
(IJACSA) International Journal of Advanced Computer Science and Applications

Vol. 14, No. 7, 2023

174 | P a g e

www.ijacsa.thesai.org

Continuous Software Engineering for Augmented

Reality

Suzanna
1
, Sasmoko

2
, Ford Lumban Gaol

3
, Tanty Oktavia

4

Computer Science Department-BINUS Graduate Program-Doctor of Computer Science,

Bina Nusantara University, Jakarta, Indonesia, 11480
1, 2, 3

Information Systems Department-Binus Online Learning, Bina Nusantara University, Jakarta, Indonesia, 11480
1

Information System Management Department-BINUS Graduate Program-Master of Information System Management,

Bina Nusantara University, Jakarta, Indonesia 11480
4

Abstract—Continuous software engineering is a new trend

that has attracted increasing attention from the research

community in recent years. In software engineering there are

“continuous” stages that are used depending on the number of

artifact repositories such as databases, meta data, virtual

machines, networks and servers, various logs, and reports.

Augmented Reality (AR) technology is currently growing

rapidly. We can find this technology in various fields of life, but

unfortunately sustainable software engineering for Augmented

Reality is not found. The method shown in previous research is a

general method in software engineering so that a theory is needed

for sustainable software engineering for AR considering that AR

is not just an ordinary application but there are 3D elements and

specific components that must be met so that it can be called AR.

The main idea behind this research is to find a continuous

pattern from the stages of the existing method so far. For

example, in general the stages of system development are

planning, analysis, design, implementation and maintenance.

Then after the application has been built, does it finish there? As

we know software always grows and develops according to

human needs. Therefore, there are continuous stages that must

be patterned so that the life cycle process can be maintained. In

this paper we present our initial findings about the continuous

stages of continuous software engineering namely continuous

planning, continuous analysis, continuous design, continuous

programming, continuous integration, and continuous

maintenance.

Keywords—Continuous software engineering; augmented

reality; method in software engineering; continuous planning;

continuous analysis; continuous design; continuous programming;

continuous integration; continuous maintenance

I. INTRODUCTION

Continuous software engineering is performed to avoid
discontinuities between development and deployment to
continuously perform continuous development [1].
Continuously means without interruption, so the application
delivery processing time can be maintained [2]. In continuous
software engineering, software developers can flexibly
implement several changes from coding, testing and
deployment so that if there are problems such as detecting
bugs, requesting changes and other unexpected actions will be
resolved more quickly. In addition, developers can also test
more often and implement some changes. Instead of creating
new code, developers can leverage code from an already
developed version of the software. All changes or additions to

the code will be integrated and then tested for functionality. If
it passes, the deployment process produces output in the form
of the latest version of the application. In this case, all parties
are involved in collaborative development until the software is
ready for release [3].

A method is a systematic way or technique used to do
something. Methods can be applied to one or more of the
existing processes in the methodology. Meanwhile,
methodology is a unity of methods, rules and stages used by
science, art, and other scientific disciplines [4]. From this
understanding, systematic and regular steps are needed in
solving problems with the purpose of clearly know the
procedures and sequences taken [5]. Thus, the results of
problem solving can be optimal. To build software
engineering, it is necessary to have automatic or semi-
automatic support for carrying out the method so that
computer-assisted software engineering can be built [6]. In
practice, however, it is often the case that using the same
methods does not produce the same results or, in other words,
does not affect a software project in a comparable way [4].

Augmented Reality is a technology capable of displaying a
visual spectrum in real-time which is currently developing
rapidly. Its presence not only brings different nuances in the
human visual screen but is also able to combine several
technologies to bring digital information into visual perception
[7]. To build an AR project, a special method is needed
because not all digitally enhanced media today is ―Augmented‖
reality. 2D images or Photoshop conversions are not AR. As is
the case with images produced from television or films such as
―Jurassic Park‖ and ―Avatar‖ are also not AR. In contrast, a
game that uses live feed and provides a real experience is AR.
Not all visual searches can be categorized as AR. Therefore,
something is said to be AR if it has the main characteristics of
the AR system, namely [8]:

 Real time interactivity

 Use of 3D virtual elements

 Mixture of virtual elements with real elements

According to research conducted by Bean [9], the 3D
animation industry, such as film, games, television, advertising
and visual effects, uses three main stages in each segment that
must be carried out. The three stages are pre-production,
production, and post-production. In the pre-production stage,

(IJACSA) International Journal of Advanced Computer Science and Applications

Vol. 14, No. 7, 2023

175 | P a g e

www.ijacsa.thesai.org

the team will think about ideas and make sure to tell a
compelling story. Determination of character, environment and
other supporting factors need to be made as attractive as
possible. At the production stage, if the previous stages have
been well structured and mature, the project can be carried out.
Then in the post-production stage, 2D visual effects and 3D
animations are created. In this stage color correction, sound,
and other effects need attention so the project will look
fantastic. In addition to these three stages, it is necessary to
consider the software and hardware components that will be
used to create AR application contexts [10].

