing false positives [18]. Deep 
learning empowers systems to automatically extract intricate 
features from raw network data, enabling the identification of 
sophisticated and novel attack signatures [19, 20]. Feature 
selection techniques help to identify the most relevant network 
attributes, streamlining the detection process and reducing 
computational overhead [21]. Additionally, fault diagnosis 
capabilities enable swift identification and response to potential 
anomalies, further strengthening the overall resilience of 
intrusion detection systems [16, 22]. Association rule mining 
holds paramount importance in NIDS as it enables the 
discovery of hidden patterns and correlations in network data, 
facilitating the identification of suspicious and anomalous 
activities that might go undetected using traditional IDSs [23]. 
This amalgamation of cutting-edge technologies empowers 
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organizations to proactively detect, mitigate, and thwart cyber 
threats, ensuring the confidentiality, integrity, and availability 
of critical data and establishing robust and future-proofed 
NIDs. 

To identify intrusions and anomalies, a NIDS continuously 
monitors network traffic. In the case of high network 
throughput, using a single NIDS on a network can cause 
congestion. Deep packet inspection may include significant 
similarities to complicated signatures of attack rules [24, 25]. 
Pattern matching is a time-consuming procedure that requires 
substantially more computing power than a firewall, which 
might cause a NIDS to become overloaded [26]. When a NIDS 
becomes overburdened and begins dropping or ignoring packet 
content, network security may be compromised. Finally, some 
vulnerabilities may remain unnoticed since some packets 
associated with the same attack may escape the NIDS's 
inspection, leading to an insufficient match between packets 
[27]. NIDS employ several strategies to handle high levels of 
network traffic, including: 

 Hardware upgrades, including the addition of dedicated 
packet capture cards and more computing resources, as 
well as modifying the NIDS software to increase its 
capacity. 

 Utilizing a cluster of NIDSs and distributing signature 
rules and network traffic among the NIDS hosts. 

The first strategy, which involves optimizing the NIDS 
application and upgrading hardware, is prohibitively expensive 
and unscalable. Every four years, network bandwidth rates 
grow by a factor of 10; therefore, maintaining a NIDS requires 
ongoing hardware upgrades. Adjusting a NIDS to cope with 
greater traffic is a difficult procedure that includes various 
trade-offs, resulting in the NIDS being more complex than 
anticipated. The second strategy, which relies on NIDS 
clusters, is cost-effective and scalable. When network traffic is 
low, the solution can be adjusted to accommodate it, and 
resources can be released and utilized for other reasons. 
Numerous studies have demonstrated the benefit of low-cost 
clustering computers equipped with NIDS to manage high 
network traffic loads. Additionally, the cluster can be expanded 
by adding additional NIDS instances. However, both the 
distribution of traffic among NIDS instances and the 
distribution of signature rules are critical to the effectiveness of 
the solution [28]. 

The use of machine learning algorithms in the context of 
NIDS has received considerable attention. Training machine 
learning algorithms on normal and attack traffic enables them 
to detect novel differences in network traffic. Traditionally, the 
NIDS is designed by an expert human analyst who codifies 
rules defining normal behavior and intrusions [29]. Due to the 
numerous failures of this method to identify novel intrusions 
and the aim to reduce the analyst's effort, machine learning 
algorithms have been incorporated into NIDS to automate the 
process and supplement the human effort. This study proposes 
a new method comprised of machine learning and deep 
learning algorithms for feature selection and intrusion 
detection. 

The key contributions of this research paper include the 
development of a cutting-edge NIDS that leverages deep 
learning and a hybrid feature selection approach. The three-
step architecture, consisting of hybrid feature selection, rule 
assessment, and detection, enhances the effectiveness of the 
intrusion detection system. By combining the strengths of 
machine learning and deep learning technologies, the proposed 
NIDS demonstrates superior performance in detecting network 
intrusions. The careful preprocessing of network data, followed 
by the application of a deep learning algorithm, allows for the 
identification and testing of potential intrusion patterns. 
Simulation results showcase the exceptional accuracy of the 
proposed method, surpassing previous approaches, as 
demonstrated by its outstanding performance on the widely 
recognized CSE-CIC-DS2018 dataset. 

II. IMPORTANCE OF THE NIDS 

As the Internet is vulnerable to various threats, it is critical 
to develop a system that protects the data and the individuals 
using it [30]. For years, the scientific community has focused 
on identifying cyber-attacks that target information and 
communication networks. Developing a comprehensive and 
efficient NIDS is one of the primary challenges in network 
security. These systems are critical for network administrators 
to detect different security vulnerabilities within an 
organization's network. The NIDS monitors and analyses 
network traffic incoming and departing an organization's 
network devices and triggers alerts if an intrusion is detected. 

