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Abstract—Anomalous trajectory detection is an important 

approach to detecting taxi fraud behaviors in urban traffic 

systems. The existing methods usually ignore the integration of 

the trajectory access location with the time and trajectory 

structure, which incorrectly detects normal trajectories that 

bypass the congested road as anomalies and ignores circuitous 

travel of trajectories. Therefore, this study proposes an 

anomalous trajectory detection algorithm using the popular 

routes in different traffic periods to solve this problem. First, to 

obtain popular routes in different time periods, this study divides 

the time according to the time distribution of the traffic 

trajectories. Second, the spatiotemporal frequency values of the 

nodes are obtained by combining the trajectory point moments 

and time span to exclude the interference of the temporal 

anomaly trajectory on the frequency. Finally, a gridded distance 

measurement method is designed to quantitatively measure the 

anomaly between the trajectory and the popular routes by 

combining the trajectory position and trajectory structure. 

Extensive experiments are conducted on real taxi trajectory 

datasets; the results show that the proposed method can 

effectively detect anomalous trajectories. Compared to the 

baseline algorithms, the proposed algorithm has a shorter 

running time and a significant improvement in F-Score, with the 

highest improvement rate of 7.9%, 5.6%, and 10.7%, 

respectively. 

Keywords—Anomalous trajectory detection; time periods; 

popular routes; gridded distance 

I. INTRODUCTION 

With the rapid development of GPS positioning and 
wireless communication technology, more and more trajectory 
data have been collected [1, 2]. Detecting anomalous 
trajectories from a large amount of collected trajectory data has 
been widely used in various fields, such as fraud detection [3], 
medical treatment [4], and anomalous trajectory detection [5]. 
The huge trajectory data generated by vehicle location 
acquisition also provides an unprecedented opportunity to 
analyze the anomalies of moving objects and discover some 
basic rules of their movements [6]. Through timely and 
effective analysis of these traffic trajectories, the behavior rules 
of vehicles can be detected, thereby revealing the dynamic 
changes of certain behaviors and the “special” events hidden 
behind the vehicle behavior patterns [7]. For example, detours 
can be detected during taxi driving [8], and traffic jams due to 
traffic accidents [9] or temporary road closures [10]. This 
information can better guide the driving of taxi routes and 
provide early warnings of potential safety hazards, thus 
improving urban traffic planning. 

Anomalous trajectory detection is one of the hot research 
topics in trajectory pattern mining [11, 12]. Usually, an 
anomaly means that a data object has a large deviation from the 
remaining objects in the retrieved dataset due to some of its 
unusual characteristics. For these different anomalous 
trajectories, many anomaly detection methods have been 
proposed. The existing anomalous trajectory detection 
technology mainly uses the similarity measurement method to 
find out the trajectory that is highly different from others [13-
15]. The LDTRAOD [16], DB-TOD [17], and the ATD-
outliers method [18] combine attributes such as distance 
between trajectory points, local density, and trajectory shape to 
calculate the abnormal score of trajectories by quantifying the 
similarity between trajectories. However, the time complexity 
of these methods is too high, which leads to prohibitive costs. 
Therefore, trajectory grid processing is often exploited to solve 
this problem, reducing the computational complexity by 
mapping the spatial locations of trajectory points onto the grid 
codes. In addition, it can be seen from the existing methods 
that the key to anomalous trajectory detection is extracting a 
representative feature of each trajectory and then using a 
function based on this to measure the similarity between them. 
Therefore, a taxi driving a long distance or a trajectory with 
fewer same driving trends is considered to be an anomalous 
trajectory. Although this can detect a large number of 
anomalies, the false positives of the detection results are 
usually high. Because these methods focus only on the location 
of the trajectory and do not integrate it with the time period and 
the trajectory structure, thus incorrectly detect normal driving 
trajectories of particular time periods as anomalies, and ignore 
loop driving behavior on normal routes. 

For example, a passenger Alice takes a taxi from the 
starting point S to the destination point D. There are two routes 
at fixed starting and ending points, namely   and   ,  where 
the distance of    is shorter than that of R. If the trip occurs 
during the off-peak period, which means that the traffic volume 
is relatively low during this period. Therefore, considering the 
time and fare spent by passengers on the trip, the route    is 
chosen as the optimal route for this road segment. However, if 
the trip occurs between 7:00 am-9:00 am, the route    may 
cause serious road congestion and traffic accidents due to the 
traffic flow during rush hour. Therefore, in terms of the time 
peak, the optimal choice for taxi drivers should be R. 

Obviously, as the dynamics of popular routes change, the 
anomaly judgment of the trajectory also changes. The driver's 
choice of route usually changes at special periods or moments 
when special events occur. Therefore, it is necessary to divide 
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the effective time intervals according to the vehicle travel 
pattern. However, if the division is performed at very short and 
fixed intervals, it will consume a lot of unnecessary time and 
space resources, and the detection results will also contain 
certain errors. Research [13] pointed out that the taxi trajectory 
tends to take more time during peak periods than during off-
peak periods. Inspired by this, it can be determined that drivers 
will choose different routes at specific time periods to save 
passengers’ travel time. Therefore, this paper proposes an 
anomalous trajectory detection method using popular routes in 
different traffic periods (PRTP). Compared with previous 
detection algorithms that only consider the location of 
trajectory points or have large time consumption, the PRTP 
algorithm divides the time of day into four time periods 
according to the temporal distribution density of trajectories, 
thus discovering the dynamic changes of the popular routes and 
considering the effect of time segmentation and trajectory time 
span on frequency. Meanwhile, the location and structure of 
the trajectory are considered comprehensively in the anomaly 
judgment, which improves the stability and accuracy of 
detection. 

