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Abstract—Lung disease is one of the most common diseases in 

today's society. This lung disease's treatment is frequently 

postponed. This is usually due to a lack of understanding about 

proper treatment and a lack of clear information about lung 

disease. Reading the correct X-ray images, which is usually done 

by experts who are familiar with these X-rays, is one method of 

detecting lung disease. However, the results of this diagnosis are 

dependent on the expert's practice schedule and take a long time. 

This study aims to classify lung disease images using 

preprocessing, augmentation, and multimachine learning 

methods, with the goal of achieving high classification 

performance accuracy with multi-class lung disease. The 

classification ExtraTrees was obtained from experimental results 

with unbalanced datasets using a balancing process with 

augmentation. Precision, Recall, Fi-Score, and Accuracy are 

100% for training and testing data 89% for Precision, 88% for 

Recall, 87 for Fi-Score, and 85% for Accuracy   outperform other 

machine learning models such as Kneighbors, Support Vector 

Machine (SVM), and Random Forest in classifying lung diseases. 

The conclusion from this research is that the machine learning 

approach can detect several lung diseases using X-ray images. 

Keywords—Augmentation; machine learning; lung disease; 

prepossessing 

I. INTRODUCTION 

The lungs are one of the organs in the respiratory system 
that serve as a site for the exchange of oxygen and carbon 
dioxide in the blood. Polluted air is a common problem, and 
the air that is inhaled contains many germs that will attack the 
lungs. Lung disease is a serious disease that affects the human 
respiratory system and can be fatal if not properly treated. 
This lung disorder causes sufferers to have difficulty 
breathing, difficulty performing activities, and a lack of 
oxygen, which can lead to death if not detected quickly  [1]. 
Tuberculosis, bronchitis, pneumonia, lung cancer, 
emphysema, and pleuritic are all common lung diseases. It is 
usually done clinically to detect lung disease/disorders 
(physical symptoms by a doctor). Aside from clinical 
examination, X-rays, CT scans, and MRI can be used to 
diagnose lung disease; however, the latter two methods are 
more expensive. [2]. Another issue is a lack of public 
knowledge in reading CT Scan and MRI results, so experts 
such as doctors or other medical personnel are still required to 
read them. Many other difficulties, such as complicated 
backgrounds and the presence of multiple potential 
abnormalities, make clinical analysis of X-ray images a 
difficult task. [3]. As a result, manual annotations from experts 
(radiologists) are required. 

Automatic X-ray image analysis is quickly becoming a 
valuable clinical diagnostic tool. Deep neural networks have 
recently achieved image classification success and are now 
widely used for X-ray image classification tasks [4], [5]. Deep 
learning on chest X-ray images can be used to classify a 
variety of diseases, including thoracic infections [4], COVID-
19 [4]–[7], and lung disorders [8]. Husayn et al. [9] proposed 
CoroNet, a deep learning model for COVID-19 detection. A 
deep learning framework has been proposed to detect lung 
abnormalities in CXR and CT scan images [8]. Using GAN-
based synthetic data, Albahli et al. [10] proposed a deep 
learning model that achieved 87% accuracy and produced 
results comparable to other techniques. Lung segmentation is 
another critical task in CXR disease detection. This is 
extremely useful for determining the severity of tuberculosis 
[11]. DeTraC's conventional deep neural network architecture 
is described by Abbas et al. [5]. 

II. LITERATURE REVIEW 

The classification of lung diseases using X-ray images has 
been explored using various machine learning techniques. A 
hierarchical classification can be useful in detecting 
pneumonia due to the disease's hierarchical pattern [12]. 
Traditional machine learning approaches, such as Support 
Vector Machine (SVM), k-Nearest Neighbor (KNN), and 
Decision Tree classifiers, can be used to classify diseases in 
Chest X-Ray (CXR). They do, however, rely on a mechanism 
for feature extraction. Convolutional Neural Networks 
(ConvNets) are another mechanism for feature extraction. 
Toğacar et al. [13] compared the performance of traditional 
machine learning models for detecting pneumonia with the 
Redundancy Maximum Relevance (mRMR) minimum feature 
selection mechanism. Khatri et al. [14] compared CXR 
pneumonia images using the Earth Mover's Distance (EMD). 
Teixeira et al. [15] evaluated and described COVID-19 using 
lung segmentation. A multimodal approach to disease on CXR 
can aid in better understanding and elucidation. [16], [17].  

