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Abstract—The Pareto dominance has been applied to resolve 

the issue of choosing significant features from a multi-label 

dataset. High-dimensional labels will directly result in the 

difficulty of forming Pareto dominance. This work proposes a 

multi-label feature selection approach based on the approximate 

Pareto dominance (MAPD) to address this issue. It maps the 

multi-label feature selection to the problem of solving the 

approximate Pareto dominant solution set. By introducing an 

approximate parameter, it is possible to efficiently cut down on 

the amount of features in the chosen feature subset while also 

raising its quality. To verify the performance of MAPD, this 

research compares the MAPD algorithm with alternative 

approaches in terms of Hamming loss, accuracy, and chosen 

feature size using nine publicly available multi-label datasets. 

The findings indicate that the MAPD method performs better in 

terms of classification accuracy, Hamming loss, and the amount 

of features that may be chosen. 

Keywords—Approximate Pareto dominance; multi-label data; 

feature selection 

I. INTRODUCTION 

Feature selection is a process of removing noisy 
information and selecting the most significant feature subset, 
which is commonly considered as a pre-process of building a 
classifier machine learning model [1]-[3]. The multi-label 
feature selection problem is more universal in application than 
the single-label feature selection problem [4], [5]. For example, 
it might be necessary to simultaneously judge the geographical 
location, weather conditions, and image content of a figure in 
the process of image recognition [6], [7]. When processing the 
text categorization, we may need to judge whether the text 
belongs to multiple bibliographic categories [8], [9]. It also 
might be necessary to judge whether a protein has multiple 
different functions in the field of bioinformatics in the same 
manner [10]. 

The multi-label feature selection methods could be 
classified as the filter methods [11]-[13], the wrapper methods 
[14], [15], and the embedded methods [16], [17]. Since the 
increase of label dimension would lead to higher time 
complexity of the feature selection processing, this paper only 
focuses on the filter feature selection methods that are more 
efficient compared with the wrapper and embedded methods. 

In the current literature, the multi-label feature selection 
problem can be resolved primarily in two ways. The first 
strategy is to convert the multi-label data into single-label data 
and then choose feature subsets using single-label feature 
selection techniques [18], [19]. However, such methods create 
an abundance of labels with only a limited number of 

observations which is not beneficial for establishing a classifier 
model. In order to improve the disadvantages of such methods, 
a method called pruned problem transformation (PPT) is 
proposed, and it ignores the labels with observations lower 
than the given threshold [20]. This method can ensure that each 
converted single-label has enough observations to establish a 
classification model, but this irreversible conversion may lose 
some label information [21]. The second method involves 
choosing a feature subset using a specific multi-label feature 
selection algorithm [22]-[25]. For example, an approximating 
mutual information (AMI) method is proposed, and it uses the 
feature selection criterion as maximizing the mutual 
information between features and labels and minimizing the 
mutual information among features [26]. A multi-label feature 
selection strategy based on a scalable criterion for a large label 
collection (SCLS) is proposed, which can evaluate the 
conditional correlation between variables more accurately 
through an extensible correlation evaluation process [27]. Due 
to the information loss issue of the first way, it is believed that 
the second way has better performance under several 
evaluation criteria, such as classification accuracy and 
Hamming loss [28]. 

Recently, scholars have applied the concept of Pareto 
dominance to multi-label feature selection problems. For 
resolving the multi-label feature selection problem, the Pareto 
dominance concept is appropriate, since it can transform this 
problem into a more manageable issue. Specifically, a multi-
label feature selection technique based on the Pareto 
dominance concept (ParFS) is proposed [29]. The ParFS 
algorithm treats each label as a dimension of Pareto 
dominance, and thus the issue of multi-label feature selection 
becomes a Pareto dominance problem. The key point of this 
algorithm is that the original feature set is viewed as a solution 
set. Each feature in the original feature set is viewed as a 
solution, and the evaluation function of the solution is regarded 
as a feature's and a label's correlation vector. Then the feature 
selection problem is transformed into how to delete those non-
Pareto optimal solutions. In fact, high-dimensional data refers 
not only to the high-dimensional features of the data, but also 
to its high-dimensional labels. High-dimensional labels 
increase the difficulty of using the ParFS algorithm to resolve 
issues of multi-label feature selection [30], [31]. Specifically, 
the increase of label dimensions will directly lead to the 
increase of the dimensions to be considered in Pareto 
dominance, which results in the difficulty of forming Pareto 
dominance, causing the Pareto-dominance-based algorithm to 
fail to finish the multi-label feature selection task. 
Consequently, it's essential to improve the multi-label feature 
selection method based on Pareto dominance concept. 
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In this paper, a multi-label feature selection strategy based 
on approximate Pareto dominance is proposed (MAPD). 
Approximate Pareto dominance requires that one solution is 
superior to the others in most dimensions, but not in all 
dimensions. Compared with the existing concept of Pareto 
dominance, the concept of approximate Pareto dominance 
introduces a new approximate parameter. This parameter can 
reduce the difficulty of forming approximate Pareto dominance 
between two solutions under the evaluation function of high-
dimensional solutions, and ensure that the scale of approximate 
Pareto dominance solutions is within an acceptable range. The 
three main contributions are as follows: 