An IDS takes its name from the conjunction of two 
concepts, intrusion and detection systems. Generally, an 
intrusion is defined as gaining access without authorization to a 
network or computer system with the intent of compromising 
its functionality, privacy, or reliability. The IDS detects such 
illegal activities. Therefore, the IDS serves as a security 
component responsible for monitoring network traffic to 
identify suspicious activities that violate security policies and 
endanger the network's availability, reliability, and stability. It 
notifies hosts or network administrators of detected malicious 
activities. As shown in Fig. 1, NIDS is deployed passively by 
connecting to a network switch equipped with mirror ports. In 
order to monitor traffic and detect intrusions, all inbound and 
outbound network traffic should be mirrored to NIDS. By 
installing NIDS in the middle of the network switch and 
firewall, all traffic can be routed through it. 

Modern NIDS are divided into two categories: rule-based 
misuse detection and statistical anomaly detection. In the first 
method, a database is used to store the characteristics of a wide 
variety of known attacks and the network traffic is classified as 
an "attack" if the retrieved characteristics match those stored in 
the database. Although this kind of NIDS can rapidly and 
accurately detect known attacks, it is weak at detecting future 
attacks. As a result, anomaly detection-based NIDS has gained 
popularity recently. According to its basic assumptions, the 
system detects and identifies abnormalities in network traffic 
properties or distributions [31]. 
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Fig. 1. Passive deployment of NIDS. 

A wide range of machine learning algorithms have been 
implemented in NIDS to detect anomalies. Different machine 
learning algorithms have been used to discriminate normal 
from abnormal network activity, including Random Forest 
(RF), Support Vector Machine (SVM), and Decision Tree 
(DT). Nevertheless, as attack categories diversify and network 
traffic grows, shallow learning approaches cannot be applied 
effectively to large-scale NIDS. Recently, deep learning has 
been the subject of extensive research owing to its ability to 
generate features automatically. Convolutional Neural 
Networks (CNNs), Recurrent Neural Networks (RNNs), and 
Multi-Layer Perceptron (MLP) have also been incorporated 
into NIDS. 

According to [32], When dealing with large datasets, deep 
learning-based NIDS perform better. Nevertheless, these NIDS 
approaches are limited in certain respects. First, the majority of 
them fail to indicate the nature of the attack in their 
categorization results. Since various attacks demand distinct 
defense mechanisms in actual systems, detecting "normal" or 
"abnormal" is inadequate. Second, most of these approaches 
are evaluated using NSL KDD, or KDD99 datasets gathered 
around 20 years ago. New attacks emerge practically daily; 
thus, relying on historical traffic statistics does not accurately 
represent the effectiveness of NIDS in modern networks. 
Experiments are conducted on a subset of the dataset without 
considering the system's performance as a whole. Lastly, they 
ignore the effects of class imbalances on classification 
performance, which results in a large reduction in detection 
rates, particularly for minority classes. 

III. RELATED WORK 

Generally, NIDSs are categorized into three main classes: 
anomaly-based, misuse-based, and hybrid. Misuse-based 
techniques detect intrusions using a pattern-matching model. 
Due to the fixed model, this approach is capable of detecting 
the most common types of attacks with a high degree of 
accuracy. Nevertheless, this characteristic also presents an 
inherent disadvantage since a dynamic environment may give 
rise to novel attacks or variations at any time. A second kind of 

IDS strategy is anomaly-based, which relies solely on normal 
data in order to identify abnormal samples. The NIDS raises 
alarms in the event of a real-world attack using the misuse-
based technique, but it does not offer any additional 
information about the type of attack. The drawback of this 
technique is that it performs poorly in terms of accuracy 
because some attacks resemble normal data, or the extracted 
properties are difficult to distinguish between attack and 
normal data. 

Over the last decade, machine learning algorithms have 
gained much attention from researchers in developing IDSs. 
Anwer, et al. [33] have proposed a method for selecting 
features that consider irrelevant and redundant features. The 
method applies different strategies based on the selection of 
filter and wrapper features. It achieves a high level of accuracy 
by selecting the minimum number of features. Experimental 
results are presented using the UNSW-NB15 dataset. Tian, et 
al. [34] have suggested a robust and sparse technique based on 
a one-class support vector machine (OSVM) to find samples 
that vary from the majority of data. The Ramp loss function 
has been used to enhance the performance of this model, 
making the approach more robust and sparser. 

