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Abstract—Electromyogram (EMG) signals are used to 

recognize gestures that could be used for prosthetic-based and 

hands-free human computer interaction. Minimizing calibration 

times for users while preserving the accuracy, is one of the main 

challenges facing the practicality, user acceptance and spread of 

upper limb movements’ detection systems. This paper studies the 

effect of minimized user involvement, thus user calibration time 

and effort, on the user-independent system accuracy. It exploits 

time based features extracted from EMG signals. One-versus-all 

kernel based Support Vector Machine (SVM) and K Nearest 

Neighbors (KNN) are used for classification. The experiments are 

conducted using a dataset having five subjects performing six 

distinct movements. Two experiments performed, one with 

complete user dependence condition and the other with the 

partial dependence. The results show that the involvement of at 

least two samples, representing around 2% of sample space, 

increase the performance by 62.6% in case of SVM, achieving 

accuracy result equal to 89.6% on average; while the 

involvement of at least three samples, representing around 3% of 

sample space, cause the increase by 50.6% in case of KNN, 

achieving accuracy result equal to 78.2% on average. The results 

confirmed the great impact on system accuracy when involving 

only small number of user samples in the model-building process 

using traditional classification methods. 
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I. INTRODUCTION 

Human computer interaction is highly relying on measuring 
and recording the signals produced by human body. 
Electroencephalogram (EEG), electrocardiogram (ECG), 
electrooculogram (EOG) and electromyogram (EMG) are 
electrical signals used in various HCI systems either separated 
or fused. EEG signals measures the brain electrical behavior 
from the surface of the scalp [1]. EMG signals are the 
biological signals generated as a result of the potential 
difference caused by skeletal muscular contractions [2]. EOG 
signals are used for detection of involuntarily or intended eye 
movements that could be used in a verity of applications [3]. 
ECG signals are acquired to evaluate the heart functionality 
and detect its related diseases [4]. 

Monitoring and detecting the changes in the EMG signals 
are beneficial to the researchers in the medical field in order to 
recognize neuromuscular diseases and help out in the 
rehabilitation process [5]. As claimed by Turgunov in [6], the 

muscular disabilities are spreading for various reasons causing 
the increase in demand for prosthetic limbs and assisting 
robots. They could help the parallelized patients to be able to 
achieve their daily activities with minor or no involvement 
from others using sensors that measure the EMG signals and 
act accordingly through gesture recognition systems [7]. 

 Those systems are also used for moving a remote robot 
and encouraging the distant rehabilitation process that is 
intensively needed after having strokes caused by a diversity of 
reasons [8]. Automated EMG signals translation offers great 
contribution in the success of remote monitoring for ALS 
patient using the measured physiological signals [9] and the 
availability of distant therapy and achieving high 
improvements in muscular responsiveness and motor 
functionality [2], [10].  EMG based gesture recognition is also 
used for explaining the sign language used by deaf people 
helping them to be easily engaged in the society [11] . EMG 
signals can be used also in fatigue detection [12], [13] and 
emotion identification systems [14] that could be beneficial for 
ergonomic and entertainment applications. Gamification 
therapy [15] as well as virtual reality and augmented reality 
[10], [16], [17] could be developed and evolved by enhancing 
the automated understanding muscle non-spoken language. 

The muscular activity recognition systems start by 
collecting the EMG signals from relevant human parts. EMG 
signals do not only carry information about the movement 
itself but also contain other internally interfering signals such 
as muscle fatigue and emotional involuntary movements as 
well as external conditions like sensor placement or other 
sources of noise. So preprocessing component takes place to 
clean, filters noise and unwanted signals, performs 
segmentation and does normalization [18]. The feature 
engineering and classification for biological is described in 
[19], [20]. 