In summary, the main contributions of this study are as 
follows. 

 An anomalous trajectory detection method using 
popular routes in different time periods is proposed, 
which divides the time according to the traffic flow and 
combines the location and time features of trajectories 
in different time periods to detect anomalies, thus 
improving the accuracy of anomaly detection. 

 By integrating the access location, time, and time span 
of the trajectory, a calculation method of spatiotemporal 
frequency is designed, so that the popular routes can be 
accurately obtained without the interference of temporal 
anomalous trajectory. 

 A grid distance formula is proposed to quantitatively 
measure the trajectory anomaly distance, which 
considers both the location and structure of the 
trajectory, enabling the detection of circuitous driving 
anomalies of the trajectory in addition to location 
anomalies. The effectiveness and performance of the 
PRTP method are empirically evaluated using real taxi 
trajectories 

The rest of the paper is organized as follows. The related 
work on anomalous trajectory detection is reviewed in Section 
Ⅱ. After the problem definitions are given in Section Ⅲ, the 
main steps of the PRTP are presented in Section Ⅳ. In Section 
Ⅴ, the overall experimental setup and experimental results are 
reported. Section Ⅵ discusses the proposed method. Finally, 
the conclusions are presented in Section Ⅶ. 

II. RELATED WORK 

At present, the field of anomalous trajectory detection has 
been developed rapidly. Though the existing anomalous 
trajectory detection algorithm has been well applied in real life, 
further explorations are still needed. The existing detection 
methods can be mainly divided into two categories, anomaly 

detection based on spatial attributes and anomaly detection 
based on spatiotemporal features. 

A. Detection Based on Spatial Features 

Among the existing anomaly detection algorithms, the 
algorithms focusing on the spatial position of the trajectory 
occupy a larger proportion. These methods focused on 
considering the spatial attributes of trajectory points, such as 
position, direction, velocity, etc., and select specific attributes 
as trajectory similarity criteria to detect anomalous trajectories. 
Lee et al. [19] proposed a trajectory anomaly detection 
algorithm TRAOD, which includes trajectory division and 
trajectory detection. All trajectories are divided into t-partitions 
according to a novel partition-and-detect framework, and then 
trajectory partitions are detected by a distance-based method. 
To detect anomalous from the locally dense trajectory, Luan et 
al. [16] proposed the anomaly detection algorithm LDTRAOD 
based on the local density of trajectories, which uses the 
partition-and-detect framework [19] to determine local 
anomalous trajectories by calculating the local density and 
local outlier factors for each t-partition. Although these 
methods can quantify the similarity between trajectories, 
anomaly detection based on individual location attribute does 
not apply to anomalies with complex distributions. To combine 
multiple features for anomaly detection, San Roman et al. [20] 
proposed the CaD method which considers the angle 
difference, Euclidean distance, and the number of points in 
each trajectory, and effectively detects anomalous trajectories 
in each cluster by using the unsupervised learning method of 
the trajectory distance matrix. Sun et al. [21] proposed the 
TODDT algorithm in combination with dynamic difference 
threshold to detect anomalous trajectories from multiple 
perspectives. Considering the trajectory common slice 
subsequence, Yu et al. [22] proposed a novel trajectory 
anomaly detection algorithm based on common slice 
subsequence (TODCSS), which combines features such as 
direction, position, and continuity to achieve more accurate 
trajectory anomaly detection. And to detect different patterns 
of anomalous trajectories, Wang et al [23] proposed a DIS 
metric. After gridding the trajectories, the DIS values are used 
to quantify the similarity between trajectories and then assign 
the anomalous trajectories to different classifications. 
Considering the special conditions of anomalous trajectories 
and the motion patterns mined in the massive trajectory data, 
researchers have also proposed many methods. Inspired by the 
"few and different" property of anomalous trajectories, Zhang 
et al. [24] proposed the iBAT algorithm which can effectively 
detect outliers of trajectories by isolating the number of steps 
used by the trajectory. Combine the actual inherent travel flow 
and other information of trajectory data to make abnormal 
judgment. Yu et al. [25] proposed a multi-level approach that 
combines association rule techniques to discover moving 
routes. To mine the special driving patterns of moving objects 
from trajectories, Zhang et al. [26] proposed an algorithm to 
discover popular routes from fixed locations. The algorithm 
meshes the region area into a regular grid to discretize the 
historical trajectory and finally determines the most popular 
routes by an ant colony optimization method. Tang et al [27] 
used the theory of time geography to propose a path-oriented 
traffic state estimation model to find the most likely road path, 
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link travel time and activity duration at possible intermediate 
stations. 