The NSL-KDD dataset is used in the study presented in 
[35]. The dataset in this research is normalized and discretized 
using the k-means technique. Feature selection is made using 
the Information gain algorithm and then submitted to the Naive 
Bayes machine learning algorithm. They discovered that the k-
means clustering approach outperforms the mean and standard 
deviation discretization methodology. The data is sent to the 
information-gain technique after it has been labeled using the 
k-means approach, which employs scoring methods for 
nominal or weighting continuous qualities that are discredited 
by applying the maximum entropy. The k-means technique 
cannot handle nonlinear or incomplete data, one of its key 
shortcomings. The system's accuracy and false-positive rate 
may be enhanced further. 

Kan, et al. [36] have introduced a novel approach for 
intrusion detection in IoT networks called Adaptive Particle 
Swarm Optimization Convolutional Neural Network (APSO-
CNN). The approach utilizes the PSO algorithm with a change 
of inertia weight to dynamically optimize the structure 
parameters of a one-dimensional CNN. To achieve this, the 
cross-entropy loss function value of the validation set, obtained 
from the initial training of the CNN, is utilized as the fitness 
value for PSO. This adaptive optimization process ensures 
efficient parameter tuning for improved performance. A new 
evaluation method is defined that considers both the prediction 
probability assigned to each category and the prediction label. 
This evaluation method enables a comprehensive comparison 
between the proposed APSO-CNN algorithm and manually set 
parameters for CNN (R-CNN). Furthermore, a comparison is 
conducted between the proposed APSO-CNN and three other 
well-known algorithms using five traditional evaluation 
indicators and accuracy statistical characteristics from ten 
independent experiments. The simulation results reveal that the 
APSO-CNN algorithm proves to be effective and reliable for 
multi-type IoT network intrusion attack detection tasks. 
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Andresini, et al. [37] have proposed an innovative intrusion 
detection method that focuses on analyzing the flow-based 
characteristics of network traffic data. Their approach 
leverages deep metric learning, which combines autoencoders 
and Triplet networks to create an effective intrusion detection 
model. During the training stage, two separate autoencoders 
are trained using historical normal network flows and attack 
data, respectively. The autoencoders are designed to 
reconstruct the original network flow data. Subsequently, a 
Triplet network is trained to learn an embedding of the feature 
vector representation of the network flows. This embedding 
ensures that each flow is positioned close to its reconstruction 
by the autoencoder associated with the same class (normal or 
attack) and far away from its reconstruction by the autoencoder 
of the opposite class. In the predictive stage, when presented 
with a new network flow, the method assigns it to the class 
associated with the autoencoder that provides the closest 
reconstruction of the flow in the embedding space. This 
process capitalizes on the learned embedding from the training 
stage and effectively detects potential signs of malicious 
activities in the network traffic. The results of their proposed 
methodology demonstrate superior predictive accuracy 
compared to competitive intrusion detection architectures when 
evaluated on benchmark datasets. The combination of deep 
metric learning, autoencoders, and Triplet networks empowers 
their intrusion detection approach to achieve impressive 
performance in detecting new instances of malicious behavior 
within network traffic. 

Ravi, et al. [38] have presented an end-to-end model for 
network attack detection and classification, leveraging deep 
learning-based recurrent models. Their proposed approach 
involves extracting features from the hidden layers of recurrent 
models and utilizing a kernel-based principal component 
analysis (KPCA) feature selection method to identify optimal 
features. These optimal features from recurrent models are then 
combined and used for classification through an ensemble 
meta-classifier. Extensive experimental analysis and evaluation 
of the proposed method were conducted on multiple 
benchmark network intrusion datasets. The results 
demonstrated that the proposed approach outperformed 
existing methods as well as commonly used machine learning 
and deep learning models. In particular, the proposed method 
achieved a remarkable maximum accuracy of 99% for network 
attack detection and 97% for network attack classification 
when applied to the SDN-IoT dataset. Similarly impressive 
performances were obtained on other network intrusion 
datasets, including KDD-Cup-1999, UNSW-NB15, WSN-DS, 
and CICIDS-2017. 