Muscular movement recognition systems face various 
challenges that highly affect the user acceptance. They include 
the detection accuracy and classification performance, as well 
as the system generalization and robustness [21]. System 
accuracy and performance are influenced by the noisy nature of 
EMG data that is caused by body interior sources like cross 
talk effect in which the signals produced by the contraction of 
neighbor muscles interfere with the readings of the intended 
muscles. EMG signals are also prone to variations over time 
for plenty of reasons like electrode shift, emotional, 
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involuntary movements and muscular fatigue. Motor tasks with 
different imposed force or unintended limb orientation changes 
also contribute in the non-stationarity of the generated signals 
[20], [22], [23]. As reported in [20], [24], the time separating 
training and testing negatively affects the performance of 
movement recognition systems for the same subject. 

 The user independent systems, having different 
participants for both training and testing purposes, impose 
extra burden as change of physiological features like the age, 
height, weight, and behavioral characteristics like exercise 
routine would minimize the system ability to generalize across 
users [22]. In [25], the high inter-subject variability 
necessitates long and frequent user-specific training which 
affects user acceptability.  In [26], the authors performed a 
comparison between the measured muscular activities of 
amputees and able-bodied subjects when controlling 
myoelectric device in order to overcome the long and frequent 
user calibration. Their results confirmed the generalization 
challenge facing various users in general and amputee in 
specific. 

There is also the issue of small dataset size related to EMG 
based prediction that is extensively reviewed and studied in 
[27], confirming the need for bigger datasets to overcome the 
overfitting problem facing, particularly, deep model 
generation. 

This paper addresses and analyzes the effect of various 
levels of user involvement in the calibration process on 
system’s performance. Its main contribution is to pave the way 
for a limited resource-consumption and minimized user-
calibration time solution to the gesture classification while 
preserving reasonable accuracy results. Traditional ML 
techniques are used due to their low utilization of hardware 
resources and their comparable results to deep learning 
solutions which is proved from the related work presented in 
Section II. The experiments are conducted to measure the 
impact of changing the number of samples needed from the 
user in the calibration process in an attempt to reduce this value 
in order to minimize user-calibration time. Two ML techniques 
are involved in these experiments. They reach the conclusion 
that the user-specific features, which can highly improve 
EMG-classification performance, can be learned from 2%-3% 
of the training sample space. 

The rest of this paper is organized as follows; the next 
section presents the extensive research work that aims to tackle 
these issues and increase the EMG based movement 
classification systems’ usability while preserving high 
accuracy results. Section III describes the used system in this 
study. Then the results of this analysis are shown and discussed 
in Section IV while the last Section provides a conclusion 
reached by this study. 

II. RELATED WORK 

In order to increase user acceptance for prosthetic devices 
or gesture based remote controlling systems, multiple 
researches attempt to increase performance and minimize user 
calibration. Unfortunately as reported in [28], [29], the 
performance of deep learning is highly dependent on the data 
set size available for training. The larger dataset, the higher the 

performance would be. But the publicly available EMG 
gestures datasets suffer from the size issue placing restrictions 
on the use of deep learning solutions as reported [27]. 
Moreover collecting massive amount of data from the system’s 
end user would form an obstacle to system usability due to 
time, efforts and frequency requirements of the (re)calibration 
process [30], [31]. In [30], they state the need for a study that 
deals with the issues related to prolonged and repetitive 
recalibration sessions. So investigating the effect of minimizing 
user calibration, features or dataset size while maintaining high 
performance using different traditional or deep learning 
solutions, gets increasing priority. 

In [32], the authors analysed working with dataset with 
variable force levels using traditional classification method 
(KNN). They proposed an iterative feature extraction method 
to be used for identifying six grip activities with different force 
levels; low, medium, and high. The success rates accomplished 
were relatively comparable as the classification results were 
97.78 % for Low, 93.33 % moderate and 92.96 % for high 
force level. The work with various force levels was also 
presented in [23] but this time with deep networking solution, 
where the authors achieved average accuracy of around 91% 
using LSTM-based neural network across all amputees subjects 
and force levels confirming a comparable results between deep 
and traditional solutions when working with different force 
levels of EMG signals. 