1) A new concept called approximate Pareto dominance is 

proposed. By introducing an approximate parameter, it can 

solve the problem when Pareto dominance is difficult to form 

in the case that the evaluation function dimension of the 

solution is high. 

2) Approximate Pareto dominance is applied in the multi-

label feature selection, and the multi-label feature selection 

issue is mapped to the challenge of determining the 

approximate Pareto dominance solution set. 

3) Based on the approximate Pareto dominance, MAPD is 

built for the high-dimensional multi-label feature selection 

problem, and it is proved to be competitive compared with the 

existing methods. 

The remainder of the paper is organized as follows: 
Preliminaries of this work are presented in Section Ⅱ. The 
proposed approximate Pareto dominance concept and multi-
label feature selection method is discussed in Section Ⅲ. 
Experimental studies and discussion are presented in Section 
Ⅳ, and the paper is concluded in Section Ⅴ. 

II. PRELIMINARIES 

A. Problem Description 

Given a dataset, 1[ ,..., ]mX X X denotes the feature 

observation space, and its corresponding l-dimension label 

space is 1[ ,..., ]lY Y Y , where 1[ , , , , ]T
j j ij njx x xX  is the 

jth feature in X , ijx  denotes the ith observation of the jth 

feature, 1[ , , , , ]T
t t it nty y yY is the tth label in Y , ity  is 

the ith observation of the tth label,    0 1ity or , 

1,2,...,i n , 1,2,...,j m , and 1,2,...,t l . To create the 

classification machine learning model, the multi-label feature 
selection in this study aims to identify the best feature subset 
from all feasible subsets. 

B. Symmetrical Uncertainty 

Symmetrical Uncertainty which abbreviated to SU is a 
measure of the degree to which two variables are related [32]. 
In essence, SU measures the information that the two variables 
exchange and is a standardized representation of the mutual 
information. In other words, SU quantifies how much one 
variable's uncertainty is reduced when the other variable is 
known, and the higher the degree of SU, the more knowledge 
the two variables have in common. The formula for calculating 
SU is given below [33]. 

( ) ( )
( , ) 2

( ) ( )

H H
SU

H H






U U V
U V

U V
, (1) 

21
( ) ( ) log ( ( ))

n

i ii
H p u p u


 U

, (2) 

21 1
( ) ( ) ( ) log ( ( ))

n n

j i ij jj i
H p v p u v p u v

 
  U V

,(3) 

In the above equation, U and V denote two variables with n 

observations. ( )H U  and ( )H V  are respectively the entropy of 

U and the entropy of V. ( )H U V  is the conditional entropy of 

U under V. 

C. Pareto Dominance 

The following definition of Pareto dominance is used to 
compare the results of two solutions to a particular problem. 