II. LITERATURE REVIEW OF SOFTWARE METHODS

Software is a computer program that is a key component of
most businesses such as products, services, industrial
processes, and back-office functions. Responding to changing
customer needs and market conditions requires the ability to
improve software quality quickly and continuously. This
approach is known as continuous software engineering [11].

Continuous software engineering is a paradigm for
streamlining software engineering by conducting gradual and
continuous delivery of software with the purpose of quickly get
feedback from customers and improve software quality
according to customer requirements [3]. With this gradual and
continuous method, the potential for improvement is easier to
plan and strengthen. Smaller portions of software updates
allow developers to focus on a collaborative, experience-based
business model. The essence of continuous software
engineering is continuous integration and delivery. This end
principle is expected to cover the entire software engineering
process from initiation, analysis, development, integration,
validation, verification, delivery, to gathering feedback and
planning the next software iteration step.

The stages in the software method generally consist of
planning, analysis, design, and programming stages [4]. In the
last two decades there has been a change in the stages of
software development to address challenges that occur in the
field. Based on the results of surveys and interviews conducted
by Fitzgerald [1], it is known that only 6% of software
developer practitioners apply formally defined methods. The
rest do not follow the rules of the established method. Then
what causes it? Why is there a difference between the method
described and the one implemented? From the results of the
literature review there are those who argue that software
practitioners do not get sufficient knowledge, are not educated,
and do not receive proper training. In the research conducted
by Parnas [12] in his writings, he acknowledged that the
reasons for non-compliance from software practitioners
observed were disciplinary methods and norms.

From the application that has been carried out in previous
research it is known that the agile method has the advantage of
being more flexible and able to accept change. Its extraordinary
adaptability made this method quickly accepted in today's
software environment [13]. Very complex software projects
require integrated, distributed teams. This plays an important
role as a bridge between the developer and other stakeholders
so that if there is an error it will be easily detected and
immediately corrected. The software development method
aims to obtain quality and conformity to user requirements[14].

Currently the need for integrated practice has increased. As an
example, for extreme agile methods where their popularity is
steadily increasing. Then the DevOps method recognizes that
software development and operational deployment must be
continuous [15]. From the various results of the literature that
has been reviewed, it is known that there is a relationship
between business strategy and software development. These
two things must be continuously assessed and improved. In
research conducted by Fitzgerald [1] the combination of the
two is abbreviated as BizDev.

The software development methods commonly used by AR
today and which will be used as comparison material are as
follows, Table I:

a) Waterfall

b) Agile

c) Scrum

d) RAD

e) Prototype

f) DevOps

g) Kanban

h) Rational Unified Process

i) Spiral

j) 3D Pipeline Production

AR technology is still relatively new for software
developers to develop, and it is not easy to choose the right
development method. According to Dennis, there are several
considerations in choosing a software development method
based on several criteria, namely: clarity of user needs, mastery
of technology, level of system complexity, level of system
reliability, execution time and visibility of the implementation
schedule [16]. In research conducted by Fitzgerald [1] on
continuous software engineering, it was found that there are
four activities, namely, strategy and business planning,
development, operation and improvement and innovation. Of
the four main activities, there are sub-sections as follows:

Strategy and business planning

- Continuous planning

- Continuous budgeting

Development

- Continuous integration

- Continuous delivery

- Continuous deployment

- Continuous verification

- Continuous testing

- Continuous compliance

- Continuous security

- Continuous evolution

Operation

- Continuous use

- Continuous trust

- Continuous run-time monitoring

Improvement and Innovation

- Continuous improvement

- Continuous innovation

- Continuous experimentation

(IJACSA) International Journal of Advanced Computer Science and Applications

Vol. 14, No. 7, 2023

176 | P a g e

www.ijacsa.thesai.org

TABLE I. COMPARISON OF EACH METHOD

Method Superiority Weakness

Waterfalls

1. Easy in management because almost whole requirements have been

identified and documented.

2. Sequential stages linearly, complete identification and documentation,
making the process easy understood by all the team involved or project

owner.

1. No flexibility to change occurring needs in stage
development system.

2. Almost no tolerance errors, especially in stages planning

and designing.

Spiral
1. High amount of risk analysis.
2. Good for large projects and mission critical.

1. Can be an expensive model for use.

2. Risk analysis needs very specific skills.
3. Success projects are highly dependent on the risk analysis

stage.