Real-time performance is the primary requirement of 
practical applications when detecting trajectory anomalies. 
Traffic conditions vary at different times and in different 
locations, exploiting latent patterns in real time can capture 
anomalous behaviors in real-time and make timely traffic 
adjustments [28]. Therefore, while overcoming the drawbacks 
brought by the single spatial attribute algorithm, researchers 
have investigated anomaly detection for evolutionary 
trajectories. To reduce the problem of the high false alarm rate 
of anomaly detection due to complex road conditions, Chen et 
al. [29] proposed an online anomaly trajectory based on 
multidimensional criteria for real-time anomaly detection by 
simultaneously considering multidimensional criteria such as 
similarity, time, and distance. Ge et al. [30] proposed an 
evolutionary trajectory outlier detection method TOP-EYE, 
which continuously calculates the outlier score for each 
trajectory in a cumulative manner and proposed a decay 
function to mitigate the impact of historical trajectories on the 
outlier score of trajectory evolution, thus identifying 
evolutionary anomalous trajectories at an earlier stage. Using a 
street-based trajectory delineation approach, Shi et al. [31] 
proposed RUTOD, an anomaly detection framework for real-
time urban traffic. The framework combines an individual 
anomalous moving object with the group anomalous values 
generated by various moving objects for anomalous detection. 

B. Detection Based on Spatiotemporal Features 

In the practical application of anomalous trajectory 
detection, in addition to various situations where spatial 
attributes need to be considered, temporal features are also 
important for anomalous trajectory detection. In recent years, a 
lot of research and exploration has been conducted on time 
attributes. Zhu et al. [32] proposed a new time-dependent 
popular route algorithm TPRO. In this algorithm, the abnormal 
trajectory is dynamically measured by considering the spatial 
and temporal characteristics of the motion trajectory. However, 
the TPRO algorithm is limited to the detection of historical 
trajectories, and it is not applicable to anomalies of real-time 
trajectories. Therefore, in the TPRRO [33], a real-time outlier 
detection algorithm was proposed based on time-dependent 
popular routes, which can realize efficient detection and 
evaluation of the testing trajectory through offline 
preprocessing and online anomaly detection. 

Besides, for the detection of more complex anomalous 
trajectories in the spatiotemporal dimension, Yang et al. [34] 
proposed a new trajectory clustering algorithm TAD, which is 
based on the spatiotemporal density analysis of trajectory data 
to detect the stay of complex trajectories. To detect behaviors 
such as abnormal parking and stranding of vehicles in the time 
dimension, He et al. [35] proposed a common subsequence-
based spatiotemporal anomaly trajectory detection method 
(STADCS). This method detects spatiotemporal anomalies by 
combining spatial features and temporal dimensions of 
trajectory subsequences. And based on the travel time of the 
trip, Eldawy et al. [36] proposed a novel real-time anomalous 
trajectory detection system called FraudMove. When choosing 
the best route, the FraudMove method takes the popular route 
as the best choice. Then, an adjustable time window parameter 

is used to control the detection times of anomaly detection, 
thus dynamically detecting anomalous taxi behaviors in 
combination with travel time. 

Although most of the above anomalous detection methods 
combine multiple trajectory attributes to achieve different 
modes of anomalous trajectory detection, there are still two 
main limitations. First, if the spatial features or temporal 
features of trajectories are used alone, such detection results 
will produce high false positives. Researchers only consider the 
matching degree of trajectory points when considering the 
node frequencies in different time periods, the detection 
accuracy will be reduced by ignoring the influence of other 
attributes on the node frequencies. Second, most algorithms 
only consider the location abnormality of trajectories and 
ignore the change of trajectory structure in the abnormality 
judgment. Therefore, it is necessary to divide the time periods 
in anomalous trajectory detection and calculate the frequency 
in the spatiotemporal dimension, and integrate the trajectory 
structure with the trajectory position to improve the accuracy 
of abnormal driving trajectory detection. 

III. PROBLEM DEFINITION 

This section defines some related terms and provides 
formal definitions of the problems considered in this paper to 
facilitate further descriptions. 

Definition 1 (Point): given a record, let x, y, and t be 
longitude, latitude, and timestamp, respectively. Then the 
spatiotemporal information can be recorded in a triplet, namely 
(x, y, t), which is a spatiotemporal point formed by the object 
passing through the position (x, y) at time t. 

Definition 2 (Trajectory): a trajectory is denoted by T, 
which consists of a series of trajectory points: 

                            , (1) 

the entire trajectory dataset is represented as: 

                   , (2) 

|TS| is the size of TS, i.e., |TS|=n.    is the j-th point of   , 

which includes three components  x, y, t. The trajectory 
segment is the line segment between    and     . 

Definition 3 (Road Network): the road network is 
represented as a directed graph G(V,E), where V represents the 
set of nodes (such as the start and end points of a road 
segment), and E is the set of edges (such as a road segment).  
In this paper,    is used to represent a specific vertex in G. If    
and    are the two points of the edge e, it can be expressed as 

     and     . 

Definition 4 (Mapped Trajectory): A mapped trajectory MT 
is generated by the function     , which maps latitude and 
longitude coordinates to the cell, and generates a series of grid 
codes                , where         . 

Definition 5 (Equivalent Cell): Given a grid size of  , the 
road network is divided into equal cells of size  , and the 
position of cell is denoted by  . Then, let trajectories pass 
through the road network regions, if two different trajectory 
points    and    fall into the same cell, they are called points 
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with the equivalent cell, which is expressed as 
               . 

As shown in Fig. 1, there are two trajectories and all their 
trajectory points have corresponding grid cells. The points   

  
and    on the different trajectories fall into the same grid cell 
(green grid), so they are called points with the equivalent cell. 

5p

4p

3p

6p

2p

1p 1p 

2p

3p  4p

 
Fig. 1. An illustration of the equivalent cell. 