Talukder, et al. [39] have introduced a novel hybrid model 
that combines machine learning and deep learning techniques 
to achieve higher detection rates while ensuring dependable 
results. The proposed method focuses on efficient pre-
processing by utilizing SMOTE for data balancing and 
XGBoost for feature selection. To evaluate the effectiveness of 
their developed method, they conducted a comparison with 
various machine learning and deep learning algorithms. The 
goal was to identify the most efficient algorithm to incorporate 
into the detection pipeline. Through benchmarked performance 
analysis criteria, they selected the most effective model for 

network intrusion detection. Their method was tested on two 
datasets, KDDCUP’99 and CIC-MalMem-2022, and produced 
remarkable results. The accuracy achieved was 99.99% for 
KDDCUP’99 and 100% for CIC-MalMem-2022, showcasing 
the superior performance of the proposed hybrid model. 
Additionally, their method exhibited no signs of overfitting or 
issues related to Type-1 and Type-2 errors. 

Mohamed and Ejbali [40] have introduced a novel deep 
reinforcement learning model that effectively combines a 
SARSA-based reinforcement learning algorithm with a deep 
neural network for intrusion detection systems. The primary 
objective of their proposed deep SARSA model is to enhance 
the detection accuracy of modern and complex attacks in 
network environments. To validate the performance of their 
method, they conducted experiments using two well-known 
benchmark datasets, NSL-KDD and UNSW-NB15. By 
comparing their approach with various classic machine 
learning and deep learning models, as well as other published 
results in the field, they demonstrated that their proposed 
approach outperforms the other models across multiple 
evaluation metrics, including accuracy, recall, precision, and 
F1-score. The integration of deep reinforcement learning, 
SARSA-based algorithm, and deep neural networks has proven 
to be a successful strategy for achieving superior intrusion 
detection accuracy. The proposed approach addresses the 
challenges posed by modern and complex attacks in network 
environments, making it a valuable contribution to the field of 
network security. 

IV. PROBLEM STATEMENT 

The rapid pace of technological advancements in network 
and hardware devices presents significant challenges for the 
implementation and enhancement of intrusion detection 
systems (IDSs). To fully understand these challenges, it is 
important to delve into their specific details and implications. 
Firstly, the challenge of diversity arises from the continuous 
development of network protocols. As these protocols evolve, 
it becomes increasingly difficult to differentiate between 
normal and abnormal data traffic. This poses a significant 
hurdle for IDSs, as they need to accurately identify potential 
threats amidst a wide range of network activities. Another 
challenge is related to low-frequency attacks. The distribution 
of attack types is often imbalanced, with some occurring less 
frequently than others. This imbalance negatively impacts the 
detection precision of IDSs, particularly those utilizing data-
driven approaches. It becomes more challenging to identify and 
accurately detect these low-frequency attacks, which can 
potentially evade detection and compromise the security of the 
network. 

The adaptability of IDSs is also a key challenge. The 
dynamic and flexible nature of networks necessitates regular 
updates and modifications to IDS models. As the network 
environment changes, the IDS must adapt to the evolving 
landscape to maintain its effectiveness. Failure to do so, results 
in outdated detection models that are ineffective against new 
and emerging threats. Choosing the appropriate placement 
strategy for an IDS is another consideration. Organizations 
must carefully evaluate and select between centralized, 
distributed, and hybrid deployment strategies based on factors 
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such as financial constraints, computational capabilities, and 
time costs. Each strategy comes with its advantages and trade-
offs, making the decision a critical one. As a final 
consideration, accuracy poses a significant challenge. 
Traditional IDS methods often fall short of providing a high 
degree of precision in detecting intrusions. To address this, a 
comprehensive and in-depth understanding of intrusion 
behavior becomes crucial. A complete knowledge of how 
intrusions manifest and evolve can significantly enhance IDS 
performance and ensure more accurate threat detection. 

In summary, the implementation and improvement of 
intrusion detection systems face various challenges in today's 
technological landscape. These challenges include dealing with 
the diversity of network protocols, addressing low-frequency 
attacks, ensuring adaptability to changing network 
environments, making informed placement decisions, and 
improving accuracy through a deeper understanding of 
intrusion behavior. Overcoming these challenges requires 
innovative approaches and continuous research to develop 
robust and effective IDS solutions. 

V. PROPOSED METHOD 

This section discusses the suggested approach for detecting 
network intrusions. This section is divided into two 
subsections, where we explore the requirements and the 
proposed technique. As depicted in Fig. 2, the suggested NIDS 
system is divided into three major components. 

 The infrastructure layer is composed of two distinct 
elements: software and hardware. Software elements 
can communicate with hardware, for example, 

OpenFlow switches. Hardware elements include 
switches and routers. 

 The control layer regulates activities and data 
management in the network by creating or refusing each 
network flow. 

 The application layer is responsible for all network 
management operations. These activities may be 
accomplished with the aid of a NIDS controller. 

