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Abstract—Graph Convolutional Networks (GCNs) have 

shown remarkable capabilities in learning the topological 

relationships among electroencephalogram (EEG) channels for 

recognizing depression. However, existing GCN methods often 

focus on a single spatial pattern, disregarding the relevant 

connectivity of local functional regions and neglecting the data 

dependency of the original EEG data. To address these 

limitations, we introduce the Local-Global GCN (LG-GCN), a 

novel GCN inspired by brain science research, which learns the 

local-global graph representation of EEG. Our approach 

leverages discriminative features extracted from EEG signals as 

auxiliary information to capture dynamic multi-level spatial 

information between EEG channels. Specifically, the 

representation learning of the topological space in brain regions 

comprises two graphs: one for exploring augmentation 

information in local functional regions and another for extracting 

global dynamic information. The aggregation of multiple graphs 

enables the GCN to acquire more robust features. Additionally, 

we develop an Information Enhancement Module (IEM) to 

capture multi-dimensional fused features. Extensive experiments 

conducted on public datasets demonstrate that our proposed 

method surpasses state-of-the-art (SOTA) models, achieving an 

impressive accuracy of 99.30% in depression recognition. 
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Local-Global Graph Convolutional Network (LG-GCN); multilevel 
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I. INTRODUCTION 

Depression is a prevalent mental disorder affecting a large 
population worldwide. According to the World Health 
Organization (WHO), more than 350 million individuals 
globally suffer from depression [1]. It is characterized by 
significant mental impairment and negative emotions, 
including feelings of sadness, fatigue, and hopelessness. 
Currently, the primary method for diagnosing depression relies 
on doctor-patient communication. However, factors such as 
patient subjectivity, low sensitivity, and denial pose significant 
challenges to the diagnostic process [2]. Therefore, there is a 
pressing need for an objective and accurate method for 
detecting depression. 

In recent years, electroencephalography (EEG) has 
emerged as a widely adopted technique for classifying 
depression due to its advantages, such as high temporal 
resolution, low acquisition cost, and ease of operation and 
recording [3]. It has become a commonly used and effective 
tool for assessing brain function. Previous approaches have 
involved models based on recurrent neural networks (RNNs) 
and convolutional neural networks (CNNs), which analyze 

EEG signals in the time-frequency domain, extracting features 
independently from individual channels. However, research 
has demonstrated that the brainwave patterns of individuals 
with depression arise from interactions between multiple 
channels, and EEG electrodes are positioned in a spherical 
space. Traditional CNNs face limitations in handling irregular 
and non-Euclidean data. In contrast, graphs, which are 
effective in handling irregular data, are better suited for 
modeling signals in a three-dimensional spherical space. In 
this context, each electrode can be seen as a node in the graph, 
and the spatial relationships or correlations between electrodes 
can be represented as edges. Graph Neural Networks (GNNs) 
leverage the adjacency relationships among nodes to jointly 
learn the spatial patterns of EEG signals [4]. 

Integrating prior knowledge derived from 
neuro-psychological research into the design of Graph Neural 
Networks (GNNs) presents significant potential for decoding 
psychological states from EEG signals. In the case of 
depression, it has been observed that the manifestation of this 
condition in individuals may involve interactions within 
specific brain regions [5]. Activation of a particular brain area 
can also trigger simultaneous activation in other regions. 
Research has indicated the presence of high-level connections 
between electrodes on the left and right hemispheres, offering 
additional insights for biomedical analysis [6]. Ding et al. [7] 
have demonstrated that many cognitive functions rely on the 
cooperation between different brain regions rather than being 
confined to a specific area. While previous research [8] 
utilized a globally connected adjacency matrix with learnable 
connections, it failed to consider the local activities within 
each functional region. On the other hand, the Regularized 
Graph Neural Network (RGNN) [9] established local 
connections based on spatial distances between electrodes but 
struggled to effectively capture the complex relationships 
between functional regions. Thus, it is crucial to strengthen the 
connectivity within local functional regions while establishing 
connection patterns between channels based on global 
dynamics. Additionally, relying solely on spatial patterns 
would overlook important discriminative features present in 
the original EEG data, which are vital for identifying 
depression in EEG signals. Consequently, our research focuses 
on appropriately constructing the brain topology based on 
EEG data and addressing challenges related to information 
loss. 

To tackle the aforementioned issues, we propose an 
algorithm for depression recognition based on a local-global 
graph convolutional network (LG-GCN). LG-GCN constructs 
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both a global dynamic graph and a local functional graph to 
explore the multi-level spatial information across EEG 
channels. To capture adaptive multi-dimensional features of 
EEG, we introduce an Information Enhancement Module 
(IEM) that incorporates data dependencies and cleverly 
integrates them with spatial information. Inspired by brain 
science research [10], LG-GCN incorporates topological 
information from both local and global perspectives in the 
graph convolutional layers. Furthermore, recognizing that the 
graph structure may not extract all discriminative features 
from the original signals, we adopt Gated Convolutional 
Networks to capture the dependency relationships between 
raw temporal data and advanced features, thereby enhancing 
the model's performance. Finally, to assess the effectiveness of 
incorporating prior knowledge into the LG-GCN model, we 
analyze the differences between various brain region 
partitioning methods and conduct extensive visualization 
experiments. 

The main contributions of this study are as follows: 

1) Introducing a local-global multi-graph fusion 

framework that explores multi-level features of graph 

topology spaces. This framework overcomes the limitation of 

insufficient extraction of depression-related information in a 

single encoding path by utilizing an information enhancement 

module to adaptively supplement multi-dimensional fused 

features. 

2) Proposing an adaptive global dynamic graph and local 

functional connectivity graph that are integrated into the 

global graph convolutional network. This integration allows 

for the incorporation of local information, capturing the 

multi-level spatial dependencies in EEG data. It effectively 

associates the spatial distribution of EEG signal channels with 

depth-encoded depression features, resulting in improved 

classification performance. 

3) Validating the effectiveness of the LG-GCN framework 

on a public dataset, where it achieves state-of-the-art (SOTA) 

classification performance. Additionally, multiple ablation 

experiments are conducted, and LG-GCN is compared with 

other methods, further confirming its efficacy. 