Definition 1 (Pareto Dominance [34]): If 1 11 12 1( , ,..., )ns s s s
 

and 2 21 22 2( , ,..., )ns s s s
 are two solutions of a given problem, 

and 1 2( ) ( ( ), ( ),..., ( )), {1,2}i i i m ig s g s g s g s i 
is the evaluation 

function of m dimensions of the given problem, 

1) we define that the solution 2 21 22 2( , ,..., )ns s s s  is Pareto 

dominated to the solution 1 11 12 1( , ,..., )ns s s s  if and only if 

1 2( ) ( ), {1,2,..., }j jg s g s j m   is satisfied; 

2) we define that the solution 2 21 22 2( , ,..., )ns s s s  is weakly 

Pareto dominated to the solution 1 11 12 1( , ,..., )ns s s s  if and only 

if 1 2( ) ( ), {1,2,..., }j jg s g s j m   is satisfied; 

3) we define that the solution 1 11 12 1( , ,..., )ns s s s  and 

solution 2 21 22 2( , ,..., )ns s s s  have no differences under the 

Pareto dominance if and only if 1 2( ) ( )j jg s g s  and  

1 2( ) ( ),k kg s g s {1,2,..., }j k m   are satisfied. 

It can be inferred that the conditions required for Pareto 
dominance are relatively strict, which requires that one solution 
is superior to another solution in each dimension of the 
evaluation function. Considering the increased evaluation 
function dimensions of the solution, we assume that all the 
evaluation function dimensions of the solutions are 
independent with each other, and the difficulty of forming 
Pareto dominance will increase exponentially. Therefore, for 
the high-dimensional evaluation function of the solutions, one 
solution is hard to be Pareto dominated to another solution. 

We concentrate on the Pareto dominance relationships 
between one solution and other solutions when there are more 
than two possible solutions to the problem. The set of Pareto 
optimal solutions is defined as follows. 

Definition 2 (Pareto Optimal Solutions Set [34]): If 

1 2{ , ,..., }nS s s s  is a solutions set of a specific problem and 

ls S  is not Pareto dominated to any other solutions in S , 

then we propose that ls S is a Pareto optimal solution. All the 

Pareto optimal solutions in S  is called as the set of Pareto 

optimal solutions. 

According to Definition 2, we suggest that the set of 
Pareto-optimal solutions can partially substitute for the set of 
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original solutions as the remaining solutions are all inferior to a 
certain solution in the Pareto optimal solutions set. 

III. APPROXIMATE PARETO DOMINANCE AND MULTI-

LABEL FEATURE SELECTION 

A. Multi-label Feature Selection Based on Pareto Dominance 

Given a multi-label dataset with m features, l labels and n 
observations, the original features are denoted as a set of 
solutions of the feature selection problem, and each feature in 
the original feature set is denoted as a solution of the feature 
selection problem. The l-dimensional evaluation function of 
the solution is defined as the symmetric uncertainty between 
the feature and its l labels. In this way, choosing a feature 
subset from the original feature set is analogous to choosing the 
Pareto optimal solutions set from the initial solution set. 

As mentioned in Definition 1, Pareto dominance strictly 
requires that one solution is superior to another solution in each 
dimension of the evaluation function of the solution. In 
particular, with the increased dimensions of the evaluation 
function of a solution, it is challenging to come up with a 
solution that is superior to another solution in all the 
dimensions of the evaluation function. As such, most solutions 
in the solution set become Pareto optimal solutions. In this 
case, most features in the original feature set are preserved in 
the feature selection process. Pareto dominance might cause 
the inefficiencies of the feature selection process because 
useless features cannot be removed. Therefore, to cope with the 
multi-label feature selection issue, this study proposes the 
approximate Pareto dominance based on the Pareto dominance 
to avoid the above circumstance. 

B. Approximate Pareto Dominance 

Based on Pareto Dominance, this study proposes 
approximate Pareto dominance and the set of approximate 
Pareto optimal solutions. 

Definition 3 (Approximate Pareto Dominance): If 

1 11 12 1( , ,..., )ns s s s
 and 2 21 22 2( , ,..., )ns s s s

 are two solutions of a 

problem, and 1 2( ) ( ( ), ( ),..., ( )), {1,2}i i i m ig s g s g s g s i 
is the 

evaluation function of m dimensions of the given problem, 

1) we define solution 2 21 22 2( , ,..., )ns s s s  is approximate 

Pareto dominated to solution 1 11 12 1( , ,..., )ns s s s  if and only if 

1 21
( ( ) ( ))

m

j jj
g s g s m 


   is satisfied; 

2) we define solution 2 21 22 2( , ,..., )ns s s s  is weakly 

approximate Pareto dominated to solution 1 11 12 1( , ,..., )ns s s s  if 

and only if 1 21
( ( ) ( ))

m

j jj
g s g s m 


   is satisfied; 

3) we define solution 1 11 12 1( , ,..., )ns s s s  and solution 

2 21 22 2( , ,..., )ns s s s  have no differences under approximate 

Pareto dominance if and only if 1 21
( ( ) ( ))

m

j jj
g s g s


  

m  and 2 11
( ( ) ( ))

m

j jj
g s g s m 


  , {1,2,..., }j k m   

are satisfied. 