Due to a lack of large amounts of annotated data and 
efficient machine learning algorithms to study some specific 
features, automatic disease classification on X-ray images is 
difficult [25]. A variety of data streams and modalities can be 
used to improve disease prediction accuracy. To train thoracic 
disease classifiers, text data from diagnostic X-ray images are 
combined with annotated image data [[17]. A deeply 
decomposed generative model, as opposed to the traditional 
approach of directly classifying disease, can be used to 
generate residual maps for abnormal disease alongside normal 
images [18]. This method aids in distinguishing between 
abnormal and normal chest X-ray parts. The semi-supervised 
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generative model is effective for CXR disease classification 
[18], [19]. 

Multiple diseases can still occur at the same time. Single-
label classification may be ineffective in this situation, 
whereas multi-label classification may be effective Albali et 
al. [20] proposed a CNN-based deep learning method for CXR 
multi-label classification. In addition, Baltruschat et al. [21] 
compared several multi-label chest radiograph classification 
methods based on deep learning. Pathology datasets are rife 
with class imbalances. Pathology datasets are rife with class 
imbalances. As a result, the trained classifier is vulnerable to 
bias towards the majority class. Appropriate class balancing 
measures can help improve classifier performance in 
supervised and semi-supervised tests [22]. The limitations of 
existing machine learning-based approaches for COVID-19 
detection are discussed by López-Cabrera et al. [23] Tsiknakis 
et al. [24] present an artificial intelligence-based framework 
for COVID-19 screening that can be interpreted using CXR 
imagery. 

The research aims to make the following main contribution 
based on the shortcomings of several researchers’ 
classification methods: 

1) To augment the limitations of the dataset generated 

from several hospitals in Semarang, especially for the types of 

COVID-19 and Tuberculosis (TBC) diseases. 

2) Perform classification Performance comparisons with 

new approach machine learning models without selecting 

features from each image, so that the best machine learning 

algorithm model is produced based on its Performance. 

III. METHODOLOGY 

A. Dataset 

Fig. 1 depicts the imbalance in the number of X-ray 
images for each class. Normal cases outnumber COVID-19 
and Tuberculosis cases. This was seen as a disadvantage by 
researchers because the model worked better in major classes 
(Normal) than in minor classes. FP (normal classified as 
COVID-19 or TB) would be expensive, but it was much less 
expensive than FN (normal classified as COVID-19 or TB), 
which could be fatal. Therefore, the researchers addressed the 
class imbalance. When building a reliable image classifier 
with very little training data, image augmentation was usually 
required to improve deep network Performance. Image 
augmentation generated training images artificially by using 
various processing methods or combinations of processing 
methods on each training sample, such as random rotation, 
shift, sliding, and flipping [15]. To accomplish this, Image 
Data Generator would automatically label all data inside the 
COVID-19 or TBC folder as COVID-19 or TBC, and all data 
inside the Normal folder as Normal. As a result, the data was 
easily ready to be fed into machine learning. 

B. Data Augmentation 

Data augmentation was used by researchers to increase the 
number of samples and diversify the images in terms of 
position, orientation, brightness, and so on. In this study, the 
augmentation technique was the best method for adding data 
without having to look for primary data obtained at the 

hospital using strict procedures. Several augmentation 
techniques were employed in this study, including rotation 
range= 40, shear range = 0.2, zoom range = 0.2, width shift 
range = 0.2, height shift range = 0.2, and horizontal flip. Fig. 2 
shows the X-ray images for each class. Fig. 3 depicts the 
augmentation results. 

 
Fig. 1. Distribution of the number of dataset for lung diseases. 

 
Fig. 2. X-ray images for each class (Normal, COVID-19, Tuberculosis 

(TB)). 

 
Rotation_range= 40 

 
Shear_range= 0.2 

 
Zoom_range = 

0.2 

 
Width_shift_rangel = 0.2              

Helight_shift_rangel = 0.2 

 
Horizontal_flip 

Fig. 3. X-ray image augmentation results. 