The remaining structure of the article is outlined as follows: 
Section Ⅱ briefly reviews related works. The proposed 
framework will be described in detail in Section Ⅲ. Section 
Ⅳ provides extensive experiments and analyses. Section V 
provides a discussion of the results obtained, and finally, the 
study is concluded in Section Ⅵ. 

II. RELATED WORK 

A significant number of previous studies have attempted to 
use machine learning methods to detect depression. Saeedi et 
al. [11] used a genetic algorithm to select significant features 
from linear and nonlinear features and employed an enhanced 
K-nearest neighbor algorithm to classify the EEG signals of 
depressed patients. Mumtaz et al. [12] performed 
time-frequency decomposition of EEG signals based on 
wavelet transform to construct feature matrices, which were 
then inputted into an LR classifier. Although machine learning 
has achieved significant success in classification tasks, it faces 

challenges in feature selection complexity and high accuracy 
performance requirements. Therefore, deep learning methods 
are gradually becoming popular among researchers. Kang et al. 
[13] proposed transforming the asymmetry of EEG into a 
matrix image as input to a CNN, but the calculation of 
electrode spatial positions in the two-dimensional image 
transformation is challenging. Acharya et al. [14] introduced a 
13-layer CNN model based on deep learning, but it has 
complex training and requires a significant amount of time. 
Chen et al. [15] used a lightweight DCTNet model, which 
consists of a six-layer neural network with CNN-LSTM and 
achieved high classification performance. Compared to 
machine learning methods that rely on manual feature 
extraction, deep learning algorithms have better performance 
in improving the accuracy of depression diagnosis. However, 
most current deep learning methods focus on mining 
information in the time-frequency domain, while the spatial 
distribution information of channels is an important but often 
overlooked feature. 

In recent years, GNN models have shown promising 
performance in handling graph-structured data, providing new 
research directions for the development of EEG signal 
analysis. Zhang et al. [16] proposed a depression recognition 
framework based on the fusion of time-space ubiquitous EEG 
features at the feature level. The model selected 19 optimal 
time EEG features and four optimal spatial metrics features 
and analyzed the intrinsic connections among EEG signal 
channels. Zhu et al. [17] modeled correlation using graphs and 
proposed an attention based GCN that achieved a recognition 
rate of 96.50% for depression. Wu et al. [18] combined 
space-time graph convolutional networks (ST-GCN) with a 
depression-related functional connectivity graph in a deep 
learning approach, improving the ability to represent 
spatiotemporal features. Sun et al. [19] used a complex 
network graph convolutional neural network (CN-GCN) with 
a multi-branch structure to explore deep information between 
channels, achieving a recognition rate of 99.29% for 
depression. However, these models only used one type of 
functional connectivity in the brain. In this article, the 
proposed model considered both structural and functional 
connectivity for the first time. Jang et al. [20] suggested that 
individuals with depression tend to exhibit greater relative 
right frontal lobe activity. Mumtaz et al. [21] found that 
individuals with depression exhibit greater activity in the front 
EEG. Therefore, in depression research, considering both 
global brain connectivity and local functional connectivity is 
critical while constructing multi-channel EEG signal 
dependency relationships. The proposed LG-GCN model in 
this paper analyzes the spatial relationships within and 
between different functional areas, extracting more 
comprehensive spatial features for more effective depression 
identification. 

III. METHODOLOGY 

To fully exploit the potential of EEG data, LG-GCN is 
proposed for EEG-based depression recognition, which 
consists of a local-global graph convolution module 
(LG-GCM) and IEM. The overall framework is shown in Fig. 
1, which can be divided into the following steps: 
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1) Considering the frequent local connections in the brain 

network and the need for better differentiation of brain regions 

in relation to depression, we construct local regions based on 

prior research, each region's information are aggregated as 

nodes in the local functional graph, and node similarity are 

computed to represent functional connectivity. 

2) The brain network adopts an adaptive adjacency matrix 

to dynamically calculate the connection strength between 

channel nodes, dynamically reflecting the information under 

depression from a global perspective and introducing a GCN 

to aggregate local-global features. 

3) The IEM is used to further extract information from the 

original signal, where the weighted averaging fusion 

mechanism is used to extract high-dimensional features 

outputted by the GCN, and then inputted into an adaptive 

attention fusion network to obtain complementary information. 

Next, this article will present detailed information related to 

this. 

A. Local-Global Graph Convolution Module 

The results of pattern analysis of neuroimaging data 
indicate that the depression group exhibits distinct patterns 
related to emotional categories in the activity of the distributed 
neural system spanning across cortical and subcortical regions 
[22]. Therefore, to simulate the interconnections between 

different brain regions, we propose a multi-graph 
representation, namely LG-GCM. By considering spatial 
information from different perspectives, the adaptive global 
dynamic graph can dynamically integrate EEG channel 
information, while the local functional connectivity graph can 
characterize static relationships between different brain 
regions. Finally, multi-layer GCN is introduced to capture 
multi-graph and multi-level representation features by 
adaptively fusing local and global spaces. 

1) Local functional graph: Different regions of the human 

brain cortex are highly connected and concentrated. Based on 

prior knowledge from the field of neuroscience [23], we 

construct two types of local brain regions by aggregating local 

EEG features to capture more robust features. Fig. 2(a) shows 

the first partition based on the reference brain cortex anatomy. 

The brain cortex is typically divided into four lobes: the 

frontal, parietal, temporal, and occipital lobes, each of which 

is responsible for different tasks. Due to the importance of 

electrodes located in the frontal lobe (FP1, FP2, F7, F3, FZ, 

F4, F8) in depression detection tasks [20], we divide the 

regions in more detail to meet the needs of structural and 

functional connectivity. Fig. 2(b) shows another effective 

method based on the division of regions between the brain’s 

two hemispheres. 

 
Fig. 1. Illustration of the proposed model LG-GCN. 
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Fig. 2. Two different region partition methods for graph coarsening. 