Definition 6 (Time Span): Given a trajectory   , the travel 
time from the source to the destination is defined as the time 
span, which is denoted by     as: 

                , (3) 

where      ,       represent the start time and end time of 
the trajectory   , respectively. 

Definition 7 (Route): After matching the trajectory with the 
city map using ArcGIS, the route is represented by each node 
cell and its frequency. A route based on cell frequency is 
represented as: 

                     }, (4) 

where    =(      ,    represents the i-th node cell on the 
route,    refers to the frequency of passing through the node 
cell. 

Definition 8 (Anomaly trajectory): The trajectory that 
deviates significantly from the popular routes in the access 
location or structure is defined as an anomaly trajectory. 

As shown in Fig. 2, there are a few trajectories between S 
and D, which can be divided into two groups: normal 
trajectories and abnormal trajectories.    and    are considered 
abnormal because they deviate from the regular routes at a 
certain time period. 

Problem statement: Given the trajectory dataset    
               , this study aims to detect anomaly 
trajectories in   , for all      , if    deviates from its 
corresponding popular routes or drive in a roundabout manner, 
it is considered an anomaly trajectory. 

S
T1

D

T2

T3

T4

 

Fig. 2. An illustration of trajectories between S and D. 

IV. PRTP 

This section provides an overview of the anomalous 
trajectory detection framework proposed in this study. The 
PRTP method consists of two stages: trajectory preprocessing 
and anomalous trajectory detection. The popular routes 
acquisition and anomaly judgment constitute the trajectory 
anomaly detection stage. Fig. 3 shows the working mode of the 
algorithm. 
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Fig. 3. Overview of PRTP approach. 

A. Preprocessing Taxi Trajectory 

Since anomalous driving of taxis usually occurs when they 
are carrying passengers, the first task in the trajectory 
processing stage of this study is to classify the trajectories 
according to their occupancy status. As shown in Fig. 4, the 
figure shows the trajectory of a taxi in a region for one month, 
in which the red line segment is the trajectory of a taxi carrying 
passengers and the blue line segment is the trajectory of a taxi 
without passengers. Therefore, for a more meaningful study, 
the trajectory represented by the red line segment is extracted 
as a valid trajectory during the preprocessing of the trajectory 
data in this paper. 

After extracting the valid trajectories from the original 
trajectories, these trajectories usually contain different starting 
and ending points, in which there may be a certain starting and 
ending point between which there are not enough trajectories to 
form a normal trajectory group, thus causing interference to the 
anomaly detection. Therefore, in this study, all taxi trajectories 
that pass through the same SD pair are grouped to form the SD 
trajectory dataset (trajectories with the same source and 

destination). The S and D regions are 1000m×1000m grid-

cells, that is, the source and destination points are satisfy 
                                                      .Then
, the city map is divided into grid cells of the same size, and the 
extracted valid SD trajectories are mapped into the grid cells, 
thus forming a mapped trajectory consisting of a series of grid 
cell sequences. 

 
Fig. 4. Trajectories of a taxi in San Francisco during a month. 
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B. Anomaly Detection 

1) Acquisition of popular routes: By extracting a specific 

SD trajectory dataset from the original dataset and mapping it 

to the corresponding urban road network, all the routes 

traversed by the trajectory dataset are obtained. Traversing the 

trajectory data and calculating the node frequency based on its 

trajectory point location and time, thus obtaining the node 

frequency graph (NFG) as shown in Fig. 5. In Fig. 5,    

represents the source address,    represents the destination 

address, and the table corresponding to each node indicates the 

frequency of that node in each time period. For the division of 

time periods, the study divides the whole time domain into 

four time periods according to the peak traffic flow period, 

namely the morning peak period (7:00 am-9:00 am), the 

afternoon peak period (11:00 am -13:00 pm), the evening peak 

period (17:00 pm -19:00 pm), and the time period consisting 

of the remaining hours, and then performs anomaly detection 

according to testing trajectory and the popular routes in its 

time period. 

Definition 9 (Equivalent time periods): Given two time 
periods   -    and   -   , if   ,  ,  , and    are all in the same 
pre-divided time period, they are called equivalent time 
periods. 

According to the above analysis, if there are time periods 
7:30 am-8:15 am and 8:45 am-9:00 am, because their starting 
time and ending time are included in the pre-divided morning 
peak time period, these two time periods are referred to as 
equivalent time periods in the study. And the trajectories of the 
equivalent time period have the same popular routes. 

The anomalous trajectories are few and different, so the 
routes chosen by a large number of vehicles are often correct. 
Therefore, researchers usually determine the popularity of 
routes in each time period based on the number of times the 
route is visited. However, when there is a route with a large 
number of trajectories passing through, if only the number of 
trajectories is considered, the route must be identified as a 
popular route. But if all the trajectories on it have time 
anomalies, then this route is not desirable. So when calculating 
the frequency values, the study not only considers whether the 
trajectory points coincide with the nodes but also judges the 
time anomaly of the trajectories. Therefore, to exclude the 
influence of time-anomalous trajectories in calculating the 
frequency of route nodes, this study designs a calculation 
method for spatiotemporal frequency. 

V1

V3

Vs

V2

V4

Vd

Residential

Airport

Vs

...

Vd
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Fig. 5. An illustration of NFG. 

