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Abstract—Representing the task of navigating a car through 

traffic using traditional algorithms is a complex endeavor that 

presents significant challenges. To overcome this, researchers 

have started training artificial neural networks using data from 

front-facing cameras, combined with corresponding steering 

angles. However, many current solutions focus solely on the 

visual information from the camera frames, overlooking the 

important temporal relationships between these frames. This 

paper introduces a novel approach to end-to-end steering control 

by combining a VGG16 convolutional neural network (CNN) 

architecture with Long Short-Term Memory (LSTM). This 

integrated model enables the learning of both the temporal 

dependencies within a sequence of images and the dynamics of 

the control process. Furthermore, we will present and evaluate 

the estimated accuracy of the proposed approach for steering 

angle prediction, comparing it with various CNN models 

including the Nvidia classic model, Nvidia model, and 

MobilenetV2 model when integrated with LSTM. The proposed 

method demonstrates superior accuracy compared to other 

approaches, achieving the lowest loss function. To evaluate its 

performance, we recorded a video and saved the corresponding 

steering angle results based on human perception from the robot 

operating system (ROS2). The videos are then split into image 

sequences to be smoothly fed into the processing model for 

training. 
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I. INTRODUCTION 

For over a decade, autonomous driving techniques have 
captured significant attention from both academic and 
industrial research and development sectors. During the initial 
phases of autonomous driving research, the predominant 
strategies employed were rule-based, primarily focused on 
image processing. In these approaches, perception, and control 
were treated as distinct functional modules, operating 
independently from each other [1]-[9]. However, with the 
advent of deep learning technologies, there has been a notable 
shift towards end-to-end vehicle control as a leading research 
area in autonomous driving [10]-[12]. This approach integrates 
perception and control into a seamless system, leveraging the 
power of deep learning to optimize autonomous driving 
performance. 

In 2016, Nvidia introduced the pioneering end-to-end 
driving model for steering angle control [13]. This model 

employs Convolutional Neural Networks (CNN) to directly 
predict the steering angle using raw pixel data from a single 
frame obtained from a front-view camera. Subsequently, other 
research studies emerged, exploring various CNN architectures 
like MobileNetV2, ResNet50, and VGG16, with the aim of 
enhancing the accuracy and speed of steering angle estimation. 
These papers are presented with different definitions. [14]. 
However, these end-to-end driving models have neglected 
temporal information by focusing solely on individual frames. 

In recent years, LSTM has been considered and 
incorporated into the CNN structure to learn continuous 
information from the image sequences of the past. Eraqi et al. 
[15] presented a C-LSTM (CNN with Long Short-Term 
Memory) model that captures both visual and dynamic 
temporal dependencies in driving. By incorporating both a 
CNN and an LSTM network, this model utilizes multiple 
frames from the front-facing camera input to estimate the 
steering angle. In a similar vein, Xu et al. [16] proposed an 
end-to-end architecture called FCN-LSTM, which not only 
predicts the steering angle but also aims to understand the 
scene simultaneously. In addition, Yang et al. [17] proposed a 
multi-modal multi-task network that takes an end-to-end 
approach and aims to simultaneously predict the steering angle 
and speed. However, the utilization of the conventional 
combination of CNN and LSTM in these methods limits their 
accuracy. With the continuous development and progress of 
processing hardware, CNN architectures with millions of 
parameters have been developed and successfully employed to 
achieve higher accuracy. In light of this, we present a novel 
approach in this paper by integrating the VGG16 model with 
LSTM to enhance the estimation accuracy. We leverage the 
relevant information from input image sequences to improve 
performance. Through a comparison with traditional methods, 
we demonstrate the exceptional accuracy achieved by our 
proposed approach. It is important to note that the 
implementation of this model will be carried out in a ROS2 
simulation environment. 

The structure of this paper is outlined as follows: Section II 
presents an overview of the proposed method. In Section III, 
we provide a detailed explanation of the CNN-LSTM 
architectures incorporated into our proposed model. Section IV 
introduces the experimental system, dataset, evaluation 
metrics, and the corresponding results, followed by a 
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comprehensive discussion. Finally, Section V concludes the 
paper, summarizing the key findings and contributions. 