Note that ( )x  is a conditional discriminant function and 

0.5 1   is the approximate parameter. When condition x  

is satisfied, ( ) 1x  ; otherwise ( ) 0x  . 

Definition 4 (Approximate Pareto Optimal Solutions Set): 

If 1 2{ , ,..., }nS s s s
 is a set of solution of a given problem and 

ls S
 is not approximate Pareto dominated to any other 

solutions in S, then we define that ls S
is an approximate 

Pareto optimal solution of the given problem. All the 
approximate Pareto optimal solutions in S are called the 
approximate Pareto optimal solutions set. 

Compared with Pareto dominance, the approximate Pareto 
dominance introduces an approximate parameter. The higher 
the value of the approximate parameter is, the more dimensions 
of one solution are required to be superior to another solution 
in all the evaluation function dimensions, and the closer the 
approximate Pareto dominance is similar to the Pareto 
dominance. The upper bound of the approximate parameter is 
1. When the approximate parameter approaches to the upper 
bound, the approximate Pareto dominance is equal to Pareto 
dominance. The lower bound of the approximate parameter is 
0.5, which means that when one solution is approximate Pareto 
dominated to another solution, it is dominant in more than half 
of the dimensions. This approximate parameter can avoid the 
situation that two solutions are mutually dominant. 

C. Multi-Label Feature Selection Algorithm 

We build a multi-label feature selection algorithm (MAPD) 
based on approximate Pareto dominance for feature selection 
with high-dimensional labels, which is shown in the following 

Algorithm 1, where the ijSU  is the symmetrical uncertainty of 

the ith feature and the jth feature; the set S is the selected 

feature subset; ( )   is the conditional discriminant function; 

js  is the jth solution in the original solution set (namely the jth 

feature); ( )p jg s  is the pth dimension of the evaluation 

function of the jth solution; α is the approximate parameter. 
Approximate parameter α can keep the number of approximate 
Pareto dominance solutions in an acceptable range. 

Algorithm 1 contains three important steps: (1) calculating 
the symmetrical uncertainty between one feature and one label 
(see lines 1-5 of Algorithm 1); (2) initializing the selected 
feature set as an empty set, treating each feature as a solution 
and the symmetric uncertainty between the feature and each 
label as one dimension in the evaluation function. We detect 
the approximate Pareto dominant relationship between each 
two features. If one feature is the approximate Pareto dominant 
solution of the original solution set, the feature is merged into 
the selected feature set until all features are checked (see lines 
6-17 of Algorithm 1). (3) Output the selected feature set (see 
line 18 of Algorithm 1). 
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Algorithm 1 MAPD 

Input: The approximate parameter α, the dataset X with m 
features, l labels and n observations; 
Output: The finally chosen feature subset S. 

1. 1:for i l  

2.     1:for j m  

3.         ( , )ij i jSU SU X X   

4.     end  

5. end  

6. S   

7. 1:for i m  

8.     0k   

9.     1:for j m  

10.        
1

( ( ) ( ))
l

p j p ip
if j i g s g s l 


    

11.            1k k   

12.        end  

12.    end  

14.    0if k   

15.        S S i  

16.    end  

17. end  

18. Output S  

 

IV. EXPERIMENTAL STUDIES AND DISCUSSION 

A. Parameter Setting 

To evaluate the effectiveness of the suggested MAPD 
technique, we employ nine publicly available multi-label 
datasets (http://mulan.sourceforge.net/datasets-mlc.html). The 
datasets have been used in many studies, e.g., [35]-[37]. 