The hand gestures identification for the sake of stroke 
rehabilitation is applied in [5] for six hand gestures. Time and 
frequency features of 20 subjects are provided to the 
classification phase. KNN has shown better accuracy 98% over 
Artificial Neural Networks (ANN) and Support Vector 
Machines (SVM). They also tried to reconstruct identified 
gesture from EMG-based generated joint trajectories and 
compare it to the generate movement by a VICON camera 
tracking system producing a correlation of 0.91. Proving the 
approximate accuracy produced by traditional methods and 
neural networks using muscular generated signals. 

 The work for minimizing the user calibration time and 
studying the impact of user-independence EMG based 
classification systems take place in [33]. The authors 
investigate the feasibility of zero retraining and achieving the 
rotation and hand independence. The experiments include 
twenty participants with all rotations and both hands utilization 
are allowed for eight distinctive gestures; rest, flex, extend, 
abduct, open, close, thumb, and ok. They find that the accuracy 
notably decreases under these generalizations except for wrest 
extension gesture which is found to be consistent among all 
gestures. 

The authors in [25] propose LSTM-CNN model for hand 
gesture classification in order to check the possibility of 
creating user independent solution and reduce the need for 
system recalibration for new users. They start by recognizing 
seventeen gestures’ classes from 40 subjects in a user-
dependent way and the model reaches accuracy of 81.96%. But 
when building the user-independent model, they use gesture 
signals from only four hand movements in the training process. 
Their model accuracy drops to 77% for unseen users. They use 
GradCAM analysis in an attempt of getting a shallower design 
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in order to reduce the high training time and memory 
consumption that are required when deep learning model is 
used. 

In [34], the objective is to minimize the volume of data 
needed to train a deep neural model. They used the learned 
Dilated Efficient CapsNet with a decrease of 20% of the 
training EMG signals per repetition in the transient phase. 
They maintain an accuracy of 80%. 

As demonstrated from the shown recent related work that 
the problems related user acceptance for EMG based 
classification and their prosthetic devices massively depends 
on user calibration time which is needed for reaching 
reasonable performance results. Different solution approaches 
are considered including the use of deep learning techniques or 
reducing the need for user involvement using previously 
collected samples from other users. The deep learning 
techniques face the issue of small EMG dataset size and high 
required computational and storage resources. Some researches 
reached the conclusion that the results of deep learning and 
traditional machine learning are comparable either for user 
dependent or independent solution. So in this paper, the 
incremental minimization of user calibration is analyzed using 
traditional classification methods; KNN and SVM. 

III. METHODOLOGY 

As shown in the previous section, one of the main 
challenges facing the EMG based hand activity recognition 
system is the lack of inter and intra-user generalization which 
causes the need for extensive calibration that consumes user’s 
time and negatively affects user experience. The accuracy of 
the recognition system is found to be dropping when the 
movement activity samples used in the training process are 
gathered from subjects other than the final user whose samples 
are used in the testing or validation processes. This user 
generalization issue limits the user acceptability which is 
highly depending on accuracy and calibration time [25]. So in 
this paper we investigate the effect of incremental involvement 
of the final user’s samples in the training process on the overall 
model accuracy results. The results are analyzed using 
ANOVA test in Section IV. The next paragraph describes the 
used system in order to view the influence of incremental user 
samples in the training process. 

The hand gesture recognition system used in this study 
utilizes the traditional recognition methods. It is composed of 
various components as shown in Fig. 1. 

 
Fig. 1. EMG hand gesture recognition system. 

It includes the data acquisition process performed by [26] 
which first collects the EMG signals from two differential 
electrodes using as a programming kernel, the National 
Instruments (NI) Labview. The electrodes are placed on the 
forearm surface by elastic bands with an additional reference 
electrode is put in the middle, in order to record information 
about the muscle activation. Then the preprocessing phase is 
applied on the captured signals to cleanse, remove noise and 
unwanted signals, performs segmentation and normalization. 
So it uses an 8th-order bandpass IIR filter with lower 
frequency 15 Hz and higher frequency 500 Hz. Then the 
feature extraction takes place for each trial. It extracts twelve 
AutoRegression (AR) [35] coefficients as three coefficients are 
generated per trial segment. AR features are the coefficients of 
a statistical model that is generated to predict new values of 
data given the old ones. A K-th order autoregression AR(k), is 
the  model that uses K past points of the time series in order to 
guess the new point to come with K coefficients to give 
weights for each previous point and determine its participation 
in calculating the next value according to its distance from it 
according to the following equation. 