As shown in Table I, we collected lung disease images 
from several hospitals in Semarang for three classes: Normal, 
COVID-19, and Tuberculosis (TB) and divided them into 
training and testing sets. 

TABLE I. DATASET DISTRIBUTION TABLE FOR EACH CLASS 

Class Training Set Testing Set Total 

Normal 8,454 476 8,930 

COVID-19 2,363 490 2,853 

Tuberculosis 474 18 492 

Total 11,291 984 12,275 
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Original Image 224x224x3 

 
Relsizel 100 x 100x3 

Fig. 4. Resizing the original image into a resized image. 

Fig. 4 depicts the X-ray image dataset, which is divided 
into three categories: normal, COVID-19, and tuberculosis 
(TB). The image has a resolution of 224x224 pixels and a bit 
depth of 16 bits [0-65535]. 

Fig. 4 depicts the change in dimensions of an X-ray image 
from 224x224x3 channels to 100x100x3 channels for 
computational time requirements, because the classification 
program must convert the images into a 2-dimensional matrix 
so that they can be processed in machine learning. 

C. Research Model 

The methodology for the study is depicted in Fig. 5. First, 
each class of lung diseases images was labelled. Image data 
was transformed into a 2D array. The next step was to reduce 
the size of the 2D image from 224x224x3 channels to 
100x100x3 channels. The augmentation process was used to 
avoid unbalanced data when reproducing existing data. This 
study's augmentation process included a rotation range of 40, 
a shear range of 0.2, a zoom range of 0.2, a width shift range 
of 0.2, and a height shift range of 0.2. Furthermore, once the 
data had ben balanced, the next step was to feed 2D array data 
into the machine learning model to obtain classification 
performance so that each machine learning model with the 
highest accuracy, precision, recall, and f1 in each data training 
and testing can be evaluated. 

 

Lung Diseases 
Dataset (Normal, 

Covid19, Tuberculosis 
(TBC)

Labelling
Convert data to N-

dimensional array (2D)
Resize image

Multi Machine 
Learning

Classification

Normal

Covid 19

TBC

Performance

Augmentation

 
Fig. 5. Research model. 

IV. MACHINE LEARNING 

A. K- Nearest Neighbor 

The algorithm K-Nearest Neighbors is not parametric. On 
the basis of a given problem or data set, learning and 
predictive analysis are Performed. With no dataset 
assumptions, the KNN classification model is a pure 

prediction based on neighboring data values. The letter 'K' in 
KNN stands for the number of nearest neighbor values in the 
data. The KNN algorithm classifies a given dataset based on 
'K,' or the number of nearest neighbors [25]. The Euclidian 
distance calculation method is the most commonly used. 
Equation (1) gives the Equation for Euclidean calculations. 

 𝐸𝑢𝑐𝑙𝑖𝑑𝑒𝑎𝑛𝑖,𝑗 =  √∑ (𝑥𝑖𝑘 − 𝑥𝑗𝑘)2𝑛
𝑘=1  (1) 

The KNN algorithm is composed of four steps. The 
distance from the new data to all data is calculated in the first 
step. The distances are then sorted in the second step. The 
third step finds the smallest k value, and the final step 
determines the class. 

B. Extra Tree 

Extra Trees is an ensemble machine learning approach that 
trains multiple decision trees and combines the results of a 
group of decision trees to generate predictions. However, there 
is a distinction between Extra Trees and Random Forest. To 
ensure that the decision trees are sufficiently distinct, Random 
Forest used bagging to select different variations of the 
training data. Extra Trees, on the other hand, used the entire 
data set to train decision trees. Therefore, it randomly selected 
values to split features and created child nodes in order to 
ensure sufficient differences between each decision tree. Extra 
trees can reduce model bias by using the entire dataset, which 
is the default setting and can be changed. On the other hand, 
randomizing the feature values to be split increased both bias 
and variance. 