As illustrated in Fig. 3, the NIDS generated utilizing 
machine learning and deep learning algorithms typically entails 
three key processes, namely data preprocessing, training, and 
testing. For each of the potential approaches, the dataset is 
preprocessed and transformed into an algorithm-compatible 
format. Encoding and normalization are generally included in 
this step. Frequently, the dataset needs cleaning, which 
includes eliminating items with duplicate records and 
incomplete data. The preprocessed data is randomly separated 
into two parts: the training and testing datasets. Generally, the 
training dataset accounts for around 80% of the entire dataset, 
leaving 20% for testing. In the training stage, the deep learning 
algorithm is trained using the training dataset. The learning 
time of the method is affected by the complexity of the 
proposed model and the amount of the dataset. Deep Learning 
models often need additional training time owing to their deep 
and complicated underlying structures. After training the 
model, its performance is evaluated using the testing dataset 
and its predictions. NIDS models classify network traffic 
instances as benign (normal) or malicious (attack). The 
flowchart of the suggested approach is illustrated in Fig. 4. The 
steps of the proposed technique are described in the following. 

Application Layer

Control Layer

Infrusture Layer

Network Intrusion Detection System

Controller 

Internet

Switch Switch
Hacker

 
Fig. 2. System model. 
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Fig. 3. Machine learning and deep learning-based intrusion detection system. 

 
Fig. 4. Flowchart of the proposed NIDS. 

A. First Phase: Load Dataset and Export it into Resilient 

Distributed Datasets (RDDs) 

Numerous researchers have developed and evaluated the 
NIDS issue using the NSL-KDD or other datasets detailed in 
the assessment part of this proposal. A wide variety of attacks 
are included in the dataset. It includes 41 features classified 
into three major categories (traffic-based, content-based, and 
basic) and distinguished as normal or malicious. 

B. Second Phase: Data Preprocessing 

The features dataset includes values with varying scale 
ranges to mitigate the loss function during learning. These 

scales influence the gradient optimization process, thereby 
affecting learning rate optimization, as the model should 
rapidly reach a global or local minimum as a result. Min-Max 
normalization provides some benefits in comparison to 
conventional scaling. Min-Max scaling can deal with non-
Gaussian feature distributions since anomaly detection 
applications do not need a certain distribution to follow, in 
contrast to the signature-based technique in NIDS. The Min-
Max normalization strategy is presented to avoid the gradient 
from the un-smoothing route toward the global minimum, 
thereby improving the loss function. As illustrated in the 
following equation, it retrieves the column's lowest and 
maximum values, with output values ranging from 0 to 1. 

                    ( )  
      

         
 (1) 

Where Xmin is the column's lowest value, Xmax is the 
column's highest value, and X represents the initial data sample 
value. Also, we employed the Apache Spark system during this 
phase. Spark is a high-performance, general-purpose cluster 
computing system optimized for large-scale in-memory data 
processing. Spark follows the MapReduce programming 
paradigm but adds a data-sharing concept called Resilient 
Distributed Datasets, or RDD. A Spark was developed to be 
quick for iterative algorithms, enable in-memory storage, and 
perform well under load. 

C. Third phase: Feature Selection 

Feature selection forms an integral part of data 
preprocessing in intrusion detection. A network intrusion 
detection system is characterized by diverse features and a 
large amount of data. There are different attribute values for 
features in different categories, including duplicate features 
that complicate classification. The proliferation of redundant 
features reduces the efficiency of detection algorithms and 
increases the likelihood of false positives in intrusion detection. 
IDS accuracy and detection speed are increased by an efficient 
feature selection algorithm, which reduces the dimensionality 
of network data. This paper uses Convolutional Neural 
Network (CNN) and Long Short-Term Memory (LSTM) 
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algorithms for feature selection and training models. CNN is a 
deep neural network that is composed of three main layers. 

 Convolutional layer: In this layer, the input data is 
processed with a set of filters known as convolutional 
kernels. A feature map is produced as each filter is 
applied to the input data. The final output of the 
convolution layer can be obtained by stacking all the 
produced feature maps together. 

 Pooling layer: It performs subsampling on the feature 
maps, resulting in reduced dimensionality. The most 
common methods of pooling are average pooling and 
maximum pooling. 

 Fully connected layer: The output of the previous layers 
is transformed into a vector that can be used as an input 
for the next layer. 