 Xt = ∑ φj Xt-j
k
j=1  + ωt  (1) 

Then at the classification phase, one-versus-all SVM 
classification model with Gaussian radial based kernel is 
trained using the previously extracted features. The one-versus-
all SVM classifier [28,29] is generated by combining the 
decision from various binary classifiers that separate one class 
from all other classes. The binary version is utilized to 
calculate the separation hyperplane with transformed Hilbert 
space vectors. The decision function is computed as  

 D(x)=∑ αiyiK(xi, x)p
i=1  –b  (2) 

Where xi are the training samples input vectors and yi are 
the samples output which have different sign for the two 
classes. The Gaussian Radial basis function is formulated as: 

 K(xi, x) =e−‖xi−x‖2/2σ  (3) 

To confirm the results, another classifier, KNN, is used. It 
is a supervised machine learning algorithm. It categorizes the 
item according to the most common class of its K nearest 
neighbours.  It relies on a distance metric to determine the 
item’s neighbours. In this paper we use Euclidean distance.  

The trained model is then used to distinguish the testing 
features. The use of the traditional feature extraction and 
classification methods like AutoRegression and SVM and 
KNN is beneficial for achieving the simplicity and saving the 
time required for the training process [32] specially with the 
small size of the  dataset that could cause overfitting and 
reduce accuracy when deep neural networks are used  [33]. 

The next section describes the experiments conducted to 
study the effect of decreasing user provided samples in the 
calibration process in order to achieve acceptable performance 
and increase the user acceptance.  

IV. EXPERIMENTS AND RESULTS  

Two experiments are conducted with the two classifiers, 
SVM and KNN. One uses complete user dependence condition 
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while the other uses the partial dependence. The dataset is 
collected by [26] from five normal and healthy subjects of age 
20-22. They are asked to perform six different movements for 
thirty trials. The measured time is 6 sec. 

The movements are Spherical, Tip, Palmar, Lateral, 
Cylindrical, and Hook. Spherical movement is recognized 
when holding spherical objects while Cylindrical movement is 
recognized when holding cylindrical objects. Tip movement is 
recognized when holding small objects while thin and flat 
objects grasps are recognized as Lateral. Grasping with palm 
facing the object is called palmar movement and Hook 
movement for supporting a heavy load. No previous 
instructions about speed or force are given to subjects. 

The dataset is partitioned using 10 folds, nine folds 
contributes in building the training model while the last fold is 
used for testing the unseen samples. The average Correct 
Classification Rate (CCR) for various movements using SVM 
is shown in Table I. The results show that the average accuracy 
across various users is around 97% with average 99% for tip 
and lateral movements as the most identified movements. 

TABLE I. CCR FOR VARIOUS MOVEMENTS WHEN SVM BASED USER 

DEPENDENT CLASSIFICATION IS APPLIED 

Subject 

Move
 1 2 3 4 5 average 

Cyl. 0.97 0.97 0.93 1 1 0.97 

hook 1 0.93 0.93 0.93 1 0.96 

tip 0.97 1 1 1 1 0.99 

palm 1 0.97 0.93 0.97 1 0.97 

Sph. 0.93 0.93 0.97 0.93 1 0.95 

Lateral 0.97 1 1 0.97 1 0.99 

average 0.97 0.97 0.96 0.97 1 0.97 

While using KNN classification with K=3, The average 
Correct Classification Rate (CCR) for various movements, as 
shown in Table II, The results show that the average accuracy 
across various users is around 92% with average 93% for tip 
and lateral movements as the most identified movements. 