C. Support Vector Machine (SVM) 

This stage involved using the SVM classification method 
to generate a classifier in the form of a feature vector, which 
was then used to generate predictions for testing. Following 
the completion of the preceding stages, the extraction results 
were used to generate an SVM classification model. The 
distance of the vector that had been mapped would be 
calculated. The greatest distance would be used as the vector's 
class separator. Then a hyperplane was added to separate the 
two classes. The most important requirement for developing 
an SVM classification model was to convert documents into 
vector form. Value variations were used to find values that 
were as accurate as possible. This procedure was necessary in 
order to convert the test document into a vector. The following 
step was to take the test document data, which was commonly 
referred to as a vector, and insert it into the previously created 
SVM model. The hyperplane Equation was a classification 
Equation, as shown by Equation (2), with the classification 
parameters w and b as the weight and bias values, as shown by 
Equations (3) and (4). 

𝑓𝑠𝑣𝑚(𝑥) = 𝑤. 𝑥 + 𝑏  (2) 

𝑤 =  ∑ 𝑎𝑖
𝑁
1 𝑦𝑖𝑥𝑖   (3) 

𝑏 =  −
1

2
 (𝑤. 𝑥+ + 𝑤. 𝑥−)  (4) 

Where N is the amount of data and ai is the weight 
coefficient value for each pair of data points and labels (xi,). 
SVM is also good at dataset management because it finds 
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hyperplanes using trick kernels, one of which is the Linear 
Kernel shown in the Equation (5). 

𝐾(𝑥𝑖 , 𝑥𝑗) =  𝑥𝑖 , 𝑥𝑗  (5) 

From the kernel results obtained, SVM creates a 
classification Equation that is adjusted to the kernel used, such 
as Equation (6) with class classification values based on 
Equation (7) [25]. 

𝑓𝑠𝑣𝑚(𝑥) =  ∑ 𝑎𝑖𝑦𝑖𝐾(𝑥𝑖 , 𝑥) + 𝑏𝑖 ∈ 𝑁 (6) 

  𝑐𝑙𝑎𝑠𝑠 =  {
1, 𝑓𝑠𝑣𝑚 ≥ 0

−1, 𝑜𝑡ℎ𝑒𝑟 𝑡ℎ𝑎𝑛 𝑡ℎ𝑎𝑡
  

D. Random Forest 

Random forest is a classification method that consists of a 

collection of classification trees. For example {h(x,k), k = 1, 

…} where {k} is a random vector that is independently 
distributed and each tree chooses the class that has the most 
number of data (majority cote). Suppose an ensemble h1(x), 
h2(x), …., hk(x) with training data is randomly selected from 
the distribution of random vectors Y and X, the margin 
function (mg(X,Y)) of the random forest is defined as follows: 

𝑚𝑔(𝑋𝑌) =  
∑ 𝐼(ℎ𝑘(𝑋)=𝑌𝐾

𝑘=1

𝐾
− 𝑚𝑎𝑥𝑗≠𝑌 [

∑ 𝐼(ℎ𝑘(𝑋)=𝑗)𝑘
𝑘=1

𝐾
]          (7) 

where, I is the indication function and K is the number of 
trees. The margin function is used to calculate the level of the 
number of votes in X and Y, as well as the average vote from 
other classes [26]. 

V. RESULT AND ANALYSIS 

This study used a primary dataset with a data ratio of 
70:30 for each class, as shown in Table II. A total of 11291 
data points were generated in each training data set by 
producing the Extra Trees model with Estimator = 500 and 
values for precision, recall, F1-score, and accuracy of 100%, 
followed by other machine learning models such as SV and 
Random Forest. Table III shows that the Extra Trees model 
has the best performance value when compared to other 
machine learning models, with a total of 984 data points for 
testing. 

Fig. 6(a) shows the prediction column, and thus the row 
must be the actual value. In the training data, the main 
diagonal (8030, 2135, 4070) of the confusion matrix of the 
Kneighbors model (n neighbors=3) gives the correct 
prediction. When the actual and predicted values from the 
model are the same, this is the case. The actual normal number 
is on the first line. The model predicts 8030 cases, 358 of 
which are COVID-19 normal and 66 of which are 
Tuberculosis normal. The actual COVID-19 number can be 
found in the second row. The model predicts COVID-19 
correctly and incorrectly, with 201 COVID-19 becoming 
normal and 27 COVID-19 becoming TB. Tuberculosis is in 
the third row. The model predicts that 470 of them will 
correctly predict TB, 1 will become normal, and 3 will 
become COVID-19. 