Recurrent Neural Network (RNN) is a deep learning model 
driven by supervised learning. Using a traditional RNN, it was 
possible to predict the temporal training data; however, it 
encountered difficulties when dealing with gradient explosions. 
LSTM was proposed as a solution to this problem. An LSTM 
model replaces the hidden RNN units with a memory function. 
The LSTM model consisted of three important gates: forget, 
input, and output gates. 

D. Fourth Phase: Train with the Training Dataset 

Two causal convolution layers, two dense layers, and a 
softmax layer are used in the training and optimization phase 
for the multi-class classification task. In order to avoid 
overfitting, we employ maximum global pooling, batch 
normalization, and dropout layers. Adam optimizer is used to 
update weights and optimize the cross-entropy loss function. It 
is a combination of two stochastic gradient descent approaches, 
including Root Mean Square Propagation (RMSProp) and 
Adaptive Gradient Algorithm (AdaGrad). In particular, the 
training and optimization phase comprises the following layers: 

 First causal convolution layer: The input vectors are 
convolved with 64 filters of three sizes across the input 
vectors. 

 Second 1D causal convolution layer: A total of 128 
filters are used, each with a size of 3. Prior to pooling, 
this layer enables the model to learn more complex 
features. 

 1D global maximum pooling layer: The maximum 
value of the filter is replaced with the data covered by 
the filter. The maximum value prevents the learned 
features from overfitting. 

 Batch normalization layer: The data are normalized 
before they are sent to the next layer. 

 Fully connected dense layer: It utilizes 128 hidden units 
with a dropout rate of 30%. 

 Fully connected dense layer with softmax activation 
function: multi-class classification is achieved by 
producing five units for each of the five traffic 
categories. 

VI. RESULTS AND DISCUSSION 

As choosing the appropriate NIDS data to assess the system 
is critically important, the data was chosen prior to simulation. 
While there are a number of publicly available datasets, some 
of them comprise out-of-date, illogical, inadequately validated, 
and potentially unrecoverable intrusions. Amazon Web 
Services (AWS) developed the CSE-CIC-DS2018 [41] dataset 
to address these limitations and generate modern traffic 
patterns. It includes a variety of datasets that are suitable for 
evaluating anomaly-based approaches. CSE-CIC-DS2018 
highlights real-time network activities and includes a variety of 
intrusion detection modes. The data packet payload is 
calculated by encapsulating the inner network traces as a whole 
network. Several intrusion profiles are contained in this dataset, 
which can be applied to a variety of network protocols and 
topologies. IDS2017 criteria were applied to enhance this 
dataset. There are currently seven intrusion strategies and two 
profiles included in IDS2018, a publicly available dataset. 
IDS2018 contains 80 statistical variables, such as the number 
of bytes, volume, and packet length. It is accessible via the 
Internet, which contains approximately 5 million records, and 
is available in two formats: PCAP and CSV. PCAP is 
commonly employed to obtain new functions, while the CSV 
format is typically used in artificial intelligence applications. 
This dataset represents seven types of attacks: Botnet, Web 
attacks, Heartbleed, Infiltration, Brute-force SSH, DDOS 
attacks, and Brute-force DOS attacks. 

The creation of the CIC-IDS-2017 and CSE-CIC-IDS-2018 
datasets has garnered significant interest among researchers, 
leading to the implementation of various classifiers using these 
datasets. The datasets' specifications are detailed in Table I. 
The files within the dataset are utilized for both binary and 
multi-class classification tasks. An ideal Intrusion Detection 
System (IDS) is one that can precisely detect each type of 
attack. To achieve this, building an efficient IDS requires 
merging the files in the dataset to cover a wide range of attack 
categories [42]. The CIC-IDS-2017 and CSE-CIC-IDS-2018 
datasets exhibit certain limitations related to the data samples 
and files generated through network flow analysis, which can 
be listed as follows: 

 Tedious data processing: The data samples generated by 
network flow analysis are stored in files, and processing 
these files can be a time-consuming and tedious task, 
especially since each file contains a large number of 
data instances. 

 Dataset size and computing time: Merging the files in 
the dataset to include all attack labels can lead to an 
increase in the dataset's size. This, in turn, results in 
more computing and processing time, making it 
challenging to handle large datasets efficiently. 

 Missing and redundant data: The dataset contains some 
missing and redundant data records, which can affect 
the quality and accuracy of the analysis performed on 
the data. 

 High-class imbalance: Both CIC-IDS-2017 and CSE-
CIC-IDS-2018 datasets suffer from the issue of high-
class imbalance. This means that some attack types may 



(IJACSA) International Journal of Advanced Computer Science and Applications, 

Vol. 14, No. 7, 2023 

1101 | P a g e  

www.ijacsa.thesai.org 

have significantly fewer instances compared to others, 
leading to lower accuracy and higher False Positive 
Rate (FPR) for the system. 