TABLE II. CCR RESULTS WHEN APPLYING KNN WITH K =3 AND 

EUCLIDEAN DISTANCE METHOD 

Subject 

Move
 1 2 3 4 5 average 

Cyl. 0.9 0.9 0.93 0.93 0.93 0.92 

hook 0.9 0.93 0.9 0.9 0.9 0.91 

tip 0.93 0.93 0.93 0.9 0.93 0.93 

palm 0.9 0.9 0.93 0.9 0.9 0.91 

Sph. 0.9 0.9 0.93 0.93 0.9 0.91 

Lateral 0.93 0.93 0.93 0.93 0.93 0.93 

average 0.91 0.92 0.93 0.92 0.92 0.92 

The second experiment performed tends to measure the 
effect of user samples contribution in building the training 
model. Using SVM as the classifier, the involvement of the 
first 10 user samples influences the classification accuracy as 
presented in Table III. The results show huge increase in the 

average accuracy. The performance enhancement could reach 
around 62.6% on average, when more than one sample from 
the user is involved in the training process and building the 
model. This sample represents around 1% of the training 
sample space. It achieves an accuracy result that equals to 
89.6% on average. 

The results of involving the user samples in building KNN 
model, as shown in Table IV, lead to the same conclusion. A 
great increase of accuracy of 50.9% on average is reached, as 
the number of user’s involved samples is more than 2. Two 
samples represent around 2% of the training sample space. The 
KNN model achieves an accuracy result equals to 78.2%. 

The effect of 27 of user samples contribution in building 
the training model is summarized in Fig. 2. It shows that the 
effect of user involvement decreases after three or more 
samples. Furthermore, the performance does not witness much 
difference after the involvement of the tenth sample and the 
sixteenth sample in case of SVM, and KNN respectively. The 
involvement of those samples lead to an accuracy of 98%, and 
88% on average in case of SVM, and KNN respectively. 

TABLE III. SVM BASED USER PARTIAL PARTICIPATION CCR ACCURACY 

RESULTS 

Subject 
No.Samples 1 2 3 4 5 

1 0.22 0.21 0.41 0.27 0.24 

2 0.88 0.86 0.94 0.93 0.87 

3 0.89 0.89 0.95 0.94 0.88 

4 0.9 0.89 0.97 0.95 0.89 

5 0.92 0.92 0.97 0.95 0.91 

6 0.93 0.92 0.97 0.96 0.92 

7 0.96 0.95 0.99 0.99 0.94 

8 0.96 0.95 0.98 0.98 0.93 

9 0.98 0.97 1 0.99 0.94 

10 0.98 0.98 1 1 0.96 

TABLE IV. KNN, K=3 USER SAMPLES PARTICIPATION CCR ACCURACY 

RESULTS 

No.Samples             
Subject 1 2 3 4 5 

1 0.18 0.19 0.28 0.01 0.32 

2 0.26 0.21 0.32 0.04 0.35 

3 0.79 0.79 0.77 0.76 0.80 

4 0.81 0.80 0.77 0.76 0.81 

5 0.79 0.78 0.77 0.75 0.81 

6 0.79 0.78 0.77 0.76 0.80 

7 0.81 0.81 0.77 0.76 0.81 

8 0.83 0.80 0.81 0.77 0.83 

9 0.82 0.82 0.81 0.79 0.83 

10 0.83 0.83 0.81 0.81 0.85 
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Fig. 2. The effect of involvement of user samples in building the training 

model. 

Among the moves, as shown in Fig. 3 the hook move is the 
most distinguished one across all users from the first user 
sample using the one-versus-all SVM classifier. The other 
moves give approximately similar accuracy results after the 
involvement of two samples. 

 

Fig. 3. The effect of involvement of user samples in building the training 

model with respect to movement. 

To confirm that the results’ means do not suffer from 
significant differences, two-way ANOVA test is applied to the 
partial samples inclusion results. It is proved that in both SVM 
and KNN based classification, for various subjects, the 
rejection of the null hypothesis is implied as the value of p is 
less than 0.05 for partial samples and different users. 