Given a dataset with m features, l labels and n observations, 

1 2( , ,..., )i i i ily y yy  is the real label of the ith observation, 

1 2( , ,..., )i i i ily y y   y  is the predicted label of the ith 

observation based on the classification model. To assess how 
well multi-label feature selection approaches work in terms of 
precision, we use two criteria of Hamming loss and accuracy, 
which can be calculated as follows [38], [39]: 

1

1

( )1
m

ij ijn j

i

y y
Hamming loss

n l












 (4) 

1

1

( ( ) )1
m

ij ijn j

i

y y m
Accuracy

n l

 




 





 (5) 

According to Equation (4), Hamming loss analyzes each 
dimension of an observation's real label and prediction label 
and focuses on the prediction accuracy of a certain dimension. 
Then Hamming loss calculates the average error prediction rate 
of all observations in all dimensions. According to Equation 
(5), accuracy strictly requires that the real label and the 
prediction label should be exactly the same, and calculates the 
accuracy prediction based on all observations. 

This study uses the average values of the accuracy and the 
Hamming loss of 5-fold cross validation of five times as a 
measure of how well feature selection techniques operate. 
Specifically, 5-fold cross validation means that the 
observations are randomly divided into five subsets. For a total 
of five tests, one of which is chosen as the testing set and the 
other four as the training set, and the average performance of 
these five times’ tests is taken as the performance of 5-fold 
cross validation. A higher value of accuracy (or a lower value 
of Hamming loss) means that the feature selection method is 
more efficient. 

B. Result Analysis 

A summary of the nine public multi-label datasets is 
presented in the following Table I. As shown in Table I, the 
nine multi-label datasets come from many different fields, such 
as image, text, and biology, etc. These datasets' label counts 
range from 6 to 374. There are from 593 to 7395 observations 
and from 72 to 1836 features are present. We use these multi-
label datasets to test the performance of the MAPD method. 

TABLE I.  CHARACTERISTICS OF THE NINE MULTI-LABEL DATASETS 

Name Abbr. n m l LCard LDen Field 

scene Sce 2407 294 6 1.074 0.179 image 

emotions Emo 593 72 6 1.869 0.311 music 

yeast Yea 2417 103 14 4.237 0.303 biology 

birds Bir 645 260 19 1.014 0.053 audio 

genbase Gen 662 1186 27 1.252 0.046 biology 

medical Med 978 1449 45 1.245 0.028 text 

enron Enr 1702 1001 53 3.378 0.064 text 

bibtex Bib 7395 1836 159 2.402 0.015 text 

corel5k Cor 5000 499 374 3.522 0.009 image 

Note: LCard means label cardinality; LDen means label density. 

Label density is a standardized way to calculate label 
cardinality by dividing the total number of labels, where label 
cardinality is the average number of labels marked for each 
observation. The following formulas can be used to calculate 
label cardinality and label density: (Kashef and Nezamabadi-
Pour, 2019): 

1 1

1
( 1)

n m

iji j
LCard y

n


 
  

 (6) 

1

1

( 1)1
m

ijn j

i

y
LDen

n l












 (7) 

In the MAPD algorithm, we first analyze approximate the 
Pareto dominance of different approximate parameter α. 
Considering the range of the approximate parameter is 
0.5<α<1, we set four groups of tests, i.e., α=0.6, α=0.7, α=0.8, 
and α=0.9. The results of Hamming loss for different 
approximate parameters are listed in Table II. 

As shown in Table II, when the value of the approximate 
parameter decreases, the average of Hamming loss for the nine 
datasets decreases. Specifically, successively subtracting two 
adjacent items in the last row of Table II, we can see that the 
reduction of Hamming loss is 0.36%, 0.22%, and 0.07% for 
each 0.1 reduction of the approximate parameter α, 
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respectively. Therefore, the proposed MAPD algorithm has a 
trend of continuous reduction and convergence in the 
Hamming loss criterion. Specifically, the average of the 
Hamming loss is optional when the approximate parameter 
α=0.6. The optimal Hamming loss is obtained on 7, 5, and 3 of 
9 datasets when the approximate parameters are α=0.6, α=0.7, 
and α=0.8, respectively. The standard deviations of Hamming 
loss are stable for all approximate parameters. 