We represent multiple graphs as weighted undirected graph 
G= (V, ε, A), where V is the set of nodes, 𝜀 represents the 
connections between nodes, the adjacency matrix 𝐴 ∈
𝑅𝑁×𝑁represents the connectivity between nodes, and N is the 
number of EEG channels. The region functional graph 

containing P subgraphs is represented as 𝐺𝑅
(1)

, 𝐺𝑅
(2)

=

[𝐺𝑅1
, 𝐺𝑅2

, ⋯ , 𝐺𝑅𝑃
], For kth region functional subgraph 𝐺𝑅𝑘

, 

the input data is denoted as 𝐺𝑅𝑘
∈ 𝑅𝑆×𝑛𝑘×𝐷 , where S 

represents the number of samples, 𝑛𝑘  is the number of 
channels in the kth subgraph, and D represents the frequency 
band, including 𝛿  band(0.5~4 Hz), 𝜃  band(4~8 Hz), 𝛼 
band(8~13 Hz), and 𝛽  band(13~30 Hz).These frequency 
bands have been used in previous studies to investigate 
differences between patients with depression and healthy 
controls [24]. In this work, PSD features in the frequency 
domain of the EEG signals are extracted using the Welch 
method [19] for each channel node, which can be obtained 
from the MATLAB software with default parameters. Owing 
to EEG original data containing noise and redundant 
information, singular value decomposition (SVD) is 
commonly used to perform dimensionality reduction and 
extract relevant information. It can be represented as 

𝐺𝑅𝑘
= 𝑊𝑅𝑘

∙ 𝐺𝑅𝑘

𝑏𝑇
    (1) 

Where 𝑊𝑅𝑘
 represents the left singular matrix, 

𝐺𝑅𝑘

𝑏 ∈ 𝑅𝑁𝑘×𝜇   is the channel-level matrix containing 

advanced channel information, with dimensions of 𝑛𝑘 × 𝜇, 
Where 𝑛𝑘 is the number of channels in the k-th subgraph 
(∑ 𝑛𝑘 = 𝑁), and 𝜇 represents the number of features for each 
EEG channel. Furthermore, the local subgraph can be 

represented as 𝐺𝑅𝑘
= [𝑔𝑅𝑘

1 , ⋯𝑔𝑅𝑘

𝑛 , ⋯𝑔𝑅𝑘

𝑛𝑘], where 𝑔𝑅𝑘

𝑛  is the 

node feature vector of the local subgraph. The aggregation 
function aggregates the node feature vectors in each local 
subgraph, which can be the maximum, minimum, average, etc. 
This process is known as graph coarsening. In LG-GCN, the 
average aggregation is selected as the aggregation function. 

Hence, the output of the local graph, 𝐺𝑙𝑜𝑐𝑎𝑙
(1)

, 𝐺𝑙𝑜𝑐𝑎𝑙
(2)

∈ 𝑅𝑃×𝜇, 

can be calculated by 

𝐺𝑙𝑜𝑐𝑎𝑙
(1)

, 𝐺𝑙𝑜𝑐𝑎𝑙
(2)

=ℱ𝑎𝑔𝑔𝑟𝑒𝑔𝑎𝑡𝑒([𝐺𝑅1
, 𝐺𝑅2

, ⋯ , 𝐺𝑅𝑃
]) 

=[
1

𝑁1
∑ 𝑔𝑅𝑘

1𝑁1
𝑛=1 , ⋯ ,

1

𝑁𝑘
∑ 𝑔𝑅𝑘

𝑛𝑘𝑁𝑘
𝑛=1 ] 

=[𝑕𝑙𝑜𝑐𝑎𝑙
1 , ⋯ , 𝑕𝑙𝑜𝑐𝑎𝑙

𝑃 ]    (2) 

Where p is the index of each node in the local graph, 𝑕𝑙𝑜𝑐𝑎𝑙  
represents the latent representation of the local subgraph. Then, 
the local subgraphs are concatenated to obtain 𝐺𝑙𝑜𝑐𝑎𝑙 =

𝑐𝑜𝑛𝑐𝑎𝑡(𝐺𝑙𝑜𝑐𝑎𝑙
(1)

, 𝐺𝑙𝑜𝑐𝑎𝑙
(2)

) ∈ 𝑅𝑉×𝜇 ,  which results in the feature 

fusion matrix of the two partitioned local subgraphs. 

The definition of the local subgraph is incorporated into 
the basic adjacency matrix of the brain to model the 
correlation between different brain regions, which is used in 
the subsequent graph convolutional layers to enhance the 
feature propagation between more important local edges. The 
relationships between local graphs are utilized as the edges of 
the basic global graph. Neuroscience research suggested that 
activating one specific brain region also tends to activate other 
regions in the group for advanced cognitive processes [25]. 
The dot products between local graph representations for each 
EEG instance are calculated to reflect the relations among 
local graphs. Thus, we have 𝐴𝑔𝑙𝑜𝑏𝑎𝑙−𝑏𝑎𝑠𝑒 ∈ 𝑅𝑉×𝑉, which is 

calculated as follows. 

𝐴𝑔𝑙𝑜𝑏𝑎𝑙−𝑏𝑎𝑠𝑒=[

𝐴𝑔𝑙𝑜𝑏𝑎𝑙−𝑏𝑎𝑠𝑒
1,1   ⋯   𝐴𝑔𝑙𝑜𝑏𝑎𝑙−𝑏𝑎𝑠𝑒

1,𝑉

⋱
 𝐴𝑔𝑙𝑜𝑏𝑎𝑙−𝑏𝑎𝑠𝑒

𝑉,1    ⋯   𝐴𝑔𝑙𝑜𝑏𝑎𝑙−𝑏𝑎𝑠𝑒
𝑉,𝑉     

]  

  =[
   𝑕𝑙𝑜𝑐𝑎𝑙

1 ∙ 𝑕𝑙𝑜𝑐𝑎𝑙
1     ⋯        𝑕𝑙𝑜𝑐𝑎𝑙

1 ∙ 𝑕𝑙𝑜𝑐𝑎𝑙
𝑉

⋱
    𝑕𝑙𝑜𝑐𝑎𝑙

1 ∙ 𝑕𝑙𝑜𝑐𝑎𝑙
𝑉     ⋯      𝑕𝑙𝑜𝑐𝑎𝑙

𝑉 ∙ 𝑕𝑙𝑜𝑐𝑎𝑙
𝑉

]  (3) 

where ∙  operation is dot product.  𝑕𝑙𝑜𝑐𝑎𝑙
𝑖 ∙ 𝑕𝑙𝑜𝑐𝑎𝑙

𝑗
 

represents the similarity between local subgraphs as the edge 

weight in the adjacency matrix. 𝐴𝑔𝑙𝑜𝑏𝑎𝑙−𝑏𝑎𝑠𝑒
𝑖,𝑗

 represents the 

𝑖 th row and 𝑗 th column of the basic adjacency matrix 
corresponding to the brain. Each local subgraph is treated as a 
node, forming the basic functional connectivity matrix of the 
brain. The specific process is as follows. 