V. DISCUSSION 

The results of our experiments show the possibility of 
involving only a small number of user samples, which could 
represent 2%–3% of the total sample space, in the re-
calibration process in order to gain significantly increased 

performance accuracy. These findings could lead to the 
minimization of calibration time while maintaining relatively 
high performance results and thus increasing the user 
acceptance which is a main challenge in the EMG based 
gesture classification systems and the industry of EMG based 
prosthetic devices. 

Our results used a small dataset that is publicly available 
which includes only five normal and healthy subjects with six 
different movements for thirty trials. So in future work, we 
intend to confirm our results using larger datasets with various 
movements for both healthy users and amputees. 

VI. CONCLUSION AND FUTURE WORK 

This paper is concerned with the user independence 
challenge facing the EMG-based movement recognition 
system. It reviews the previous research work regarding this 
obstacle that affects both user accuracy and acceptability. It 
studies the effect of partial user samples involvement in the 
calibration process using AutoRegressive features and 
traditional classification methods like one-versus-all SVM with 
Gaussian radial based kernel and KNN. 

The findings are interesting in that a huge increase of 
accuracy has occurred as a result of including two to three user 
samples which represents around 2%-3% of the total training 
sample space. The increase is estimated to reach 62.6% on 
average in case of SVM classifier and 50.6% in case of KNN, 
achieving accuracy results equal to 89.6% on average in case 
of SVM and 78.2% in case of KNN. The results somehow 
stabilize after ten samples in case of SVM to reach 98% on 
average and after sixteen samples in case of KNN to reach 88% 
on average. 

After applying two way ANOVA test to the partial samples 
inclusion results, either in SVM based classification or KNN 
based classification, for various subjects, it implies the 
rejection of the null hypothesis as the value of p <.05 for partial 
samples groups and different users confirming that the results’ 
means do not suffer from significant differences. 

The results assured the great influence on system accuracy 
when involving small number of user samples in the model-
building process using traditional classification methods. 

As a future work, we intend to confirm our results using 
larger datasets with various movements for both healthy users 
and amputees. 

REFERENCES 

[1] S.N. Abdulkader, A. Atia, and M.-S.M. Mostafa, “Brain computer 
interfacing: Applications and challenges,” Egyptian Informatics Journal, 
vol. 16, 2015, pp. 213–230. 

[2] I.M. Khairuddin, S.N. Sidek, A.P.A. Majeed, M.A.M. Razman, A.A. 
Puzi, and H.M. Yusof, “The classification of movement intention 
through machine learning models: the identification of significant time-
domain EMG features,” PeerJ Computer Science, vol. 7, 2021, p. e379. 

[3] K. Sharma, N. Jain, and P.K. Pal, “Detection of eye closing/opening 
from EOG and its application in robotic arm control,” Biocybernetics 
and Biomedical Engineering, vol. 40, 2020, pp. 173–186. 

[4] S. Mousavi, F. Afghah, F. Khadem, and U.R. Acharya, “ECG Language 
processing (ELP): A new technique to analyze ECG signals,” Computer 
Methods and Programs in Biomedicine, vol. 202, 2021, p. 105959. 



(IJACSA) International Journal of Advanced Computer Science and Applications 

Vol. 14, No. 7, 2023 

467 | P a g e  

www.ijacsa.thesai.org 

[5] M.V. Arteaga, J.C. Castiblanco, I.F. Mondragon, J.D. Colorado, and C. 
Alvarado-Rojas, “EMG-driven hand model based on the classification of 
individual finger movements,” Biomedical Signal Processing and 
Control, vol. 58, 2020, p. 101834. 

[6] A. Turgunov, K. Zohirov, A. Ganiyev, and B. Sharopova, “Defining the 
Features of EMG Signals on the Forearm of the Hand Using SVM, RF, 
k-NN Classification Algorithms,” 2020 Information Communication 
Technologies Conference (ICTC), IEEE, 2020, pp. 260–264. 

[7] N.J. Jarque-Bou, J.L. Sancho-Bru, and M. Vergara, “A Systematic 
Review of EMG Applications for the Characterization of Forearm and 
Hand Muscle Activity during Activities of Daily Living: Results, 
Challenges, and Open Issues,” Sensors, vol. 21, 2021, p. 3035. 