TABLE II.  HAMMING LOSS FOR DIFFERENT APPROXIMATE PARAMETERS 

Datasets α=0.6 α=0.7 α=0.8 α=0.9 

Sce 
0.0004 
(0.00004) 

0.0004 
(0.00005) 

0.0004 
(0.00005) 

0.0035 

(0.00026) 

Emo 
0.0057 
(0.00073) 

0.0069 

(0.00068) 

0.0069 

(0.00068) 

0.0236 

(0.00037) 

Yea 
0.0068 

(0.00026) 
0.0067 
(0.00039) 

0.0067 
(0.00029) 

0.0068 

(0.00016) 

Bir 
0.0534 

(0.00000) 

0.0513 

(0.00028) 

0.0540 

(0.00009) 

0.0543 

(0.00051) 

Gen 
0.0028 
(0.00023) 

0.0028 
(0.00023) 

0.0028 
(0.00025) 

0.0030 

(0.00013) 

Med 
0.0032 
(0.00013) 

0.0036 

(0.00010) 

0.0063 

(0.00013) 

0.0084 

(0.00021) 

Enr 
0.0128 
(0.00008) 

0.0196 

(0.00015) 

0.0325 

(0.00018) 

0.0379 

(0.00011) 

Bib 
0.0043 
(0.00001) 

0.0043 
(0.00001) 

0.0051 

(0.00001) 

0.0085 

(0.00003) 

Cor 
0.0027 
(0.00001) 

0.0028 

(0.00001) 

0.0035 

(0.00001) 

0.0045 

(0.00002) 

Mean 
0.0102 
(0.00017) 

0.0109 

(0.00021) 

0.0131 

(0.00019) 

0.0167 

(0.00020) 

Note: The number outside the bracket is the mean value of Hamming loss of 5-fold cross verifications of 5 

times, and the number inside the bracket is standard deviations. 

TABLE III.  INFLUENCE OF DIFFERENT APPROXIMATE PARAMETERS ON 

THE ACCURACY 

Datasets α=0.6 α=0.7 α=0.8 α=0.9 

Sce 
0.9977 
(0.00023) 

0.9975 

(0.00029) 

0.9975 

(0.00029) 

0.9795 

(0.00127) 

Emo 
0.9659 
(0.00436) 

0.9585 

(0.00406) 

0.9585 

(0.00406) 

0.8641 

(0.00151) 

Yea 
0.9251 

(0.00304) 
0.9259 
(0.00295) 

0.9244 

(0.00218) 

0.9231 

(0.00229) 

Bir 
0.4558 

(0.00000) 
0.4998 
(0.00460) 

0.4667 

(0.00347) 

0.4645 

(0.00544) 

Gen 
0.9432 

(0.00313) 

0.9432 

(0.00313) 
0.9447 
(0.00274) 

0.9390 

(0.00135) 

Med 
0.8613 
(0.00466) 

0.8521 

(0.00406) 

0.7513 

(0.00418) 

0.6847 

(0.00757) 

Enr 
0.5524 
(0.00553) 

0.4403 

(0.00560) 

0.2496 

(0.00384) 

0.2018 

(0.00375) 

Bib 
0.6127 
(0.00275) 

0.6127 
(0.00275) 

0.5567 

(0.00214) 

0.3128 

(0.00271) 

Cor 
0.3089 
(0.00265) 

0.2952 

(0.00246) 

0.2430 

(0.00113) 

0.1664 

(0.00283) 

Mean 
0.7359 
(0.00293) 

0.7250 

(0.00332) 

0.6769 

(0.00267) 

0.6151 

(0.00319) 

The results of accuracy for different approximate 
parameters are shown in Table III. When the values of the 
approximate parameter reduce, the average value of the 
accuracy for the nine datasets increases. Similar to the 

calculation in Table II, for each 0.1 reduction of approximate 
parameters, the accuracy will increase by 6.18%, 4.81%, and 
1.09%, respectively. The accuracy criterion of the proposed 
MAPD algorithm has an increasing and converging trend. 
Specifically, the mean value of the accuracy is optimal for the 
approximate parameter α=0.6. When the approximate 
parameters are α=0.6, α=0.7, and α=0.8, 6, 3, and 1 of 9 
datasets get the optimal accuracy, respectively. The standard 
deviations of the accuracy criterion are stable. 