𝐴𝑔𝑙𝑜𝑏𝑎𝑙−𝑏𝑎𝑠𝑒
𝑖,𝑗

 = 𝑒𝑥𝑝 (−
‖𝑕𝑙𝑜𝑐𝑎𝑙

𝑖 −𝑕𝑙𝑜𝑐𝑎𝑙
𝑗

‖
2

2𝜎2 )  (4) 

Finally, 𝐴𝑔𝑙𝑜𝑏𝑎𝑙−𝑏𝑎𝑠𝑒  forms the basic adjacency matrix of 

the local functional graph. The graph coarsening method 
aggregates the characteristics of local EEG signals, reducing 
redundant information and lowering computational complexity, 
thereby obtaining more robust features. 

2) Global dynamic graph: Due to the complex 

relationships between functional regions of the brain, they 

exhibit temporal variability and high dynamics [26]. However, 

existing methods are often restricted by static prior knowledge 

or weak modification, making it difficult to fully capture the 

complex dynamic functional connections between brain 

regions. We aim to learn an adaptive brain network adjacency 

matrix [27], which is self-learned during the model training 

process to understand the global connectivity relationships 

between EEG channels and better understand the interactions 

between channels. Therefore, we define a non-negative 

function 𝐹(𝑋𝑚, 𝑋𝑛)  to quantify the strength of functional 

connections between channels, where 𝑋𝑚  and 𝑋𝑛 

respectively represent the features between any two channels. 
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Function F calculates the connection weight between nodes 

based on signal differences between channel nodes and can 

dynamically reflect signal patterns under depression. The 

formula for calculating function F is shown below. 

𝐴𝑚,𝑛 = 𝐹(𝑋𝑚, 𝑋𝑛) =
𝑒𝑥𝑝(𝑅𝑒𝑙𝑢(𝑊𝑡|𝑋𝑚−𝑋𝑛|))

∑ ∑ 𝑒𝑥𝑝((𝑊𝑡|𝑋𝑚−𝑋𝑛|))𝑁
𝑛=1

𝑁
𝑚=1

 (5) 

where 𝑊𝑡  is a learnable parameter, and |𝑋𝑚 − 𝑋𝑛| 
represents the distance between the features of the two 
channels. The activation function Relu is applied to constrain 
weak channel coupling and is applied to the output to ensure 
that 𝐴𝑚,𝑛 is a non-negative element. The output of the final 

global dynamic layer of the brain is a non-negative adjacency 
matrix A. 

3) Multilayer GCNs: Once the local and global graph 

representations are obtained, we aggregate the information 

from these two types of graphs and enable global information 

interaction among the channels of EEG signals using GCN. 

The global dynamic graph extracts common features of 

depression patterns under coarse granularity, while the dense 

local functional graph can better capture functional 

connectivity features between different regions, containing 

more detailed information., LG-GCN captures the spatial 

information of EEG channels at multiple levels and 

dimensions, thereby extracting topological spatial features that 

are most favorable for the recognition of depression in EEG.  

 
Fig. 3. The structure of graph convolution network. 

In terms of node initialization, we use the value of 
𝑋0 = 𝑋(𝐺𝑙𝑜𝑐𝑎𝑙)

𝑇 as the initialized graph node features of the 
graph, where X refers to the high-level feature set of the input 
signal, 𝑋 ∈ 𝑅𝑁×𝜇 . The notation (𝐺𝑙𝑜𝑐𝑎𝑙)

𝑇  represents the 
aggregation relationship of the node features of the local 
subgraph. Then, we utilize the adjacency matrix A and 
𝐴𝑔𝑙𝑜𝑏𝑎𝑙−𝑏𝑎𝑠𝑒  to implement multilayer graph convolution and 

achieve feature propagation of local and global information of 
EEG signal channels. we first normalize the adjacency matrix 
A as shown in equation (6), where D is a diagonal matrix with 
𝐷𝑖𝑖 = ∑ 𝐴𝑖𝑗

𝑛
𝑗=1 , Then, we calculate the graph Laplacian matrix 

𝐿 = 𝐷 − 𝐴 and perform spectral decomposition to obtain the 
eigenvalues and eigenvectors corresponding to L, as shown in 
equation (7), where 𝑈 = (𝑢1⃗⃗⃗⃗ , 𝑢2⃗⃗⃗⃗ , ⋯ 𝑢𝑛⃗⃗ ⃗⃗ )  and Λ  is the 
eigenvalues and eigenvectors of L, respectively, and 𝜆𝑚𝑎𝑥  is 

set to 2. Assuming that the signal 𝑥 ∈ 𝑅𝑁 undergoes Fourier 
transformation as 𝑥 = 𝑈𝑥̂, we can calculate the Kth order 

Chebyshev polynomials 𝑇𝑘−1(𝐿̂) as shown in equation (8). 

Given 𝑋𝑙−1 as the input to the l-th graph convolutional layer, 

the output 𝑋𝑙 can be calculated using equation (9), where 𝜃𝑘
𝑙  

is the trainable parameter corresponding to the graph 
convolutional layer. A key step in GCN is the aggregation of 
node features, as illustrated in Fig. 3. As the convolutional 
layers iterate, node features propagate through the graph 
structure, allowing LG-GCN to obtain the aggregation of 
global information. 