[8] K. Veer, “Flexible Approach for Classifying EMG Signals for 
Rehabilitation Applications,” Neurophysiology, vol. 52, 2020, pp. 60–
66. 

[9] A. Palumbo, B. Calabrese, N. Ielpo, A. Demeco, A. Ammendolia, and 
D. Corchiola, “Cloud-based biomedical system for remote monitoring of 
ALS patients,” 2020 IEEE International Conference on Bioinformatics 
and Biomedicine (BIBM), IEEE, 2020, pp. 1469–1476. 

[10] C. Nam, B. Zhang, T. Chow, F. Ye, Y. Huang, Z. Guo, W. Li, W. Rong, 
X. Hu, and W. Poon, “Home-based self-help telerehabilitation of the 
upper limb assisted by an electromyography-driven wrist/hand 
exoneuromusculoskeleton after stroke,” Journal of neuroengineering and 
rehabilitation, vol. 18, 2021, pp. 1–18. 

[11] S.K. Singh, A. Chaturvedi, and A. Prakash, “Applying Extreme Gradient 
Boosting for Surface EMG Based Sign Language Recognition,” 
International Conference on Machine Learning and Big Data Analytics, 
Springer, 2021, pp. 175–185. 

[12] P.S. Fathima, C. Sandhra, D. Jojo, A. Gayathri, N. Sidharth, and G. 
Venugopal, “Fatigue Analysis of Biceps Brachii Muscle Using sEMG 
Signal,” Smart Sensors Measurements and Instrumentation, Singapore: 
Springer, 2021, pp. 307–314. 

[13] E. Tetteh, P. Sarker, C. Radley, M.S. Hallbeck, and G.A. Mirka, “Effect 
of surgical radiation personal protective equipment on EMG-based 
measures of back and shoulder muscle fatigue: A laboratory study of 
novices,” Applied ergonomics, vol. 84, 2020, p. 103029. 

[14] M.R. Kose, M.K. Ahirwal, and A. Kumar, “A new approach for 
emotions recognition through EOG and EMG signals,” Signal, Image 
and Video Processing, 2021, pp. 1–9. 

[15] K. Ito, S. Uehara, A. Yuasa, C.M. Kim, S. Kitamura, K. Ushizawa, S. 
Tanabe, and Y. Otaka, “Electromyography-controlled gamified exercise 
system for the distal upper extremity: a usability assessment in subacute 
post-stroke patients,” Disability and Rehabilitation: Assistive 
Technology, 2021, pp. 1–6. 

[16] S. Hoppe-Ludwig, J. Armitage, K.L. Turner, M.K. O’Brien, C.K. 
Mummidisetty, L.M. Koch, M. Kocherginsky, and A. Jayaraman, 
“Usability, functionality, and efficacy of a custom myoelectric elbow-
wrist-hand orthosis to assist elbow function in individuals with stroke,” 
Journal of Rehabilitation and Assistive Technologies Engineering, vol. 
8, 2021, p. 20556683211035057. 

[17] Y. Liu, S. Zhang, and M. Gowda, “NeuroPose: 3D Hand Pose Tracking 
using EMG Wearables,” Proceedings of the Web Conference 2021, 
2021, pp. 1471–1482. 

[18] W. Li, P. Shi, and H. Yu, “Gesture Recognition Using Surface 
Electromyography and Deep Learning for Prostheses Hand: State-of-the-
Art, Challenges, and Future,” Frontiers in Neuroscience, vol. 15, 2021. 

[19] V. Jain and J.M. Chatterjee, “Machine Learning with Health Care 
Perspective,” Cham: Springer, 2020. 

[20] A. Phinyomark, E. Campbell, and E. Scheme, “Surface 
electromyography (EMG) signal processing, classification, and practical 

considerations,” Biomedical signal processing, Singapore: Springer, 
2020, pp. 3–29. 