II. PROPOSED METHOD OVERVIEW 

The system being developed within the ROS2 robot 
simulation environment comprises a vehicle model equipped 
with an RGB camera mounted on the front chassis. Our 
proposed synthetic neural network, which integrates VGG16 
and LSTM networks, is utilized to estimate the steering angle 
based on input from the camera. The VGG16 model processes 
each frame of the camera image individually, extracting 
relevant features. These features are then fed into the LSTM 
network to capture temporal dependencies, as explained in the 
next section. The steering angle prediction is obtained from the 
output classifier following the LSTM layers. Upon completing 
the training process, the model will be saved and applied for 
testing on the vehicle model. 

To train the proposed model network, we utilize the 
VGG16 architecture for feature extraction by including the 
current image (t) and the four preceding images from (t-1) to 
(t-4). This creates a sequence of 5 images captured within one 
0.16s, which will serve as a sample sequence. The LSTM 
network will then analyze the temporal relationships among 
these images to estimate the steering angle based on contextual 
information. During training, the estimated steering angle at the 
time (t) will be compared with the corresponding ground-truth 
steering angle at the time (t), and the error will be used in the 
backpropagation algorithm [18] to update the model's 
parameters. During the training phase and after saving the 
model, the proposed system can be visualized through a block 
diagram, as shown in Fig. 1. This diagram outlines the flow of 
data and processes involved in the system's operation during 
both the training and running phases. 

 

Fig. 1. Block diagram of the proposed system. 

III. CNN-LSTM ARCHITECTURES 

In this section, we will introduce the CNN architecture and 
its integration with LSTM to extract relevant features and 
combine them over time. This integration allows us to process 
the input data in a sequential manner and pass it through a fully 
connected layer to obtain the predicted steering angle. 

A. Nvidia CNN-LSTM Model 

The Nvidia model, introduced by Nvidia [10], utilizes 
convolutional neural networks (CNNs) and is specifically 
engineered to predict the steering angle by processing raw 
pixel information obtained from a front-facing camera. This 
model takes advantage of the visual information captured by 
the camera to directly predict the appropriate steering angle for 

autonomous driving. By training on a large dataset of images 
and corresponding steering angles, the Nvidia model learns to 
extract relevant features from the images and make accurate 
predictions. We have separated the convolutional feature map 
of the Nvidia model. Then, we integrated it with LSTM, as 
shown in Fig. 2, to process the image data sequence by first 
extracting the features individually before reassembling them 
using LSTM. 

B. MobileNetV2-LSTM Model 

The MobileNetV2 model is a lightweight CNN architecture 
that focuses on efficient computation [19]-[20]. It utilizes 
depthwise separable convolutions, which divide the 
convolutional operation into separate depthwise and pointwise 
convolutions. 
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Fig. 2. Nvidia CNN-LSTM structure. 

This approach reduces the number of parameters and 
computational complexity, making it suitable for resource-
constrained environments such as mobile devices or embedded 
systems. The MobileNetV2 model is also trained on image 
sequences and corresponding steering angles to learn the 
relationship between visual inputs and steering control. 
However, we have replaced MobileNetV2 with the Nvidia 
CNN model to extract features from the input image sequence. 
The architecture of MobileNetV2 integrated with LSTM and a 
fully connected layer is depicted in Fig. 3. We will proceed 
with training on the dataset obtained from driving videos in the 
ROS2 environment to evaluate the results. 

 
Fig. 3. MobileNetv2-LSTM structure. 

C. Proposed VGG16-LSTM Model 

The proposed VGG16-LSTM driving model, presented in 
Fig. 4, consists of two main components: the feature-extracting 
network and the steering angle prediction network. In this 
model, the input comprises the previous five frames, ranging 
from frame t-4 to frame t, which serve as inputs for the driving 
model. 