Agile
Development

1. Method light in accordance small project and medium project.

2. Produce cohesion good team.
3. Emphasize final product.

4. Approach based test for terms and guarantees quality.

1. Not suitable for handling complex dependencies.
2. There is risk to sustainability, maintenance, and time

longer.

3. Needed mature plans and roles leader existing project
experienced.

Scrums

1. Scrums can help a team finish results project fast and efficiently.

2. Scrum confirmed the use of time and money effective.

3. Developed code and tested during the sprint review.

4. Teams earn clear visibility through scrum meetings.

5. Scrums, with nimble, adopt bait come back from customers and
stakeholders’ interests.

6. Short sprints possible change based on bait come back with easier.

1. Scrums often lead to scope creep because lack of date
definite end.

2. Opportunity failure project high if individual have no

committed or cooperative.

3. Only can succeed with members who have experienced

team.
4. Meeting daily sometimes makes member team frustrated.

5. Quality difficult applied until team through an aggressive

testing process

RAD

1. Efficiency time delivery.
2. Change needs can accommodate.

3. Cycle time can be short with the use of powerful RAD tools.

4. Use tools and frameworks.

1. Complexity management.

2. Suitable for system-based components and measurable.

3. Need involvement users all over cycle system.
4. Requires highly skilled personnel.

5. Dependency high on modeling ability.

Prototype

1. Accurate identification requirements because it has input from the

project owner so that the appearance of the resulting prototype can be
adjusted to the immediate needs of the user.

2. Errors and redundancies can be minimized because of the good

identification process to prototype shape.

1. Each evaluation and input for prototype changes will add

to the complexity of the system being developed.
2. Give burden addition to programmers.

3. There is a need for additional costs related to making a

prototype display.

DevOps

1. Faster application development and deployment.

2. Be more responsive and fast to market changes.

3. Advantages in terms of software delivery time and transportation costs.

4. Improve customer experience and satisfaction.
5. Simplifies collaboration as all tools are placed in the cloud for customer

access.

1. Professionals in the field of DevOps yet adequate.

2. Cost management infrastructure in relative DevOps
methods is high.

3. Lack of understanding of DevOps methods can cause

problem in integration project continuous automation.

Kanban

1. Kanban’s are very simple and easy method understood so that make it

easy management company.

2. Kanban method is spot on time or Just in Time (JIT).
3. The Kanban method is a very responsive system and does not cause

slowness or delay.

1. Kanban cannot be used as an independent tool. This
method is not quite suitable for a single application but

can be combined with other methods such as Scrum, JIT,

and others.
2. As assignments constantly move between columns of the

kanban board, a certain predictive time for the completion

of a task or activity becomes difficult.
3. Kanban is not suitable for dynamic environments.

4. Kanban will be very difficult to implement if there are too

many related joint activities or tasks in a system.

Rational
Unified

Process

(RUP)

1. RUP is a complete methodology with all easily available documentation.

2. RUP is publicly published, distributed, and supported.

3. Training is available where RUP can guide users through the process
with step-by-step tutorials. Many institutions also offer training courses.

4. Requirements Change where proactive resolution of changing client

conditions and associated risks.
5. Reduce integration time and effort.

6. The reuse rate becomes higher.

1. The process is too complex, too difficult to learn, and too

difficult to apply properly.

2. Integrated process does not capture the sociological

aspects of software development and details about how the

software develops step by step.

3D Pipeline
Production

1. Method This possible 3D animation is shown in a manner realistic,

dynamic, and detailed.
2. Method This support technology modern 3D animation possible

movement displayed with fluid and very detailed.

3. At the realistic and dynamic rendering stage, 3D animation also has
Power strong visual appeal. They have shown for interesting more Lots

attention than animation similar in 2D.

3D animation uses more complex techniques than 2D

animation. This means it generally takes more time to
develop 3d animations. It also requires more expensive

software to create 3D animations.

(IJACSA) International Journal of Advanced Computer Science and Applications

Vol. 14, No. 7, 2023

177 | P a g e

www.ijacsa.thesai.org

The method shown in Fitzgerald's research [1] is a common
method in software engineering. This study tries to explore AR
as its focus so that a theory is needed for continuous software
engineering for AR considering that AR is not just an ordinary
application but there are certain 3D elements and components
that must be met so that it can be called AR.