[21] G. Jia, H.-K. Lam, S. Ma, Z. Yang, Y. Xu, and B. Xiao, “Classification 
of electromyographic hand gesture signals using modified fuzzy C-
means clustering and two-step machine learning approach,” IEEE 
Transactions on Neural Systems and Rehabilitation Engineering, vol. 28, 
2020, pp. 1428–1435. 

[22] C. Fang, B. He, Y. Wang, J. Cao, and S. Gao, “EMG-centered 
multisensory based technologies for pattern recognition in rehabilitation: 
state of the art and challenges,” Biosensors, vol. 10, 2020, p. 85. 

[23] M. Jabbari, R.N. Khushaba, and K. Nazarpour, “Emg-based hand 
gesture classification with long short-term memory deep recurrent neural 
networks,” 2020 42nd Annual International Conference of the IEEE 
Engineering in Medicine & Biology Society (EMBC), IEEE, 2020, pp. 
3302–3305. 

[24] Y. Yamanoi, Y. Ogiri, and R. Kato, “EMG-based posture classification 
using a convolutional neural network for a myoelectric hand,” 
Biomedical Signal Processing and Control, vol. 55, 2020, p. 101574. 

[25] P. Gulati, Q. Hu, and S.F. Atashzar, “Toward Deep Generalization of 
Peripheral EMG-Based Human-Robot Interfacing: A Hybrid 
Explainable Solution for NeuroRobotic Systems,” IEEE Robotics and 
Automation Letters, vol. 6, 2021, pp. 2650–2657. 

[26] C. Sapsanis, “Recognition of basic hand movements using 
Electromyography,” University of Patras, 2013. 

[27] A. Phinyomark and E. Scheme, “EMG pattern recognition in the era of 
big data and deep learning,” Big Data and Cognitive Computing, vol. 2, 
2018, p. 21. 

[28] K.-B. Duan, J.C. Rajapakse, and M.N. Nguyen, “One-versus-one and 
one-versus-all multiclass SVM-RFE for gene selection in cancer 
classification,” European conference on evolutionary computation, 
machine learning and data mining in bioinformatics, Springer, 2007, pp. 
47–56. 

[29] A.C.G. Thome, “SVM Classifiers â€“ Concepts and Applications to 
Character Recognition,” Advances in Character Recognition, X. Ding, 
ed., Rijeka: IntechOpen, 2012. 

[30] A. Cimolato, J.J. Driessen, L.S. Mattos, E. De Momi, M. Laffranchi, and 
L. De Michieli, “EMG-driven control in lower limb prostheses: A topic-
based systematic review,” Journal of NeuroEngineering and 
Rehabilitation, vol. 19, 2022, pp. 1–26. 

[31] L.J. Resnik, F. Acluche, and S. Lieberman Klinger, “User experience of 
controlling the DEKA Arm with EMG pattern recognition,” PLoS One, 
vol. 13, 2018, p. e0203987. 

[32] L.I. Barona López, Á.L. Valdivieso Caraguay, V.H. Vimos, J.A. Zea, 
J.P. Vásconez, M. Álvarez, and M.E. Benalcázar, “An energy-based 
method for orientation correction of EMG bracelet sensors in hand 
gesture recognition systems,” Sensors, vol. 20, 2020, p. 6327. 

[33] A. Darwish, A.E. Hassanien, and S. Das, “A survey of swarm and 
evolutionary computing approaches for deep learning,” Artificial 
Intelligence Review, vol. 53, 2020, pp. 1767–1812. 

[34] E. Tyacke, S.P. Reddy, N. Feng, R. Edlabadkar, S. Zhou, J. Patel, Q. Hu, 
and S.F. Atashzar, “Hand gesture recognition via transient sEMG using 
transfer learning of dilated efficient CapsNet: towards generalization for 
neurorobotics,” IEEE Robotics and Automation Letters, vol. 7, 2022, pp. 
9216–9223. 

[35] V. Gupta, M. Mittal, V. Mittal, and N.K. Saxena, “A critical review of 
feature extraction techniques for ECG signal analysis,” Journal of The 
Institution of Engineers (India): Series B, vol. 102, 2021, pp. 1049–
1060. 

 

 