There are 50 computers involved in the dataset-attacking 
infrastructure, while 30 servers and 420 terminals are utilized 
by the attackers. CSE-CIC-DS2018 data represent a system log 
with 80 attributes extracted from CICFlowMeter-V3 and 
network traffic captured from AWS. There is approximately 
400 GB of data in CSE-CIC-DS2018, which is larger than 
CIC-DS2017 in terms of size. Table II compares the CSE-CIC-
DS2018 and CIC-DS2017 datasets with respect to sample size. 
The number of CSE-CIC-DS2018 samples has increased 
significantly compared to CIC-DS2017, especially in the 
Infiltration and Botnet attacks, where the number of samples 
increased respectively by 4497 and 143. 

Using the CSE-CIC-DS2018 ID dataset, the effectiveness 
of our mechanism was evaluated by examining error rate, 
accuracy, true negative, false negative, true positive, and false 
positive. The confusion matrix is used to determine the 
difference between the actual and predicted classifications. 
Categorization results can be divided into two groups: normal 
and abnormal. Table III provides an overview of the confusion 
matrix. It is necessary to measure four levels of criticality in 
the confusion matrix. 

 True negative: In this case, the model correctly predicts 
the negative outcome. 

 False positive: In this case, the classifier considers 
normal traffic as abnormal. 

 False negative: When an IDS fails to detect an actual 
attack. 

 True positive: It is an actual intrusion successfully 
discovered by the IDS. 

Based on the specifications given above for the confusion 
matrix, we can calculate the output of the system. An IDS is 
analyzed based on FAR and DR as key and common metrics. 
FAR represents the sum of misclassified regular incidents, 
whereas DR signifies the number of intrusions identified by the 
model. As DR rises and FAR decreases, we claim our approach 
is superior to traditional approaches. 

      (     )⁄   (2) 

     (     )⁄   (3) 

The performance of the classifier on CSE-CIC-DS2018 is 
summarized in Table IV. A random search hyperparameter 
optimization technique was used to generate the results. The 
ensemble classifier XGB significantly enhances classification 
effectiveness, achieving an accuracy rate of 85%. The tree-
based classifier provides a higher level of accuracy than 
ensemble-based classifiers. 

TABLE I. SPECIFICATIONS OF CIC-IDS-2017 AND CSE-CIC-IDS-2018 DATASETS 

Dataset Type Number of classes Features Victim Infrastructure Attack Infrastructure Duration of Capture 

CSE-CIC-DS2018 Multi-class 18 80 420 PCs, 30 servers 50 PCs Ten days 

CIC-DS2017 Multi-class 15 80 
Three server, one firewall, two 
switches, 10 PCs 

Four PCs, one router, 
one switch 

Five days 

TABLE II. COMPARISON OF THE CSE-CIC-DS2018 ID DATASET WITH CIC-DS2017 

Dataset Web attacks Infiltration Brute force Botnet DoS DDoS Normal 

CSE-CIC-DS2018 929 161,936 380,950 286,195 954,311 687,740 6,112,149 

CIC-DS2017 2182 37 13,840 1968 252,665 128,024 1,743,181 

TABLE III. OVERVIEW OF THE CONFUSION MATRIX 

 Predicted outcome 

Actual value 
Abnormal True negative False positive 

Normal False negative True positive 

TABLE IV. CLASSIFIER RESULTS WITH CSE-CIC-DS2018 

Classifier FAR DR F-score Recall Precision 

DT 7.81 0.89 0.87 0.88 0.87 

XGB 9.1 0.84 0.83 0.83 0.84 

LR 11.5 0.80 0.79 0.80 0.78 

Proposed classifier 2.6 0.96 0.981 0.976 0.968 

TABLE V. COMPARISON OF IDS METHODS 

References False alarm rate Accuracy 

[43] 1.1 96% 

[44] 1.3 96% 

[45] 8.5 96% 

[46] 5 95% 

[41] 0.93 90.2% 

[47] 0.97 94% 

Our method 1.5 98.2% 
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In order to use the proposed mechanism to capture both 
temporal and spatial features efficiently, recurrent layers were 
introduced following the CNN layers in order to capture both 
features. In this manner, we attempted to avoid the vanishing 
gradient and explosion problem, resulting in an improved 
ability to capture temporal and spatial dependencies and learn 
efficiently from sequences of variable extent. The number of 
variables in large-scale data (imbalances), while exceeding the 
sample size, is not well suited to traditional machine-learning 
classifiers. This model is suitable for high-dimensional datasets 
due to its scale invariance.  Nevertheless, the most significant 
improvement was achieved with advanced deep learning 
approaches such as CNNRNN, which detected misuse with 
97% accuracy. This performance improvement can be 
attributed to the long-term dependencies between the nonlinear 
features, and details on their implementation can be found in 
supplementary materials. 