III. TRENDS LANDSCAPE OF SOFTWARE ENGINEERING

The Agile method at its inception was focused on the
software development function and was considered only
suitable for small businesses or only for small teams [17]. But
over time there has been a change with the emergence of many
studies which identify that the concept of agile has entered the
scale of large companies. The seven general principles of
common practice for agile methods are Scrum, XP, DSDM
[18]. These seven general principles address the agile approach
in several dimensions. In research conducted by Leffingwell
[19] said that the experience of organizations adopting agile
methods in companies uses agile scale frameworks to explain
practices and activities, roles, and artifacts. Basically, the
organization must be responsive in responding to
environmental changes that occur [20]. The DevOps method
emerged because there was a gap in the development and
operations functions in the company for large software scales
because the bigger the team, the higher the responsibility.
Automation, DevOps relies on full automation of build, deploy
and test to achieve short lead times, and consequently get rapid
feedback from users. Sharing happens on many levels, from
sharing knowledge, tools, and infrastructure, celebrating
successful releases to bringing development and operations
teams closer together.

There are several tools that can be used to practice
continuous software engineering, including:

 Jenkins

Jenkins is an open-source tool that is often used especially
in the continuous integration/continuous deployment (CI/CD)
stage. Jenkins makes it easy to automate the integration and
code testing process through features provided to speed up the
delivery process introducing automation [17].

 GitLab

GitLab is a complete software development platform that
provides a CI/CD pipeline to integrate, test, and deploy code
automatically [18].

 Travis CI

Travis CI is a CI/CD tool that provides integration with Git
and GitHub repositories resulting in fast integration with
various programming languages as well as a flexible testing
environment [19].

 Circle CI

Circle CI is a cloud-based tool that provides integrated Git
repository features that enable automated testing and
deployment and supports multiple programming languages
[20].

The tools above are just a few examples while the choice of
the right tool depends on the needs of the project and the
preferences of the development team.

IV. PROPOSED CONTINUOUS SOFTWARE ENGINEERING FOR

AUGMENTED REALITY

The stages in the software method generally consist of
planning, analysis, design, programming, and maintenance [4].
This research proposes additional stages in the software
development method for AR, namely continuous planning,
continuous analysis, continuous design, continuous
programming, continuous integration, and continuous
maintenance, Table II.

TABLE II. PROPOSED STAGES OF THE SOFTWARE DEVELOPMENT

METHOD FOR AR

No Stages Activity Step in AR

A
Sustainable
planning

Continuous planning
Idea, story

Sustainable budgeting

B
Continuous

analysis

Continuous deployment Experimental

data
Continuous verification

C
Sustainable
Design

Continuous testing

Animatic and
Design

Continuous compliance

Continuous security

Continuous evolution

D
Continuous

programming

Continuous use

Research and

Development.

Continuous trust

Continuous run-time
monitoring

E
Continuous

integration

Continuous release
Interconnected

Continuous delivery

F
Continuous
Maintenance

Continuous improvement

Correction action Continuous innovation

Continuous experimentation

A. Sustainable Planning

In the context of software development, planning is an
initial idea that is episodic from the current set of problem
formulations [21]. Over time, changes occur, and the business
environment does require planning activities to be carried out
more frequently to ensure alignment between the needs of the
business context and software development. Not only the
business environment but covering all areas of human life will
certainly always experience changes [22]. In sustainable
planning there are stages of continuous planning and
sustainable budgeting.

 Continuous planning

The relationship between planning and portfolio becomes
important at this stage. Planning must be iterated and released,
a portfolio that includes product planning activities must be
carried out [23]. However, the portfolio still has the possibility
of failure even though the project is generally successful. The
portfolio approach tends towards the organization. In previous
research, it is known that there are still many cases where the
approach to individual project management has received more
attention than the portfolio approach [1].

In AR, there are stages in the ideas and stories sections that
should always be refreshed so that users always get new
findings in the AR applications they use. Periodically new

(IJACSA) International Journal of Advanced Computer Science and Applications

Vol. 14, No. 7, 2023

178 | P a g e

www.ijacsa.thesai.org

ideas should be rolled out and new story additions or new
characters in AR can provide users with an unforgettable
immersive experience [24].

 Sustainable budgeting

The budget is a financial plan that is prepared in detail and
coordinated from management plans with the aim of achieving
targets within a predetermined period [1]. In general, budgeting
is an annual or even multi-year event that describes annual
events in the 'short term' and for three years or more in the
'long term'. To overcome this, the concept of "sustainable
budgeting" is needed so that budgeting becomes more flexible
and makes managers more flexible in making operational
decisions at their own discretion to deal with unexpected
situations that cannot be predicted in the master budget
plan[25]. The budgeting system must be open and transparent
so that the team can manage finances independently according
to a predetermined budget but not limited to the annual cycle
[26].

B. Continuous Analysis

At this stage it is possible not only to measure the overall
behaviour of the mechanism, but also an in-depth analysis of
the software engineering being executed. Experimental data to
verify the continuous analysis method is strongly
recommended [21].