 
(a) 

 
(b) 

 
(c) 

Fig. 4. Proposed VGG16-LSTM structure. 
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In this study, the VGG16 architecture [21]-[22] is utilized 
as the feature extraction component. VGG16 is composed of 
several convolutional layers and pooling layers, which are 
employed to extract relevant features from images. 

The network receives a sequence of five images, each 
having dimensions of 224x224x3, as input. These images are 
processed through the feature extraction layers of VGG16, 
resulting in a feature map with a predetermined size. Following 
that, a Flatten layer is utilized to convert the output of VGG16 
into a vector shape. This vector will be fed into an LSTM 
network to store temporal information. The LSTM network 
will handle sequential data and retain previous information for 
estimating the steering angle. 

In the LSTM model with multiple inputs and one output, 
the network takes in 5 input vectors corresponding to x(t-4), 
x(t-3), x(t-2), x(t-1), and x(t) as shown in Fig. 4(b). These 
vectors represent past temporal information. The LSTM model 
is designed to process and analyze sequential data. To 
accomplish this, the LSTM model utilizes activation functions, 
specifically the sigmoid function and the hyperbolic tangent 
(tanh) function. The sigmoid function is used for the input, 
forget, and output gates, ensuring controlled information flow 
within the model. On the other hand, the tanh function 
facilitates the storage and updating of continuous-valued 
information within the memory cell. 

The output y(t) of the LSTM model is further processed by 
passing it through the final layers, which consist of two fully 
connected layers and one dropout layer as shown in Fig. 4(c). 
These layers contribute to refining the predicted steering angle 
estimation. The fully connected layers serve as a mapping 
function, transforming the input from the LSTM into a suitable 
output format for the desired steering angle estimation. 

Every neuron is interconnected with all the neurons in the 
preceding layer, enabling the learning of intricate relationships 
and patterns. In the following chapter, we will proceed with the 
training and compare the accuracy of these models. 

IV. EXPERIMENTAL RESULTS 

A. Experimental Setting 

The virtual environment, illustrated in Fig. 5, is constructed 
and designed using the Gazebo/ROS2 software. Within this 
simulation world, a donkey car and a two-lane map are present, 
serving as the training and testing environments for self-driving 
mode. Human experts control the donkey car through joystick 
input, and the captured images are saved and used for training 
the proposed models. The training process utilized a dataset 
comprising 10,000 images and was executed on a computer 
equipped with macOS Ventura 13.4, an ARM-based M2 CPU, 
a 10-core GPU, and 32 GB RAM. Our algorithm was 
implemented in Python 3.10, utilizing the Tensorflow 2.12.0 
and Keras 2.12.0 libraries. The optimizer used in this study is 
ADAM [23]. For the experiments conducted, the initial 
learning rate is set to 0.001. 

The VGG16-LSTM model has a total of 45,994,177 
parameters, including both trainable and non-trainable ones. 
Out of these, 40,128,641 parameters are trainable, representing 
weights and biases that will be updated during training, while 
5,865,536 parameters are non-trainable and remain fixed. By 
freezing the last 8 layers of the VGG16 base with a "trainable" 
attribute set to False, their weights and biases are preserved, 
leveraging pre-trained knowledge from the ImageNet dataset. 
The architecture and parameters of our proposed steering angle 
prediction model, which was based on transfer learning using 
VGG16-LSTM, are shown in Fig. 6. 

 

Fig. 5. Simulated environment created using Gazebo/ROS2. 
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Fig. 6. Proposed model’s architecture based on VGG16-LSTM. 

B. Dataset and Evaluation Metrics 

1) Dataset: The vehicle is equipped with a front-facing 

camera that captures images, and the ROS2 controller records 

both the steering angle from the joystick and the 

corresponding camera images. The data is collected at a rate 

of 30 frames per second, resulting in five consecutive frames 

captured within a duration of 0.16 seconds. For this particular 

study, the dataset used consists of 10,000 images, which is 

equivalent to 2000 sequences of images. Each sequence 

contains five consecutive images. The dataset is continuously 

collected along with the corresponding steering angle 

information, which is obtained through human perception. 