By comparing the trajectory time span with the standard 
time span, the frequency coefficient of the trajectory is 
obtained, which is calculated as: 

     {

  
       ̅̅ ̅̅ ̅

   ̅̅ ̅̅ ̅
                ̅̅ ̅̅

 
            ̅̅ ̅̅     ̅̅ ̅̅  

                                  ̅̅ ̅̅

                                          

,(5) 

where     represents the time span of the i-th trajectory,    ̅̅ ̅̅  

represents the standard time span of the j-th time period, and 
the value of j ranges from 1 to 4. The standard time span of 
each time period is obtained by selecting half of the normal 
trajectories in that time period and calculating the average time 
span of these trajectories. 

After calculating the frequency coefficient of each 
trajectory passing through the node, the node frequency is 
defined as: 

    ∑    
 
    , (6) 

where N is the number of trajectories passing through the 
node, the frequency of node v is the sum of the frequencies of 
N trajectories. 

To obtain the popular routes of the testing trajectory, the 
popularity of each route needs to be compared. From the above 
analysis, the routes popularity can be evaluated by the node 
frequency values. Therefore, for route popularity comparison, 
the routes are expressed in the following form, i.e., 

          
,      , ,     

 
 ,           

 
,      

 
, ,      

 
 . When 

       
=       

 (x  {1,2,   ,p-1}, where p>2), if        
 

      
 , then the route R is more popular than route   , denoted 

by       . 

After the analysis of route popularity, the first k high-
frequency routes of the testing trajectory are called popular 
routes (PR), that is, if there is a route set 
RS=                  , where    

    
      

 

     
, then the popular routes PR=            . 

Algorithm 1   Obtain the Popular Routes of the trajectory 

Input: Road network G, trajectory dataset TS, Grid size   , 

number of popular route k.  

Output: Popular routes PR. 

 1. gridLabel ← Mesh the road network in   size 

2. Map the TS to gridLabel to get RS=                

3. TS is divided into four groups according to the time period 

of trajectory  

4. for i in RS do  

5. for j in TS do 

6.        Select trajectory group according to the time period of 

     

7.        Calculate    ,     according to equations (3), (5), 

respectively 

8. Calculate f of    according to equation (6) 

9.  end for 

10. end for 

11. PR← select the k-popularity routes  

12. return PR 
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The overall pseudo-code for obtaining the popular routes of 
the trajectory is given in Algorithm 1. First, the trajectories are 
mapped to the gridded road network to obtain the RS through 
which the trajectory dataset passes (lines 1-2). Then, the 
dataset is partitioned and trajectories belonging to the same 
time period are grouped (line 3). Finally, each trajectory is 
traversed to find the frequency values of the routes in different 
time periods, and the popular routes are obtained based on the 
popularity comparison (lines 4-11). The time complexity of 
Algorithm 1 is O     , where n is the number of trajectories 
and q is the number of routes. 

2) Perform trajectory anomaly judgment: After the 

popular routes of the testing trajectory are obtained according 

to the above steps, the PRTP algorithm performs trajectory 

anomaly detection by comparing the testing trajectory with the 

top-k popular routes. 

In this study, position anomalies and structural anomalies 
of trajectory are mainly considered in calculating trajectory 
distance. The position anomaly focuses on whether the visited 
positions are consistent, and the structure anomaly focuses on 
the circuitous intersection of trajectories. Before obtaining the 
trajectory distance, the trajectory and popular route are 
converted into position access matrixes according to their 
access position. The elements of the LocMatrix are as: 

             
    {

                            
 

          
, (7) 

where   denotes the position in matrix. 

 The structure matrix              
 is obtained by 

determining the circuitous access grid through the number of 
trajectory visits. The elements of the           are as: 

             
    {

             
 

           
, (8) 

where   denotes the position in StrMatrix,       denotes 
the number of times the trajectory     visits position  . 

In the study, the number of common locations and 
circuitous visits are focused on, and then define the distance 
metric of the trajectory with the matrix information. Given the 
gridded trajectory     and one of the corresponding optimal 

routes    , transform them into             
 and 

            
, respectively, and determine the             

 

according to the number of trajectory visits. Then the anomaly 
distance is calculated according to the following defined 
formulas: 

                             
             

, (9) 

     (       )  

                   
|            

                | |            
|

             
 

,  (10) 

where     denotes the summation over the elements of the 
matrix  ,                  is the matrix of the common 

position of the testing trajectory access matrix and the popular 
route access matrix. 

Meanwhile, from equation (10), it can be seen that the 
higher the matching degree between the testing trajectory and 
popular routes, the greater the value of                  , 
and the closer the GDDis distance is to 0. Therefore, the 
specific value of the GDDis distance can be used to quantify 
the match between the testing trajectory and popular routes. 

In Fig. 6, given the trajectory     and the route    , three 
8×8-sized matrices can be obtained.  From the matrix 

calculation, |            
| =19, |            

| =12, the 

intersection of the matrices                  =11, and the 

|            | =7. Therefore, the |            
 

               | =8, the number of abnormal cells is 

8+7=15, then, the GDDis of     is 15/19=0.79. However, if 
    only considers the anomaly of the access location, the 
final GDDis is 8/19 = 0.42, which may misjudge     as a 
normal trajectory. Therefore, through the different results of 
the above two calculations of    , it can be seen that the study 
combines structural anomalies with location anomalies 
improves the detection accuracy of anomalous trajectories. 

Route

Trajectory 

 
Fig. 6. An access schematic of trajectory and route. 