 Continuous deployment

Continuous deployment is the continuous delivery of code
changes to applications that are released during software
development. This stage must be carried out in a series of
predetermined tests. After going through the testing phase, the
system will confirm that the software is ready to be released to
the customer and that it is in accordance with customer
requirements [1].

 Continuous verification

Continuous verification is the discipline of proactive
experimentation or the process of monitoring applications for
post-deployment anomalies. An anomaly is any interruption in
normal operation that may affect application users especially in
AR, including [27]:

a) High response latency

b) Server-side error

c) Client-side error

d) Downtime of any application component

e) Unexpected scaling or failover events

The purpose of continuous verification is to collect data
from implemented implementations and then analyze them
through machine learning and create a basis for good
implementations. The benefit of this ongoing verification is to
identify that something is wrong and take corrective action—
for example, reverting the app to a stable or default version.
Precautions should be implemented as quickly and smoothly as
possible before the customer becomes aware of the problem
[1].

C. Sustainable Design

In the sustainable design for AR, design components and
final appearance of the project that has been decided can be
updated according to market demand. At the beginning of
creating AR, designers created conceptual art using media
ranging from pens, charcoal, pencils, dyes, or oil paints to
using computers such as Adobe Photoshop software. There is
no problem using any media if the concept to be conveyed can
be understood by users. Artwork often reflects the artist who
created it, so the artist's mood and instincts should be an
important aspect to pay attention to. The reason why this stage
must be continuous is because when making art at the
beginning, it is limited by a deadline. So that continuity is
needed to ensure the results are delivered in accordance with
the desired initial concept and get user feedback. Therefore,
updates at this stage need to be done to perfect the design [28].

 Continuous testing

Continuous testing is a software development process
where applications are tested continuously throughout the
software development life cycle (SDLC). The goal of
continuous testing is to evaluate software quality throughout
the system life cycle to provide critical feedback earlier and
enable faster, higher quality delivery. The advantage of this
stage is when the context is still fresh in the mind of the
developer and an error occurs, it is quickly resolved before the
problem becomes unexpectedly deep and widespread. The
benefit to software developers is that testing can be performed
effectively and helps reduce overall development time by up to
15%. This is proof that continuous testing can be used as a tool
to reduce waste of waiting time [29].

 Continuous compliance

At the beginning of its implementation, Agile methods
were considered only suitable for small projects and placed in a
crisis context, not safety. However, in recent decades Agile
methods have been successfully applied to large, distributed
projects. In the research conducted by Fitzgerald [1] there was
discussion about adapting the Scrum method to R-Scrum or
Regulated-Scrum. This is actually a disguise from a waterfall
approach to an agile approach that allows developers to
complete projects faster [1].

 Continuous security

Security is a priority in all phases of software development
life, even after implementation, security is an important thing
that must be done. Security can finally be said to be a non-
functional requirement that is often unintentionally delegated
to a lower priority. Therefore it is necessary to apply an
intelligent and lightweight approach to be able to identify
vulnerabilities to security issues [1].

 Continuous evolution

Software evolution is fundamentally dependent on the
expertise of the developer as well as the changeability inherent
in the software product itself [1].

D. Continuous Programming

In continuous programming in AR, it requires continuity in
the research and development (R&D). R&D is a component

(IJACSA) International Journal of Advanced Computer Science and Applications

Vol. 14, No. 7, 2023

179 | P a g e

www.ijacsa.thesai.org

that covers from pre-production to post-production in 3D
animation flow [9]. For example, in the animated film Finding
Nemo, a team of artists from various components had to think
about how to make the water feature look as if it were real.
Likewise with other objects that float in the water must really
look alive. When it was first released in 2003, there were no
3D animated films depicting water because it was considered
especially difficult to render efficiently. Making this film is not
easy, it takes years and provides its own challenges for the
R&D team. But the resulting effort is well worth it, Finding
Nemo succeeds in bringing the animation to life in the
expected form [30].

 Continuous use

Continuous use provides advantages in terms of time and
cost because the system is not built from scratch but from a
continuation of an existing system. This continuous use does
not mean that it can be used automatically because there must
be some initial consideration and decision to use the software.
The cost of acquiring new customers is estimated to be up to
ten times that of retaining existing customers [21]. Previous
research also stated that developers tend to stick with the
system rather than designing from scratch [1].