To access the dataset used in this study, you can visit the 
following link: (https://www.kaggle.com/datasets/ 
ngochoangtran1992/steering-angle-prediction). The input 
images have a size of 1024x600 before being fed into the 
training model, and they undergo normalization to align with 
the input size of VGG16. Fig. 7 illustrates a sequence of five 
images, showing them before and after normalization, which 
prepares them for training. 

2) Evaluation metrics: During the training process for 

estimating steering angles using a VGG16 model combined 

with LSTM, the Mean Squared Error (MSE) equation (4) is 

commonly used as the loss function and evaluation metric. 

The MSE measures the average squared difference between 

the predicted steering angles and the ground truth values 

provided by human perception. 

   ( ̂[ ]  [ ])   
 

 
 ∑( ̂[ ]    [ ] )

 

 

   

 (4) 

where  ̂[ ]   and  [ ]  are the predicted and true steering 

angles at the current time and the     sequence. 

By minimizing the MSE loss, the model aims to accurately 
estimate the steering angles, ultimately improving the 
alignment between the predicted and actual values, as 
perceived by humans. 

 

Fig. 7. Sequences of five images before and after normalization of our datasets. 
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3) Results: The results and comparison of four models, 

namely Nvidia-CNN, CNN-LSTM, MobileNetv2-LSTM, and 

the Proposed method (VGG16-LSTM), were evaluated based 

on their loss values and validation loss values. The Nvidia-

CNN model achieved a loss value of 314.03 and a validation 

loss value of 1268.70. The CNN-LSTM model obtained a loss 

value of 198.95 and a validation loss value of 479.37. The 

MobileNetv2-LSTM model demonstrated a loss value of 

164.37 and a validation loss value of 244.32. Lastly, the 

Proposed method (VGG16-LSTM) outperformed the other 

models with a loss value of 65.07 and a validation loss value 

of 198.08. These results indicate that the Proposed method 

(VGG16-LSTM) achieved the lowest loss values, both in 

training and validation. This suggests that the VGG16-LSTM 

model performs better in estimating the steering angles 

compared to the other models, as it exhibits significantly 

lower loss values. The decrease in loss values indicates a 

stronger correlation between the predicted and actual steering 

angles, demonstrating enhanced precision and effectiveness in 

estimating steering angles. The comparison results of the 

models are depicted in Table I, and Fig. 8 and Fig. 9 visualize 

the training outcomes and accuracy assessment of these 

models throughout 20 epochs. 

TABLE I. EXPERIMENTAL RESULTS OF THE PROPOSED MODEL AND 

OTHER COMPARATIVE METHODS 

Model Nvidia-CNN CNN-LSTM 
MobileNetV2-

LSTM 

Proposed 

Model 

Loss 314.03 198.95 164.37 65.07 

Val_Loss 1268.70 470.37 244.32 198.08 

Fig. 10 shows the comparison between the steering angle 
predictions of various models with the proposed approach. It is 
readily apparent that the proposed method's steering angle 
predictions exhibit an accuracy level of approximately 95% 
when compared to the ground truth values. Achieving this level 
of accuracy involves implementing a method that utilizes a 
series of input images and incorporates information from 

previous frames to estimate the steering angle.. The VGG16 
and LSTM networks are utilized to extract significant features, 
ensuring the highest possible precision in the predictions. 

 

Fig. 8. Comparison of loss values between models architecture. 

 

Fig. 9. Comparison of validation loss values between models architecture. 
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Fig. 10. Compare the predicted steering angle of the models with the proposed method. 

V. CONCLUSION 

By combining VGG16 CNN and LSTM, our proposed 
approach successfully captures the temporal aspects of visual 
information and the dynamics of control. This integration sets 
it apart from other models, as it achieves an exceptional 
accuracy rate of approximately 95% when predicting steering 
angles. The results obtained in the ROS2 simulation 
environment are highly promising, suggesting significant 
potential for practical applications. This advancement 
represents a substantial improvement in the precision and 
dependability of autopilot systems, enhancing their ability to 
navigate real-life scenarios with greater accuracy and 
reliability. 
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