Based on the study [32], there are often multiple alternative 
routes between two locations, and not all of them have the 
same popularity. Therefore, when judging the trajectory 
anomaly, the popular routes should occupy different weights in 
the anomaly score. Suppose exist popular routes 
PRS=                     ,                              , 

the sum of the frequencies of all nodes for popular route is 
defined as: 

        ∑     
 
         , (11)  

Since the sum of the node frequencies indicates the route 
popularity, the popularity weight of the route is defined as: 

     
 

      

∑       
 
   

 , (12) 

where k represents the total number of popular routes,     

represents one of the popular routes, and ∑       
 
    

represents the sum of the popular routes frequencies. 

The anomaly judgment is performed by calculating the 
anomaly score of the trajectory and its corresponding k routes, 
which is defined as: 

       ∑     
      (       )

 
   , (13) 
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where     represents the testing trajectory, and     

represents the p-th popular route. 

 Pseudo-code for the main steps of trajectory anomaly 
detection is given in Algorithm 2. First, the weights of the 
popular routes are calculated according to the node frequency 
(line 2). Then, the corresponding popular routes of testing 
trajectory are traversed to calculate the anomaly score between 
the trajectory and the popular route (lines 3-12). Finally, 
trajectory anomaly judgment is performed by the sum of the 
anomaly scores between the trajectory and the PRL, where 
trajectories larger than   are anomalous (lines 13-17). 
Meanwhile, from Algorithm 2, it can be seen that the time 
complexity of the PRTP algorithm mainly depends on two 
aspects: the loop of trajectory data and the loop of popular 
routes. Therefore, the time complexity of the PRTP algorithm 
is O(   ), where n represents the number of SD trajectory 
datasets, and k represents the total number of popular routes. In 
most cases, the value of k is usually small, so the time 
complexity can be approximated to O(n). 

Algorithm 2 Anomalous trajectory detection method using 

popular routes 

Input: gridLabel, top-k Routes PR, Score threshold  .  

Output:  Traanomalous(A dataset of anomalous trajectories). 

1. Score ← 0 

2. WeightList ←Calculate the frequency weights of each       

popular route according to equation (12)  

3. for i in gridLabel do 

4. PRL ← Get the grid sequences of the popular routes  

5. for j in PRL do 

6.             
← get the trajectory access matrix 

7.             
← get the route traversal matrix  

8.  Calculate the                 according to equation 

(9) 
9. calculate GDDis according to equation (10) 

10.       ← GDDis ×WeightList[j] 

11. Score ←Score +       

12. end for 

13. if Score    than 

14. put trajectory i into Traanomalous 

15. end if 

16. end for 

17. return Traanomalous 

V. EXPERIMENTS 

In this section, an empirical evaluation of the proposed 
method is provided. All experiments are implemented with 
Python3 and conducted on a computer equipped with an 
Intel(R) Core(TM) i5-8250U CPU @ 1.80 GHz and 8GB main 
memory and running Windows 10 operating system. 

A. Dataset 

This study used the real taxi dataset provided by 
Piorkowski et al. [37], which contains all spatial locations of 
more than five hundred taxis in the San Francisco Bay Area in 
a month. The GPS trajectory records the latitude and longitude, 
timestamp, and corresponding passenger occupancy status of 
each taxi location point. In this study, the fixed starting and 
ending places selected were the airport and the central 

residential area. To reduce the noise and redundancy in the 
original trajectory data, it was assumed in the data 
preprocessing that only the trajectories of occupied taxis are 
valid. According to the above requirements, three pairs of SD 
trajectories (T-1 to T-3) were selected from the 463,860 
trajectories extracted from 11.22 million GPS points, and 
whether each trajectory was anomalous or not was manually 
marked. The marked dataset is used to evaluate the detection 
accuracy of the PRTP algorithm. 

B. Parameter Setting 

Trajectory detection is essentially a binary classification 
problem, and Recall and F-Score are two important metrics to 
evaluate its performance. Therefore, these two metrics are used 
in this paper to judge the effectiveness of PRTP anomaly 
detection, which are defined as: 

           
  

     
, (14) 

          
  

     
, (15) 

           
                  

                
, (16) 

where TP (True Positive) denotes the number of detected 
anomalous trajectories, TN (True Negative) denotes the 
number of detected normal trajectories, FP (False Positive) 
denotes the number of normal trajectories incorrectly detected 
as anomalous, and FN (False Negative) denotes the number of 
anomalous incorrectly detected as normal [13]. 

To better investigate the effect of parameter settings in the 
PRTP algorithm on the detection result, this study conducted 
parameter setting experiments on the two largest datasets T-1 
and T-3. There are three parameters in the detection stage of 
the PRTP, the grid size  , the number of popular routes k, and 
the Score threshold θ. Therefore, this study experimentally 
investigates the effects of these three parameters on the Recall 
and F-Score of detection to determine the optimal values of the 
parameters. 

1) Varying the size of grid cells. The setting of grid cell 

size determines the cell size when meshing the road network. 

The smaller the grid cell size, the higher the number of grids 

in the mapping trajectory. This makes the small differences to 

be magnified, which affects the detection accuracy. If the grid 

cell size is too large, there will be more trajectories with the 

same grid sequence in the dataset, which makes it more 

difficult to compare the similarity between the trajectory and 

the popular routes. Therefore, the reasonable setting of grid 

cell size is crucial to the performance of PRTP algorithm. 