Fig. 1 displays the outcome of the number of features 
chosen for various approximation values. We use the natural 
based logarithm of the size of the selected features when 
plotting the histogram. As the number of the selected features 
calculated by the proposed algorithm is 1 for several datasets 
(e.g., Gen, Cor and Yea), the scale of the chosen features in the 
Fig. 1 is zero. As shown in Fig. 1, when approximate parameter 
decreases, the number of chosen features by the proposed 
multi-label feature selection algorithm decreases. This finding 
is consistent with the definition of the proposed approximate 
Pareto dominance. When the value of the approximate 
parameter decreases, the number of dimensions that need to be 
satisfied is reduced for determining if one solution is better 
than the other or not. This makes it relatively easy to satisfy the 
concept of approximate Pareto dominance between solutions in 
the original set of solutions, decreasing the number of 
approximate Pareto dominated solutions and, in turn, the 
number of the chosen features of the suggested MAPD 
technique. 

 

Fig. 1. Influence of different approximate parameters on the scale of the 

chosen features. 

We also compare Hamming loss of the proposed MAPD 
method with other feature selection methods, i.e., ParFS, 
SCLS, and AMI. As shown in Table IV, the average value of 
Hamming loss of the proposed algorithm (MAPD) is optimal 
(0.0102). Compared with the Hamming loss values of ParFS, 
SCLS, and AMI algorithms, the Hamming loss of the MAPD 
method is reduced by 0.68%, 0.56%, and 0.18%, respectively. 
Specifically, the proposed MAPD algorithm obtains the 
optimal Hamming loss for the six multi-label datasets (i.e., Sce, 
Emo, Med, Enr, Bib, and Cor). However, other feature 
selection methods have a low performance of Hamming loss. 
Specifically, ParFS algorithm obtains the optimal Hamming 
loss for Yea dataset; SCLS algorithm obtains the optimal 
Hamming loss for Gen dataset; AMI algorithm obtains the 
optimal Hamming loss for Bir dataset. Moreover, for Cor, Bib, 
Enr and Med datasets with the highest number of labels, the 
proposed MAPD algorithm obtains the optimal Hamming loss. 
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Thus, it follows that datasets with high-dimensional labels are 
more suited for the suggested MAPD method. Compared with 
ParFS, SCLS, and AMI algorithms, the reduction ranges of 
Hamming loss of the proposed MAPD method are -0.02% ~ 
20.99%, -0.15% ~ 2.36%, and -0.67% ~ 1.42%, respectively. 
The standard deviation values of the MAPD algorithm are 
similar to the other algorithms. 

TABLE IV.  HAMMING LOSS PERFORMANCE OF DIFFERENT METHODS 

Datasets ParFS SCLS AMI MAPD 

Sce 
0.0035 

(0.00026) 

0.0010 

(0.00015) 

0.0011 

(0.00008) 
0.0004 
(0.00004) 

Emo 
0.0236 

(0.00037) 

0.0293 

(0.00131) 

0.0090 

(0.00063) 
0.0057 
(0.00073) 

Yea 
0.0066 
(0.00013) 

0.0071 

(0.00026) 

0.0070 

(0.00006) 

0.0068 

(0.00026) 

Bir 
0.0539 

(0.00059) 

0.0519 

(0.00060) 
0.0467 
(0.00058) 

0.0534 

(0.00000) 

Gen 
0.0030 

(0.00011) 
0.0027 
(0.00006) 

0.0030 

(0.00017) 

0.0028 

(0.00023) 

Med 
0.0087 

(0.00017) 

0.0066 

(0.00025) 

0.0046 

(0.00017) 
0.0032 
(0.00013) 

Enr 
0.0379 

(0.00020) 

0.0304 

(0.00024) 

0.0270 

(0.00004) 
0.0128 
(0.00008) 

Bib 
0.0107 

(0.00008) 

0.0100 

(0.00002) 

0.0070 

(0.00001) 
0.0043 
(0.00001) 

Cor 
0.0046 

(0.00002) 

0.0031 

(0.00003) 

0.0030 

(0.00003) 
0.0027 
(0.00001) 

Mean 
0.0170 

(0.00022) 

0.0158 

(0.00033) 

0.0120 

(0.00020) 
0.0102 
(0.00017) 

TABLE V.  PERFORMANCES OF DIFFERENT FEATURE SELECTION 

METHODS ON ACCURACY 

Datasets ParFS SCLS AMI MAPD 

Sce 
0.9795 

(0.00127) 

0.9938 

(0.00088) 

0.9937 

(0.00035) 
0.9977 
(0.00023) 