𝐴 = 𝐷−
1

2(𝐼𝑁 + 𝐴)𝐷
1

2    (6) 

𝐿̂ = 𝑈Λ𝑈𝑇 =
2𝐿

𝜆𝑚𝑎𝑥
− 𝐼𝑁   (7) 

𝑇𝑖(𝑥) = 2𝑥𝑇𝑖−1(𝑥) − 𝑇𝑖−2(𝑥), 𝑇0(𝑥) = 1, 𝑇1(𝑥) = 𝑥 (8) 

𝑋𝑙 = 𝜎(∑ 𝜃𝑘
𝑙𝐾−1

𝑘=0 𝑇𝑘(𝐿̂)𝑋𝑙−1𝐴𝑔𝑙𝑜𝑏𝑎𝑙−𝑏𝑎𝑠𝑒)  (9) 

Since the multi-channel EEG graph only contains 19 nodes, 
to avoid the loss of important dynamic information, we do not 
perform graph pooling and instead directly sum up the outputs 
of each graph convolutional layer, integrating all node features 

into one graph representation 𝑍𝑔 = ∑ 𝑋𝑙𝐿
𝑖=0 ∈ 𝑅𝑁×𝜇′

, 𝜇′  is 

the feature dimension of the hidden layer. 

B. Information Enhancement Module 

LG-GCN can extract effective multi-graph and multi-level 
information, but it may ignore some important discriminative 
features in the raw EEG data. Hence, IEM is proposed to 
extract the dependency relationships between data and 
higher-level features, which are adaptively aggregated these 
features into the graph topology representation to capture a 
more comprehensive range of information within the EEG 
signals. 

1) Feature Extractor (IEM-FE): To address the noise and 

high-dimensional characteristics of the raw EEG data and 

capture its discriminative features, we introduce a gated 

convolutional network as an FE for capturing enhancing 

information. The structure of the Gated Convolutional 

Networks, as shown in Fig. 1, utilizes two types of activation 

functions. Throughout the entire process, the computation and 

gate weight adjustment of the gate units are utilized to filter 

and update the output of the convolutional layers. This allows 

for the preservation of the ability to extract nonlinear features 

and further explores the discriminative features dependent on 

EEG data. Simultaneously, it enhances the network's 

generalization capability and robustness. Given the reshaped 

input data 𝑋 ∈ 𝑅1×(𝑁∗𝑑) , the operation of the gated 

convolution can be expressed as follows: 

𝑍𝑖 = 𝑆(Θ1 ∙ 𝑋 + 𝑏1) ⊙ 𝑇(Θ2 ∙ 𝑋 + 𝑏2)  (10) 

where Θ1 and Θ2 are two 1D convolution operators, 𝑏1 
and 𝑏2 are model parameters, 𝑆(∙) and 𝑇(∙) denote sigmoid 
and tanh functions, and ⊙ is the element-wise multiplication. 
The output ⊙  of the gate mechanism is obtained by 
multiplying the outputs of these two functions, which is used 
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to represent the importance and information gain of each 
channel at a specific time point. 

2) Weighted Average Fusion mechanism (IEM-AF): To 

obtain more comprehensive information from EEG data, AF 

mechanism is designed to fuse data-dependent auxiliary 

information into spatial information. Specifically, we flatten 

and map the output features 𝑍𝑖  and 𝑍𝑔  to a consistent 

dimension 𝑧̂𝑖, 𝑧̂𝑔 ∈ 𝑅1×𝛽 , These features are then fused 

together using the following representation: 

𝑧̂𝑓 = 𝜔(𝑧̂𝑖 , 𝑧̂𝑔)     (11) 

where 𝜔(∙)  represents the weighted average fusion 
function. Subsequently, a fully connected layer is utilized to 
reduce the dimensionality of the fused spatial features and 
auxiliary features, denoted as 𝑧𝑔 and 𝑧𝑓 respectively. These 

features are then passed through an adaptive attention fusion 
network to achieve effective feature fusion and extract 
complementary information. The final representation for EEG 
depression recognition is as follows: 

𝑧 = 𝜑𝑓 ∙ 𝑧𝑓 + 𝜑𝑔 ∙ 𝑧𝑔   (12)             

where 𝑧 ∈ 𝑅1×𝐵 , B is the binary class number for 
depression and health. The attention values 𝜑𝑖 and 𝜑𝑔 with 

embeddings 𝑧𝑖  and 𝑧𝑔  are self-learned by the proposed 

model. Specifically, we adopt a non-linear transformation and 
a shared matrix q to calculate the attention scores using 
equation (13): 

𝐴𝑆𝑓 = 𝑄𝑇 ∙ tanh(𝑊 ∙ 𝑧𝑓
𝑇 + 𝑏)   (13) 

where W and b are the transformation matrix and bias 
vector, respectively. Similarly, 𝐴𝑆𝑔 is obtained in the same 

way. We then normalize the attention scores 𝐴𝑆𝑓 and 𝐴𝑆𝑔 

using softmax (∙)  function, yielding the attention values 

𝜑𝑓 , 𝜑𝑔𝜖𝑅
𝑁×1, which represent the importance and relevance 

of the nodes. This can be expressed as: 

𝜑𝑓 =
𝑒𝑥𝑝(𝐴𝑆𝑓)

𝑒𝑥𝑝(𝐴𝑆𝑓)+𝑒𝑥𝑝(𝐴𝑆𝑔)
   (14) 

Ultimately, the embeddings z are normalized by the 
softmax(·) function to calculate the predicted probabilities 𝑦̂. 

C. Optimizing LG-GCN 

LG-GCN can extract effective information from EEG data 
and utilize this information to optimize the model. The 
construction of the loss function is crucial in this process. To 
obtain the optimal network parameters, the backpropagation 
(BP) algorithm is applied to iteratively update the network 
parameters until the best or suboptimal solution is obtained. 
The loss function during the training phase consists of a 
classification optimization term and a spatial regularization 
term. The classification optimization term uses the 
cross-entropy loss function, which is defined as: 

ℒ𝑐𝑙𝑎 = −
1

𝑆
∑ ∑ 𝑦𝑖,𝑘𝑙𝑜𝑔𝑦̂𝑖,𝑘

𝐾−1
𝑘=0

𝑆
𝑖=1   (15) 

Where S represents the samples and N represents the 
number of nodes. On the other hand, a spatial regularization 
term is introduced into the loss function to incorporate the 

smoothness and sparsity of the learned adjacency matrix, 
which better considers the spatial relationships among the 
nodes. This term can be defined as: 

ℒ𝑟𝑒𝑔 =
𝜆

𝐶
∑ ∑ ∑ |𝐴𝑗𝑘|

𝑁
𝑘=0

𝑁
𝑗=0

𝐶
𝑖=1    (16) 

The total loss function consists of the above two terms, 
that is, 𝐿𝑜𝑠𝑠 = ℒ𝑐𝑙𝑎 + ℒ𝑟𝑒𝑔 . 𝜆  represents the regularization 

parameter that controls the trade-off between the classification 
and regularization terms. 