 Continuous trust

Continuous trust is a process that takes time so that there is
confidence that the vendor will do all its expertise to meet
customer expectations according to their needs. Continuous use
is highly dependent on continued trust where the relationship is
a complex relationship. In Hoehle et al [1] research, trust is a
very important start to be achieved in a transaction. For long-
term activities like Cloud remote services, AWS and others
require ongoing trust. Software developers need to pay
attention to the issue of trust in sustainability because even if it
starts well, the trust itself can erode from the user experience
both internally, such as inconveniences in certain features or
external factors, such as news regarding vulnerable security
issues and others [21].

 Continuous run-time monitoring

A classification scheme is provided to help understand the
approach chosen by a system designer with a particular
method. This stage can also be used to analyse ongoing
projects and consider functional and non-functional aspects
that are interesting to study in software development projects
[21].

E. Continuous Integration

Continuous integration is defined as a process that is
usually triggered automatically and consists of interconnected
steps such as compiling code, running unit and acceptance
tests, validating code coverage, checking compliance with
coding standards and building deployment packages. While
some form of automation is typical, the frequency of
integration is also important as it needs to be regular enough to
ensure rapid feedback to developers. Finally, continuous
integration failures are high-profile events that may have
several visible ceremonies and artefacts to help ensure that the
issues causing these failures are prioritized for resolution as
quickly as possible by whoever is held responsible [31].

 Continuous Release

When a component is released, its version number
declaration is updated, as well as its dependency declarations,
because those dependencies always refer to the component that
was also released. This makes the component-based release
process recursive. There are significant costs associated with
this method of release. The more frequently a dependent
component is released, the more frequently a component that
depends on it must be released to take advantage of the
additional quality functionality it contains. Furthermore, with
each dependency release, all components that use it should be
tested for integration, before they can be released on their own
[21].

 Continuous delivery

Continuous delivery is a prerequisite if developers are
going for continuous adoption, but not necessarily the other
way around. Continuous delivery focuses on being able to
deploy software to multiple environments but not necessarily
to customers. As opposed to continuous deployment which is
obligatory to release valid software to its users [23].

F. Continuous Maintenance

Continuous maintenance in AR is more focused on
maintaining the long-term sustainability of the software both
during development and after production. This stage has a
series of other advanced stages, namely continuous
improvement, continuous innovation, and continuous
experimentation.

 Continuous improvement

Continuous improvement activities are efforts to add
customer value through reactive initiatives from software
developers. Therefore, innovation is needed as a proactive
strategy to emphasize customer satisfaction [1].

 Continuous innovation

Innovation in a business context is new ideas that are
transformed through processes to create business value for
customers. An example of this innovation is discovery plus
exploitation[31]. Research on software engineering has
conducted a lot of research on innovation and these keywords
are the most searched for by software developers and the
business community, especially regarding open innovation.
The concept of Lean startups is an example of continuous
innovation. Testing is done by beta testing which is used to get
customer feedback before the official release of a software
product. Continuous innovation is a continuous interaction
between operations, gradual improvement, learning, and
radical innovation to identify added value features aimed at
combining operational and strategic effectiveness or known as
exploitation and exploration [1].

 Continuous experimentation

Continuous experimentation has another benefit for teams
in that it generates measurable metrics of change and progress
so that team goals are clearly defined. The application of
continuous experiments in several domains requires solutions
and challenges that range from infrastructure challenges,

(IJACSA) International Journal of Advanced Computer Science and Applications

Vol. 14, No. 7, 2023

180 | P a g e

www.ijacsa.thesai.org

measurement challenges and social challenges. These
challenges may only be relevant in one domain, but the
solutions developed can be applied to other domains. This
domain-specific challenge is closely related to the resulting
solution [31].

In many publications on perpetual experimentation, the
merits of the experiment are mentioned only as a motivation,
i.e., improving product quality based on selected metrics.
Further studies are needed to determine, for example, if there
are more benefits, whether they apply to all companies
involved in the experiment, or whether they could be obtained
through other means. Another benefit is the potential use of
continuous experimentation for software quality assurance.
Continuous experimentation can support or even change the
way quality assurance is performed for software. Software
changes, for example, can only be applied if key metrics are
not derived in the associated change experiment. Thus, the loss
of quality can become measurable and measurable. Although
some papers mention the use of continuous testing for software
quality assurance [31].

V. DISCUSSION

When working on AR projects, designers need to weigh
quality against time and budget. When using today's rendering
engines and shaders, 3D artists must find a happy medium
between perfect looks and reasonable render times. New
technologies are released every year in various forms—from
computer hardware with faster speeds and data transfers, to
software with advanced capabilities, and technologies that
make workflows smoother. Some of the new trends being
pursued by the 3D animation industry include full-body and
detail motion capture, stereoscopic 3D output, point-cloud
data, real-time workflow capabilities, and virtual studios. Each
will provide a faster project turnaround and will allow artists to
focus on the art of the project and not the technical hurdles of
the production line. Continuous software engineering relies on
a basic set of principles that govern every field of technology
and includes modelling activities and other descriptive
techniques.