Emo 
0.8641 

(0.00151) 

0.8331 

(0.00773) 

0.9460 

(0.00377) 
0.9659 
(0.00436) 

Yea 
0.9258 
(0.00162) 

0.9214 

(0.00265) 

0.9236 

(0.00179) 

0.9251 

(0.00304) 

Bir 
0.4667 

(0.00190) 

0.4695 

(0.00318) 
0.5029 
(0.00419) 

0.4558 

(0.00000) 

Gen 
0.9405 

(0.00083) 
0.9465 
(0.00274) 

0.9375 

(0.00172) 

0.9432 

(0.00313) 

Med 
0.6816 

(0.00661) 

0.7466 

(0.00793) 

0.8186 

(0.00553) 
0.8613 
(0.00466) 

Enr 
0.2001 

(0.00287) 

0.2599 

(0.00552) 

0.2979 

(0.00208) 
0.5524 
(0.00553) 

Bib 
0.2006 

(0.00195) 

0.2216 

(0.00127) 

0.4077 

(0.00321) 
0.6127 
(0.00275) 

Cor 
0.1596 

(0.00291) 

0.2666 

(0.00455) 

0.2730 

(0.00529) 

0.3089 

(0.00265) 

Mean 
0.6020 

(0.00238) 

0.6288 

(0.00405) 

0.6779 

(0.00310) 
0.7359 
(0.00293) 

We compare the accuracy of different multi-label feature 
selection methods (see Table V). As shown in Table V, the 
proposed MAPD algorithm obtains the optimal average value 
of accuracy of nine datasets (0.7359). Compared with ParFS, 
SCLS, and AMI algorithms, the accuracy value of the proposed 
MAPD algorithm has increased by 13.39%, 10.71%, and 
5.80%, respectively. The proposed MAPD algorithm obtains 

the optimal accuracy value for six datasets, i.e., Sce, Emo, 
Med, Enr, Bib, and Cor. ParFS algorithm obtains the optimal 
accuracy value for Yea dataset; SCLS algorithm obtains the 
optimal accuracy value for Gen dataset; AMI algorithm obtains 
the optimal accuracy value for Bir dataset. Moreover, for Cor, 
Bib, Enr and Med datasets with the highest number of labels, 
the proposed MAPD algorithm obtains the optimal accuracy 
value. Compared the ParFS, SCLS, and AMI algorithms, the 
increase ranges of the MAPD algorithm on the nine datasets 
are -1.09% ~ 41.21%, -1.37% ~ 39.11%, and -4.71% ~ 
25.45%, respectively. In terms of the standard deviation, all 
algorithms are similar. 

 

Fig. 2. The number of selected features of different methods. 

In Fig. 2, the scale of the chosen features of the MAPD 
algorithm is much lower than the scale of the chosen features 
of the other three methods. When the dimensions of the labels 
increase, the advantage of the MAPD algorithm is 
strengthened. 

V. CONCLUSIONS 

For the high-dimensional feature selection problem with 
multi-label dataset, a concept called approximate Pareto 
dominance is presented, which can be used to compare the 
qualities of two solutions. Compared with the traditional Pareto 
dominance concept, with the help of the approximate 
parameter, the proposed approximate Pareto dominance can 
solve the problem that Pareto dominance cannot do well when 
the evaluation function dimension of the solution is high. Then, 
using this concept, the feature selection problem with multi-
label data is mapped to the problem of finding the set of 
approximate Pareto dominance solutions. Based on this 
transformation, we propose a method called MAPD to solve it. 

The MAPD algorithm is tested on nine public multi-label 
datasets from different fields. Experiment results show that the 
proposed MAPD algorithm has a higher level of classification 
accuracy, a lower level of Hamming loss and a lower number 
of the selected features compared with the existing methods. 
Specifically, compared with ParFS, SCLS and AMI methods, 
the Hamming loss evaluation index is reduced by 0.68%, 
0.56% and 0.18%, respectively. The proposed MAPD method 
obtains the optimal Hamming loss on six of nine datasets. On 
the accuracy evaluation index, the proposed MAPD algorithm 
also obtains the best classification accuracy on six of nine 
datasets; compared with ParFS, SCLS and AMI methods, the 
classification accuracy increased by 13.39%, 10.71% and 
5.80%, respectively. 
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