IV. EXPERIMENTAL RESULTS AND ANALYSIS 

In this section, we perform EEG-based depression 
recognition to demonstrate the effectiveness of the proposed 
LG-GCN model on public datasets. Then, experimental details 
and results are described, and finally, the ablation experiments 
and interpretability of EEG-based depression recognition are 
presented. The training procedure of the proposed model is 
shown in Algorithm 1. 

Algorithm 1 LG-GCN Training Procedure 

Require: EEG training samples S, ground-truth labels Y, training 

epoch e, number of partitions P, parameter K in LG-GCM, and 

learning rate r. 

Ensure: Prediction of the model 𝑦̂ 

1: Initialization; 

2: Aggregate node features for each local graph by 1-3; 

3: Calculate the adjacency matrix 𝐴𝑔𝑙𝑜𝑏𝑎𝑙−𝑏𝑎𝑠𝑒 by 4; 

4: Compute the global dynamic representation; 

5: for j = 1 → e do 

6: Aggregate 𝑍𝑔 by 6-9; 

7: Compute the EEG discriminative features 𝑍𝑖 by 10; 

8: Conduct fusion to obtain the high-dimensional 

features by 11; 

9: Compute the final representation by 12; 

10: Update graph convolution parameters; 

11: end for 

12: return Prediction 𝑦̂. 

A. Dataset 

We evaluate the proposed EEG-based depression diagnosis 
method using a publicly available dataset provided by Mumtaz 
et al. [11]. The dataset consists of two groups of participants: 1) 
34 patients with major depressive disorder (MDD) (mean age 
40.33, SD = ±12.861), and 2) 30 age-matched healthy control 
(HC) subjects (mean age 38.227, SD = ±15.64). The study is 
conducted on outpatient participants at the Hospital University 
Sains Malaysia (HUSM) and record their EEG signals in the 
resting state with eyes closed (5 min) and eyes open (5 min). 
The experimental procedures of this study are approved by the 
HUSM Ethics Committee, and all participants involved in the 
study have a thorough understanding of the entire process and 
provide informed consent. 

B. Preprocessing 

In this study, data preprocessing uses the PyCharm 
software and the MNE tool. Original EEG signals are always 
accompanied by artifacts and noise, including 
electrooculogram (EOG), electromyogram (EMG), and noise 
related to data acquisition. A bandpass filter is applied to 
extract the frequency band of 0.5-30Hz before applying 
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feature extraction techniques. The independent component 
analysis (ICA) algorithm is then employed to further remove 
redundant artifacts and noise in the EEG signals, such as 
blinking and eye movement. The FastICA algorithm is used in 
this study. After these steps, clean EEG data is obtained, 
providing a basis for further analysis. 

Considering the inaccuracy of signal boundary values, 
only the middle portion of the 120s EEG data is retained for 
analysis. To increase the number of samples and decoding 
accuracy, a cropping strategy is employed to process the data 
[28]. First, a sample set is established using all available EC 
and EO files in the dataset. For each data file, the 120-second 
data is segmented into 120 samples using a non-overlapping 
sliding window of 1 second in length, resulting in 240 samples 
for each participant. Ultimately, there are 8,160 and 7,200 
samples for MDD and HC, respectively. 

C. Implementation Details 

We conduct all the experiments on the platform of 
NVIDIA GeForce RTX 3090 GPU. The proposed model is 
implemented using the PyTorch framework, a popular deep 
learning toolkit. The number of graph convolutional layers is 
set to 2, and the number of gate convolutional layers is set to 1. 
We use Chebyshev polynomials of order K = 3 for graph 
convolutions. The electrodes are divided into 7 and 2 regions, 
respectively. During the training process, we train the model 
for 200 epochs with a batch size of 256 and a learning rate of 
0.01. The LG-GCN model is trained using Adam optimizer 
[29], which implements the stochastic gradient descent 
algorithm to update network parameters, weights, and model 
biases. Adam applies biases to each node in the graph. The 
training set and test set are set in a ratio of 9:1. Similarly, the 
validation set is established using 10% of the training set. 

D. Evaluating Metrics 

Due to the existence of false positive and false negative 
samples, using only accuracy to measure the performance of 
classifiers is far from sufficient. In previous studies [30], [11], 
[13], three typical performance metrics, accuracy, sensitivity, 
and specificity, are used to measure the performance of 
classifiers. Therefore, this study still chooses these three 
metrics to facilitate better comparison with other studies. 
These metrics can be calculated according to the following 
formulas 17-19: 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑇𝑃+𝑇𝑁

𝑇𝑃+𝑇𝑁+𝐹𝑃+𝐹𝑁
   (17) 

𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦 =
𝑇𝑃

𝑇𝑃+𝐹𝑁
   (18) 

𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑖𝑡𝑦 =
𝑇𝑁

𝑇𝑁+𝐹𝑃
   (19) 

where TP is the number of MDD patients detected 
correctly, FN is the number of MDD patients detected as 
healthy individuals, TN is the number of healthy individuals 
detected correctly, and FP is the number of healthy individuals 
detected as MDD patients. 

E. Classification Performance 

To demonstrate the superiority of the LG-GCN algorithm 
in depression recognition, we carefully select the most 

representative baseline models by comparing different 
methods. One category includes traditional machine learning 
algorithms, namely Support Vector Machine (SVM) [11] and 
Multi-Layer Perceptron Neural Network (MLPNN) [31]. 
Another category includes the most popular deep learning 
algorithms in the field of depression, namely CNN [13] and 
MDCNN [32]. The last category includes graph-based models. 
Since GCN has been applied less frequently to EEG-based 
depression recognition tasks, this paper only lists one of them, 
namely CN-GCN [19]. Table Ⅰ presents the performance of 
LG-GCN compared to these three categories of baseline 
models on four frequency bands and all frequency bands 

(using 𝛿、𝜃、𝛼 and 𝛽 bands together). 