A summary of the results obtained using existing methods 
for the CSE-CIC-DS2018 dataset is provided in Table V. 
Several preliminary results are available since these datasets 
are generated following the KDD and DARPA datasets. 
Considering current simulation results, optimal values for 
accuracy and FAR was calculated for each phase. The accuracy 
and FAR of our method are superior to those of conventional 
methods. The reason for this is the execution of the deep 
learning algorithm. Due to the differences in the quantity of 
data distributions, preprocessing procedures, and sampling 
methods, the similarities should only be used as a source of 
reference. Therefore, measuring a simple metric, such as the 
amount of time spent on testing or training is rarely 
appropriate. Although the suggested method demonstrated 
superior performance in some respects, it remains questionable 
whether it can perform better in all respects than other 
approaches. The proposed solution enables exceptional 
network protection as well as easy identification of malicious 
threats. 

In comparison to previous approaches, the proposed 
method demonstrates superiority based on simulation results. It 
achieves an exceptional level of accuracy in detecting 
malicious attacks, as evidenced by its outstanding performance 
on the widely recognized CSE-CIC-DS2018 dataset. This 
indicates that the proposed NIDS has surpassed the capabilities 
of existing methods in terms of accuracy and effectiveness. By 
capturing packets from the network and performing careful 
preprocessing to reduce their size while retaining crucial 
information, the proposed method optimizes the input data for 
the deep learning algorithm. The utilization of machine 
learning characteristics enhances the NIDS's ability to learn 
and test potential intrusion patterns, further contributing to its 
superior performance. 

The hybrid feature selection approach introduced in the 
proposed method addresses the challenge of identifying critical 
attributes necessary for constructing robust classifiers. This 
feature selection process, combined with rule assessment and 
detection steps, provides a comprehensive and effective 
framework for intrusion detection. In summary, the proposed 
method stands out among previous approaches by leveraging 
deep learning, hybrid feature selection, and a carefully 
designed process flow. Its exceptional accuracy in detecting 

malicious attacks on the CSE-CIC-DS2018 dataset indicates its 
superiority over existing methods. The proposed method offers 
significant advancements in network intrusion detection and 
presents a promising solution to bolster the security of 
networks and systems in today's digital landscape. 

VII. CONCLUSION 

Cyber security has become a paramount area of research in 
modern society, given the indispensable role of networks. 
Within this domain, Intrusion Detection Systems (IDSs) play a 
pivotal role in monitoring the status of software and hardware 
on a network. However, IDSs continue to face challenges in 
accurately identifying potential threats, minimizing false 
alarms, and enhancing detection accuracy. To address these 
challenges, extensive research has been dedicated to 
developing IDSs that harness the power of machine learning. 
In our study, we have devised a cutting-edge IDS methodology 
based on a layered Recurrent Neural Network (RNN). This 
approach leverages the strengths of deep learning to adeptly 
predict and classify unauthorized intrusions. The layered RNN 
effectively captures local features, while the recurrent RNN 
seamlessly incorporates temporal characteristics, substantially 
elevating the performance of our IDS system. Through 
comprehensive evaluations on the esteemed CSE-CIC-DS2018 
dataset, our proposed method has demonstrated superior 
performance over previous approaches. The simulation results 
unequivocally establish the exceptional accuracy of our IDS in 
detecting malicious attacks. The integration of deep learning 
techniques and hybrid feature selection enables our IDS, 
named DeepShield, to outperform traditional machine learning-
based methods, providing a reliable defense against network 
intrusions. The significance of DeepShield extends beyond the 
system itself. The higher accuracy achieved by our NIDS 
translates to more robust network security, helping 
organizations proactively safeguard their critical data and 
online services. As cyber threats continue to evolve, the 
effectiveness of intrusion detection becomes increasingly 
crucial, and our approach contributes to a safer digital 
environment. Moreover, the versatility of our methodology 
allows for scalability and adaptability to various network 
infrastructures and environments. This adaptability ensures that 
DeepShield can be applied in diverse security scenarios, 
making it a valuable tool for network administrators and cyber 
security professionals. 
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