Referring to previous studies [23,24], the performance 

variation is considered when the size of grid cells increases 

from 200m × 200m to 500m × 500m in this experiment. Note 

that the grid cell size set in this paper refers to the length and 

width of each small square. 

In Fig. 7, the changes in F-Score and Recall for different 
grid sizes are illustrated. It can be seen that on the two different 
datasets, the maximum F-Score is obtained when the grid cell 
size is 400×400m, and the Recall also reaches the maximum at 
this time. 
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(a)                                                    (b) 

Fig. 7. The Recall and F-Score of grid cells of different sizes. 

2) Varying the number of popular routes. The number of 

popular routes k is an important parameter in the PRTP 

algorithm since the value of k determines how many routes 

can be used to calculate the anomaly score of the testing 

trajectory. Within a certain number of ranges, the detection 

results may be more accurate when more popular routes are 

taken for comparison. However, the testing trajectory needs to 

be compared with the routes one by one during anomaly 

judgment, so the detection time will increase linearly with k.  

Referring to the previous study [32], the range of k is set 

between 1 and 8. 

Combined with the above definitions and calculation 
equations, it can be known that in the PRTP method, the node 
frequency is obtained from the node frequency graph of each 
popular route in advance, and when calculating the Score of the 
trajectory, each popular route is given the corresponding 
popularity weight and the popular route is also selected 
according to the order of node frequency. Fig. 8 shows the 
changes of F-Score and Recall for different k values. The 
results show that the Recall and F-Score of anomaly detection 
in the range of 1 to 6 generally have an upward trend as the k 
increases, when k>6, the detection performance gradually 
decreases as the k increases, and it can be seen that when k=6, 
the F-Score on the datasets T-1 and T-3 both reach the 
maximum, and the Recall also reaches the peak within the 
detection range. 

3) Varying the Score threshold. In the last step of the 

PRTP algorithm, the parameter θ directly determines whether 

a trajectory is anomalous or not, if the Score of the trajectory 

is greater than θ, it is defined as anomalous, otherwise the 

trajectory is defined as normal. Therefore, it is necessary to 

study the influence of the value of θ on the performance of the 

algorithm. Fig. 9 shows the distribution of the Score values of 

the trajectories on the two datasets according to equation (13). 

  
(a)                                                         (b) 

Fig. 8. The Recall and F-Score of different popular routes. 

 
Fig. 9. The Score calculated by the PRTP algorithm. 

From Fig. 9, it can be seen that most of the Score values on 
datasets T-1 and T-3 are less than 0.6, so based on the density 
distribution of Score values in the range of 0 to 0.6, 0.3 can be 
set as the lower limit of the range of θ. Moreover, the Score 
values of a small number of trajectories are distributed in the 
range of 0.6 to 1.0, and these points are likely to be the scores 
of anomalous trajectories, so 0.8 can be selected as the upper 
limit of the range of θ. Therefore, the article focuses on the 
effect of θ in the range of 0.3 to 0.8 on performance. 

It can be seen from Fig. 10 that when the range between 0.3 
and 0.6, as the threshold θ increases, the Recall of anomaly 
detection on datasets T-1 and T-3 gradually increases. Then, 
the Recall gradually decreases with the increase of θ, and when 
θ 0.6, the Recall achieves the maximum within the detection 
range of θ. Meanwhile, the F-Score shows the same variation 
trend, and the maximum value is obtained when θ=0.6. 
Therefore, considering the variation trend of the Recall and F-
Score, θ=0.6 is chosen as the optimal value of the anomaly 
threshold. 

    
(a)                                                            (b) 

Fig. 10. The Recall and F-Score of different Score thresholds. 

Finally, through the above analysis of the three variable 
parameters and the variation trends of Recall and F-Score, this 
paper determines the optimal values of these parameters as 
 =400×400, k=6, and θ=0.6. 

C. Visual Display of Anomalous Trajectory Detection 

Anomaly detection is performed under the optimal values 
of the parameters. To understand the visualization result more 
clearly, this subsection selects some trajectories on the two 
largest datasets T-1 and T-3 for experiments to investigate the 
accuracy of PRTP. Fig. 11 shows the visualization result of 
anomaly detection on the real taxi trajectory datasets, where the 
solid blue lines represent all trajectories in the selected dataset 
and the solid orange lines show the anomalous trajectories 
detected by the PRTP algorithm. 

It can be seen from Fig. 11(b) and Fig. 11(d) that the PRTP 
algorithm can fully detect obvious detour anomalous 
trajectories. Since the PRTP algorithm comprehensively 
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considers the moment of the trajectory point, the time span of 
the trajectory, and the different frequency values in the 
detection process, it can correctly detect the local detour 
anomalous trajectories and global detour anomalous 
trajectories at different time periods. Therefore, these 
visualization results confirm the effectiveness of the PRTP 
algorithm. 

 
(a) The selected trajectories in T-1       (b) The detected anomalous trajectories 

in T-1 

 
(c) The selected trajectories in T-3     (d) The detected anomalous trajectories                

in T-3 

Fig. 11. The result of anomalous trajectory detection on T-1 and T-3. 