TABLE I. ACCURACY ON DIFFERENT FREQUENCY BANDS 

Model 𝜹 band 𝜽 band 𝜶 band 𝜷 band all（𝜹, 𝜽,𝜶, 𝜷） 

MLPNN 83.33 86.67 91.67 81.67 93.33 

SVM 65.52 74.14 81.03 77.55 89.96 

CNN 95.50 95.90 98.85 96.07 / 

MDCNN 82.31 86.00 87.30 94.10 97.27 

CN-GCN 78.09 80.39 78.15 96.68 99.29 

Ours 84.36 88.67 91.44 96.90 99.30 

Our proposed model demonstrates strong advantages in 
each frequency band. the best accuracy is achieved in the 𝛼 
and 𝛽 frequency bands. Furthermore, the performance when 
using all frequency bands together is superior to using the four 
frequency bands individually. This finding reveal that the 
overall structure allows for complementation and integration 
of information from each frequency band, resulting in more 
comprehensive information for depression recognition. This 
validates previous works [31]. 

To further validate the superiority of the proposed model, 
Table Ⅱ shows the classification performance of our proposed 
model compared to existing methods on the same dataset. 
Mumtaz et al. [12][33][21] manually extracted features, 
including wavelet features, synchronous likelihood (SL) 
features, hemispherical asymmetry features, and frequency 
band energy features, and fed them into traditional machine 
learning models (LR and SVM) for classification. Mahato et al. 
[31][34] used frequency band energy and asymmetry features 
as input features for their classifiers, but their accuracy did not 
exceed 95%. Similarly, Saeedi et al. [11] considered different 
band powers and entropies. Dang et al. [32] combined 
multiple frequency band brain networks with deep learning 
algorithms, achieving an accuracy of 97.27%. In addition, the 
results of CN-GCN are comparable to the results of our 
proposed method, as it learns node features based on the 
topological connections of the brain network, rather than 
selecting local features between nodes. Existing studies on 
building brain networks based on GCN methods only consider 
the relationship between adjacent nodes, but ignore the 
activation relationship between brain regions. Soni et al. [35] 
fused information from three channels in the frontal lobe and 
used the KNN algorithm to achieve an accuracy of 92.80% in 
detecting depression. This finding is consistent with the results 
of this paper and previous studies, demonstrating that the 
features of depression patients are closely related to the 
activity in the frontal lobe of the brain. 
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TABLE II. CLASSIFICATION PERFORMANCE OF OUR PROPOSED METHOD AND EXISTING STUDIES ON THE SAME DATASET 

Existing study Year Methods or features+Model Accuracy Sensitivity Specificity 

Mumtaz et al. 2017 Wavelet features+LR 87.50 95.00 80.00 

Mumtaz et al. 2017 SL, coherence,MI+SVM 94.70 98.30 91.40 
Mumtaz et al. 2017 Asymmetry+SVM 98.40 96.66 100 

Mahato et al. 2019 Alpha power,RWE+MLPNN 93.33 94.44 87.78 

Mahato et al. 2020 Power, Asymmetry+SVM 86.96 86.00 89.92 
Saeedi et al. 2020 Bandpower,ApEn+ E-KNN 98.44 100 97.10 

Kang et al. 2020 Asymmetry Image+CNN 98.85 99.15 98.51 

Dang et al. 2020 FDMB+MDCNN 97.27 97.22 97.35 
Sun et al. 2022 Multilayer networks+ CN-GCN 99.29 99.37 99.32 

Chen et al. 2022 Frequency matrix+DCTNet 99.15 99.30 99.01 

Soni et al. 2023 Sparse graph network+KNN 92.80 / / 
Ours 2023 Local-Global graph+LG-GCN 99.30 99.41 99.17 

 

Fig. 4. Confusion matrix of the proposed LG-GCN on the public dataset. 

In summary, the LG-GCN model outperforms other 
methods in depression recognition, with accuracy, sensitivity, 
and specificity of 99.30%, 99.38%, and 99.16%, respectively. 
Fig. 4 shows the confusion matrix of the proposed LG-GCN 
model for EEG-based depression recognition results. 

F. Ablation Experiment 

To better understand the robustness and individual 
contributions of the local functional graph, global dynamic 
graph, and IEM in LG-GCN, ablation studies are conducted 
by removing these modules from the LG-GCN to demonstrate 
the effectiveness of the model. The results are shown in Table 
Ⅲ. 

Each module is removed one by one to demonstrate the 
effectiveness of the combination of multiple graphs. From the 
results in the first and second rows of the table, Specifically, 
removing L from LG-GCN and not embedding the global 
graph led to a performance decrease in terms of Acc, Spe, and 
Sen. This fully verifies previous research that functional 
connections between local areas are important for 
discriminating different human emotional patterns. Hence, we 
adopt a graph coarsening method to aggregate local EEG 
features to make the model more robust. Completely removing 
G and directly performing graph convolution on L with full 
integration with IEM, results in a decrease in Acc from 99.30% 
to 97.90%, a decrease of 1.40% in Acc, 1.21% in Sen, and 

1.59% in Spe, which highlights the importance of the global 
dynamic graph. 

When the LG-GCN model lacked the IEM and the 
multi-graph representations were input directly into the GCN, 
flattened to the fully connected layer and softmax layer for 
depression recognition, the ACC dropped from 99.30% to 
96.62%. This comparison demonstrates the effectiveness of 
IEM in achieving better performance. Additionally, it indicates 
that the discriminative features of the original EEG signal data 
can effectively complement the information captured by the 
LG-GCN, providing a more comprehensive representation for 
depression recognition. In conclusion, the information 
captured by multiple graph representations is crucial, and the 
ablation experiments strongly validate the necessity of 
constructing multiple graphs while demonstrating the benefits 
of extracting multidimensional information for model 
learning. 