VI. CONCLUSION

In general, the methods in software engineering include
planning, analysis, design, programming, and maintenance. In
this paper we present our initial findings about the continuous
stages of the software method, namely continuous planning,
continuous analysis, continuous design, continuous
programming, continuous integration, and continuous
maintenance then the continuous process of AR system
development can be updated according to market demand.

For future work, tool support is available for continuous
software engineering but suitable tool support for the whole
concept from coding to delivery and data management for
decision making needs attention in the future.

REFERENCES

[1] B. Fitzgerald and K. J. Stol, ―Continuous software engineering: A
roadmap and agenda,‖ J. Syst. Softw., vol. 123, pp. 176–189, 2017, doi:
10.1016/j.jss.2015.06.063.

[2] C. Pang and A. Hindle, ―Continuous maintenance,‖ Proc. - 2016 IEEE
Int. Conf. Softw. Maint. Evol. ICSME 2016, pp. 458–462, 2017, doi:
10.1109/ICSME.2016.45.

[3] E. Klotins and T. Gorschek, ―Continuous Software Engineering in the
Wild,‖ Lect. Notes Bus. Inf. Process., vol. 439 LNBIP, pp. 3–12, 2022,
doi: 10.1007/978-3-031-04115-0_1.

[4] I. Sommerville, Software Engineering (9th ed.; Boston, Ed.).
Massachusetts: Pearson Education. 2011.

[5] M. Mahalakshmi and M. Sundararajan, ―Traditional SDLC Vs Scrum
Methodology – A Comparative Study,‖ Int. J. Emerg. Technol. Adv.
Eng., vol. 3, no. 6, pp. 2–6, 2013.

[6] R. S. Pressman, Software Engineering: A Practitioner’s Approach,
Seventh. McGraw Hill, 2010.

[7] R. Yung and C. Khoo-Lattimore, ―New realities: a systematic literature
review on virtual reality and augmented reality in tourism research,‖
Curr. Issues Tour., vol. 22, no. 17, pp. 2056–2081, 2019, doi:
10.1080/13683500.2017.1417359.

[8] A. B. Craig, Understanding Augmented Reality: Concepts and
Application. Elsevier Science, 2013.

[9] A. Beane, 3D Animation Essentials. John Wiley & Sons, 2012.
Accessed: Nov. 23, 2021. [Online]. Available:
https://books.google.com/books/about/3D_Animation_Essentials.html?i
d=62FrKLO2M3AC

[10] H. Hwangbo, Y. S. Kim, and K. J. Cha, ―Use of the Smart Store for
Persuasive Marketing and Immersive Customer Experiences: A Case
Study of Korean Apparel Enterprise,‖ Mob. Inf. Syst., vol. 2017, 2017,
doi: 10.1155/2017/4738340.

[11] E. Klotins and E. Peretz-Andersson, ―The unified perspective of digital
transformation and continuous software engineering,‖ Proc. - 5th Int.
Work. Software-Intensive Bus. Towar. Sustain. Softw. Business, IWSiB
2022, pp. 75–82, 2022, doi: 10.1145/3524614.3528626.

[12] Y. Dittrich, ―What does it mean to use a method? Towards a practice
theory for software engineering,‖ Inf. Softw. Technol., vol. 70, pp. 220–
231, Feb. 2016, doi: 10.1016/J.INFSOF.2015.07.001.

[13] O. J. Okesola, A. A. Adebiyi, A. A. Owoade, O. Adeaga, O. Adeyemi,
and I. Odun-Ayo, Software Requirement in Iterative SDLC Model, vol.
1224 AISC, no. August. Springer International Publishing, 2020. doi:
10.1007/978-3-030-51965-0_2.

[14] A. Adel and B. Abdullah, ―A Comparison Between Three SDLC Models
Waterfall Model, Spiral Model, and Incremental/Iterative Model,‖ IJCSI
Int. J. Comput. Sci. Issues, vol. 12, no. 1, pp. 106–111, 2015, [Online].
Available:
https://www.academia.edu/10793943/A_Comparison_Between_Three_S
DLC_Models_Waterfall_Model_Spiral_Model_and_Incremental_Iterati
ve_Model

[15] A. Mishra and Z. Otaiwi, ―DevOps and software quality: A systematic
mapping,‖ Comput. Sci. Rev., vol. 38, p. 100308, 2020, doi:
10.1016/j.cosrev.2020.100308.