D. Comparative Evaluation 

In the comparative experiments in this paper, to further 
verify the superiority of the PRTP, the study takes the ATDC 
[23], TPRO [32], and iBAT [24] as baselines to compare with 
PRTP. The basic idea of ATDC is to process trajectories by the 
grid. Then, it uses a distance calculation method to study 
different anomalous trajectory patterns and adopts an 
anomalous trajectory detection and classification method for 
real trajectory data. The iBAT algorithm employs an isolation 
mechanism to find anomalies in trajectories. Meanwhile, the 
basic idea of TPRO is to calculate the similarity between 
trajectories using edit distance in the spatiotemporal dimension. 
Therefore, the trajectory processing methods and research 
problems of these three algorithms are similar to this study. 

Here, this module focuses on evaluating and comparing the 
anomaly detection effectiveness of the four algorithms by F-
Score and Recall. From Fig. 12, it can be seen that among the 
baseline algorithms, ATDC achieves a higher F-Score in T-2, 
which indicates it has a good effect on the detection of global 
spatiotemporal anomalies. In T-1 and T-3 with more peak 
trajectories, TPRO shows good detection results due to its 
spatiotemporal sensitivity. And compared with the baseline 
algorithms, the PRTP algorithm obtains the highest F-Score on 
all datasets, and has more stable detection results. 

Similarly, from Fig. 13, the Recall values of the four 
algorithms show the same trend, PRTP obtains superior 
detection results on all datasets. It can be seen that the Recall 
of the PRTP algorithm is the most ideal, while the Recall of the 
iBAT algorithm is the lowest, indicating that the iBAT 
algorithm more incorrectly detects anomalies as normal 

occurrences on the datasets. Meanwhile, the experiment results 
show that the PRTP algorithm can play a good role in detecting 
global anomalies as well as complex local anomalies. 
Therefore, this group of comparison experiments shows that 
PRTP can better detect anomalous trajectories compared to the 
baseline algorithms. 

 
Fig. 12. The F-Score of PRTP, ATDC, TPRO, and iBAT on datasets. 

 
Fig. 13. The Recall of PRTP, ATDC, TPRO, and iBAT on datasets. 

In addition to comparing the detection effectiveness of the 
four algorithms, this paper further compares the time cost of 
these algorithms. Among them, each algorithm runs ten times 
in the same environment and the average of the running times 
is taken as the final result. From Fig. 14, it can be seen that the 
PRTP algorithm also has an absolute advantage in time 
consumption. The time loss of ATDC is also ideal, but for the 
TPRO algorithm, since it chooses a small time interval when 
dividing the time period, it consumes more time during the 
whole algorithm detection. 

Therefore, with optimal values of the parameters, PRTP 
achieves high values of both F-Score and Recall for anomaly 
detection results on the datasets. Meanwhile, the experimental 
results also show that the PRTP algorithm has a significant 
advantage in time loss. 

 
Fig. 14. The running time of PRTP, ATDC, iBAT, and TPRO on datasets. 
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VI. DISCUSSION 

In different application scenarios, most of the existing 
anomalous trajectory detection methods do not adequately 
integrate the location, time, and structure of the trajectories, 
and also ignore the influence of the time period on the route. 
Traditional algorithms usually compare the similarity of 
trajectories only in spatial or spatiotemporal dimensions, which 
is not applicable to anomaly detection of spatial trajectories 
with complex distribution. Compared with previous studies, the 
PRTP algorithm fully considers the location, time period, and 
structure of the testing trajectory in anomaly detection. The 
trajectory dataset is divided into different groups according to 
the division of time periods. Through the distribution of 
trajectories in different groups, the popularity of the route in 
different time periods is accurately obtained. Among them, to 
exclude the interference of trajectories with consistent running 
trend but long time-consuming to the route popularity, this 
study proposes the calculation method of spatiotemporal 
frequency, which avoids defining the congested roadway as a 
popular route. In the anomaly detection stage, to not be limited 
to the distribution location of the grid cells, this paper 
combines the location matrix and structure matrix of the 
trajectory to make anomaly judgments, which effectively 
detect anomalous spatiotemporal trajectories and loop travel 
trajectories, and also accurately identify normal trajectories 
bypassing congested roads. Experiments on real trajectory 
datasets show that the method can effectively detect trajectory 
anomalies with higher accuracy. The method can be applied in 
urban traffic road condition detection and traffic management, 
providing a new detection scheme for trajectory data mining. 

VII. CONCLUSION 

To improve detection accuracy and efficiency, this paper 
proposes an anomalous trajectory detection method using 
popular routes in different traffic periods. First, the method 
grids the trajectories and uses mapped trajectories for the study. 
Second, different time periods are divided according to the 
distribution of traffic flow, and the spatiotemporal node 
frequency values are obtained by combining the trajectory 
attributes, to obtain the popular routes dynamically. Finally, the 
distance formula is proposed for trajectory anomaly detection 
by combining trajectory location and trajectory structure. The 
proposed method is validated on real taxi GPS data, and it 
shows remarkable performance in experiments. Also, the 
method shows its potential in innovative applications such as 
taxi driving fraud detection. 

 However, the proposed method has a few limitations. In 
detecting anomalous trajectories, only the spatiotemporal 
properties of the trajectories are considered, and the exact 
location where the trajectory anomaly occurs and the time 
when the anomaly ends cannot be determined online. Therefore, 
in the follow-up study, this aspect will be broadened. For 
example, it is possible to detect anomalous sub-trajectories by 
combining time windows or decay factors while considering 
spatiotemporal attributes, to accurately locate where the 
anomalies occur and classify the anomalies of the trajectories 
based on the result. 
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