TABLE III. THE RESULTS OF ABLATION EXPERIMENTS ON PUBLIC 

DATASETS USING LG-GCN 

L G IEM Acc Changes Sen Changes Spe Changes 

× √ √ 97.52 -1.78 97.98 -1.43 97.35 -1.82 

√ × √ 97.90 -1.40 98.20 -1.21 97.58 -1.59 

√ √ × 96.62 -2.68 97.10 -2.31 96.38 -2.79 

√ √ √ 99.30 - 99.41 - 99.17 - 

√: Keep the component 

L: local function graph 

G: Global dynamic graph 

IEM: Information Enhancement Module 

Changes: Compared with the original DGM-GCN. 

 

Fig. 5. Performance comparison of different region partitioning methods. 
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The local functional graph includes two distinct partition 
types, one comprising seven brain regions, and the other 
comprising two hemispheres, to estimate whether there is a 
significant difference in depression recognition tasks under 
coarsening at different region scales. We remove the 
submodules of this local functional graph and present the 
results in Fig. 5. It can be observed that the performance of 
classification is lower when the number of regions is 
fewer. By introducing the 7 region and 2 region subgraphs, the 
network in the local functional graph enhances some key 
information features, improving the fitting ability of LG-GCN. 
This suggests that the functional connectivity between local 
regions is closely related to depression. 

G. Interpretability and Visualization 

In this section, to explain that significant connections 
mainly exist in certain brain regions, which have been found 
to be related to the pathology of depression. We visualize the 
distribution of degree centrality in the adjacency matrix of the 
global dynamics of the brain on four frequency bands in Fig. 6, 
providing an intuitive mapping of brain functional connections 
to the brain's topological structure. The degree centrality 
evaluates the connection strength of a node with the other 
nodes, which has been widely used to measure the importance 
of the nodes in a graph [36], calculated as follows: 

ℂ𝑖 = ∑ 𝐴𝑖,𝑛
19
𝑛=1 + ∑ 𝐴𝑚,𝑖 − 2𝐴𝑖,𝑖 , (𝑖 = 1,… ,19)19

𝑚=1  (20) 

Based on the distribution of significant electrodes, we can 
identify brain regions that are favorable for EEG-based 
depression identification. This finding explains the results in 
Table Ⅱ, where the model performs better on the 𝛼 and 𝛽 
bands, and the connectivity is stronger than in other bands. 
Especially in the frontal and temporal lobes, as the frontal and 
temporal lobes are highly related to the onset of depression, 
the centrality degree is very high. Our study is consistent with 
[20][21], which found that the coherence of activity in the 
frontal and temporal regions in depressed patients is 
significantly higher than in healthy controls. This suggests that 
considering the connections between local EEG channels is 
crucial for accurate depression identification. 

To display the connections between nodes, Fig. 7 depicts 
the top five connections learned by the proposed model in the 

adjacency matrix on the four frequency bands (𝛿、𝜃、𝛼 and 𝛽 

bands). Unlike the heatmap plot of degree centrality 
distribution, we remove the diagonal elements and just plot the 
connections between nodes. The positions of the 19 electrodes 
are displayed around the circles in the subplots. The lines 
represent the connections between channels, with darker 
colors indicating stronger connectivity. It can be observed that 
the critical connections are primarily located in the frontal and 
temporal lobes, where nodes corresponding to electrodes in 
these regions have a higher representation in the brain. This 
indicates the crucial role of the frontal and temporal lobes in 
the recognition of depression. In addition, two electrodes of 
multiple electrode pairs belong to different brain functional 
regions, indicating that the correlation between these regions 
not only has local structural connections but also has 
functional connections from global electrode channels. 

 
Fig. 6. Degree centrality distribution of the learned global adjacency 

matrices by LG-GCN over four frequency bands. (a) 𝛿 band：0.5-4 Hz (b) 𝜃 

band：4-8 Hz (c) 𝛼 band：8-13 Hz (d) 𝛽 band：13-30 Hz. 

 
Fig. 7. Visualization of the top five functional connections between EEG 

channels in the learned adjacency matrices over four frequency bands. (a) 𝛿 

band：0.5-4 Hz (b) 𝜃 band：4-8 Hz (c) 𝛼 band：8-13 Hz (d) 𝛽 band：13-30 

Hz. 

V. DISCUSSION 

In this research, we are thoroughly validating the 
effectiveness of LG-GCN. By partitioning the brain regions 
into local and global divisions, we discover high-level 
connections between different brain areas. Through the fusion 
of locally functional maps from prior research and adaptive 
adjacency matrices, our graph convolutional model accurately 
discerns the correlation between brain regions and depression. 
The fusion of local-global features is playing a crucial role in 
enhancing the representational power of the features. 
LG-GCN demonstrates a palpable edge over existing 
methodologies in data processing and feature extraction. 
Furthermore, our model evinces exceptional interpretability, 
elucidating the saliency accorded to specific brain regions and 
connections. Nodes situated within the frontal and temporal 
lobes exhibit heightened self-loop weights, indicative of their 
preeminent roles in the network, forging robust connections 
with other nodes. This, in turn, culminates in superlative 
depression identification capabilities. 

VI. CONCLUSION 

In this work, we propose LG-GCN, a local-global graph 
representation that simultaneously explores local brain 
functional connectivity and global dynamics, constructs the 
connections between different brain regions with prior 
knowledge in neuroscience research, and aggregates them into 
multi-layer GCNs to capture hierarchical dynamic graph 
topology spatial relations. In addition, IEM enables the 
proposed model to adaptively include discriminative 
depression features while retaining high-dimensional 
information. Extensive experimental results and visualizations 
demonstrate that the accuracy, sensitivity, and specificity of 
LG-GCN on public datasets are 99.30%, 99.41%, and 99.17%, 
respectively. All of these are superior to existing SOTA 
research, which indicates enormous potential for decoding 
depression based on EEG signals. However, a challenging 
issue in EEG-based depression recognition is the 
inter-individual variability of brain signals. In future work, it 
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is crucial to take this factor into account and construct a 
common graph structure that is independent of individuals, 
thus enhancing the generalizability of the model. 
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