[16] J. Westenberger, K. Schuler, and D. Schlegel, ―Failure of AI projects:
Understanding the critical factors,‖ Procedia Comput. Sci., vol. 196, no.
2021, pp. 69–76, 2021, doi: 10.1016/j.procs.2021.11.074.

[17] D. Yang et al., ―DevOps in practice for education management
information system at ECNU,‖ Procedia Comput. Sci., vol. 176, pp.
1382–1391, 2020, doi: 10.1016/j.procs.2020.09.148.

[18] M. S. Arefeen and M. Schiller, ―Continuous Integration Using Gitlab,‖
Undergrad. Res. Nat. Clin. Sci. Technol. J., vol. 3, no. 8, pp. 1–6, 2019,
doi: 10.26685/urncst.152.

[19] K. Gallaba, C. Macho, M. Pinzger, and S. McIntosh, ―Noise and
Heterogeneity in Historical Build Data,‖ Proc. 2018 33Rd Ieee/Acm Int.
Conf. onAutomted Softw. Eng. (Ase’ 18), pp. 87–97, 2018.

[20] V. Sochat, ―Containershare: Open Source Registry to build, test, deploy
with CircleCI,‖ J. Open Source Softw., vol. 3, no. 28, p. 878, 2018, doi:
10.21105/joss.00878.

[21] D. Ameller, C. Farre, X. Franch, D. Valerio, and A. Cassarino,
―Towards continuous software release planning,‖ SANER 2017 - 24th
IEEE Int. Conf. Softw. Anal. Evol. Reengineering, pp. 402–406, 2017,
doi: 10.1109/SANER.2017.7884642.

(IJACSA) International Journal of Advanced Computer Science and Applications

Vol. 14, No. 7, 2023

181 | P a g e

www.ijacsa.thesai.org

[22] R. Lozano, M. Y. Merrill, K. Sammalisto, K. Ceulemans, and F. J.
Lozano, ―Connecting competences and pedagogical approaches for
sustainable development in higher education: A literature review and
framework proposal,‖ Sustain., vol. 9, no. 10, pp. 1–15, 2017, doi:
10.3390/su9101889.

[23] J. Bosch, Continuous software engineering, vol. 9783319112. 2014. doi:
10.1007/978-3-319-11283-1.

[24] D. Amin and S. Govilkar, ―Comparative Study of Augmented Reality
Sdk’s,‖ Int. J. Comput. Sci. Appl., vol. 5, no. 1, pp. 11–26, 2015, doi:
10.5121/ijcsa.2015.5102.

[25] F. Boer, Harry; Gertsen, ―From continuous improvement to continuous
innovation : a (retro)(per) spective Harry Boer and Frank Gertsen *,‖
Int. J. Technol. Manag., vol. 26, no. 8, pp. 805–827, 2003.

[26] R. E. Cole, ―From Continuous Improvement to Continuous Innovation,‖
Qual. Manag. J., vol. 8, no. 4, pp. 7–21, 2001, doi:
10.1080/10686967.2001.11918977.

[27] M. Gupta, A. Mandal, G. Dasgupta, and A. Serebrenik, ―Runtime
monitoring in continuous deployment by differencing execution
behavior model,‖ Lect. Notes Comput. Sci. (including Subser. Lect.

Notes Artif. Intell. Lect. Notes Bioinformatics), vol. 11236 LNCS, no.
October 2020, pp. 812–827, 2018, doi: 10.1007/978-3-030-03596-9_58.

[28] S. C. Yuen and E. Johnson, ―AR-an-overview-five-directions-for-AR-in-
ed.pdf,‖ vol. 4, pp. 119–140, 2011, [Online]. Available:
http://austarlabs.com.au/wp-content/uploads/2014/01/AR-an-overview-
five-directions-for-AR-in-ed.pdf

[29] F. Auer, R. Ros, L. Kaltenbrunner, P. Runeson, and M. Felderer,
―Controlled experimentation in continuous experimentation: Knowledge
and challenges,‖ Inf. Softw. Technol., vol. 134, no. February, 2021, doi:
10.1016/j.infsof.2021.106551.

[30] S. A. H. Morales, L. Andrade-Arenas, A. Delgado, and E. L. Huamanı,
―Augmented Reality: Prototype for the Teaching-Learning Process in
Peru,‖ Int. J. Adv. Comput. Sci. Appl., vol. 13, no. 1, pp. 806–815,
2022, doi: 10.14569/IJACSA.2022.0130194.

[31] B. Fitzgerald and K. J. Stol, ―Continuous software engineering and
beyond: Trends and challenges,‖ 1st Int. Work. Rapid Contin. Softw.
Eng. RCoSE 2014 - Proc., no. May, pp. 1–9, 2014, doi:
10.1145/2593812.2593813.