Fig. 6(b) depicts the prediction column, and thus the row 
must be the actual value. The main diagonal (330, 464, 18) for 
the confusion matrix of the Kneighbors model (n neighbors=3) 

testing data gives the correct prediction. This is the case when 
the actual and predicted values from the model are the same. 
The first line contains the true normal number. According to 
the model, 330 of them correctly and incorrectly predict 159 
normal to COVID-19 and 2 normal to be Tuberculosis. The 
actual COVID-19 number is in the second row. The model 
predicts that 464 of them will correctly and incorrectly predict 
COVID-19, that 10 COVID-19 will become normal, and that 
1 COVID-19 will become TB. Tuberculosis is in the third 
row. The model predicted that 18 of them would be correct 
and 1 would be normal. 

TABLE II. COMPARISON OF TRAINING DATA PERFORMANCE 

CLASSIFICATION WITH A COMPARISON OF TRAINING AND TESTING DATA 70:30 

Training 
    

Classification Models 
Precision 

(%) 

Recall  

(%) 

F1 

(%

) 

Ac

c 

(%

) 

Kneighbors (n_neighbors=3) 89 95 92 94 

Kneighbors (n_neighbors=5) 84 93 88 92 

Kneighbors (n_neighbors=7) 81 92 85 91 

ExtraTrees (n_estimators=500) 100 100 100 100 

SVM 100 100 100 100 

Random 
Forest(n_estimators=1000) 

100 100 100 100 

TABLE III. COMPARISON OF DATA TESTING PERFORMANCE 

CLASSIFICATION WITH A RATIO OF 70:30 

Testing 
    

Classification Models 
Precision 

(%) 

Recall 

(%) 

F1 

(%) 

Acc 

(%) 

Kneighbors (n_neighbors=3) 76 77 76 80 

Kneighbors (n_neighbors=5) 76 79 76 80 

Kneighbors (n_neighbors=7) 74 80 75 79 

ExtraTrees 
(n_estimators=500) 

89 88 87 85 

SVM 83 74 77 80 

Random 

Forest(n_estimators=1000) 
86 88 85 83 

 

 

Confusion matrix training for 

model Kneighbors (n_neighbors=3) 

(a) 

 

Confusion matrix testing for model 

Kneighbors (n_neighbors=3) 

(b) 

Fig. 6. Confusion matrix for the training model and testing the Kneighbors 

model (n_neighbors=3). 
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Confusion matrix training for 

model Kneighbors (n_neighbors=5) 
(a) 

 
Confusion matrix testing for model 

Kneighbors (n_neighbors=5) 
(b) 

Fig. 7. Confusion matrix for the training model and testing the Kneighbors 

model (n_neighbors=5). 

Fig. 7(a) depicts the prediction column, implying that the 
row must represent the actual value. The main diagonal (7997, 
1981, 417) for the training data gives the correct prediction for 
the confusion matrix of the Kneighbors model (n 
neighbors=5). In this case, the actual and predicted values 
from the model are the same. The standard number appears on 
the first line. The model correctly predicts 7997 of them, 510 
of which are normal to COVID-19 and 92 of which are normal 
to Tuberculosis. The second row contains the actual COVID-
19 number. The 1981 predictive model included correctly and 
incorrectly predicting COVID-19, with 233 COVID-19 being 
normal and 52 COVID-19 being Tuberculosis. The third row 
is Tuberculosis. The model predicted that 417 of them would 
correctly predict TB, 2 TB would be normal, and 5 TB would 
be COVID-19. 

Fig. 7(b) depicts the prediction column, and thus the row 
must be the actual value. For the Kneighbors model matrix 
confusion (n neighbors=5) data testing, the main diagonal 
(321, 415, 13) yields the correct prediction. When the actual 
and predicted values from the model are the same, this is the 
case. The actual normal number is on the first line. The model 
predicts that 321 of them will be correct, with 168 normal to 
COVID-19 and 5 normal to Tuberculosis. The actual COVID-
19 number is in the second row. The model predicts that 451 
of them will correctly predict COVID-19, 19 will become 
normal, and 3 will develop Tuberculosis. Tuberculosis is in 
the third row. The model predicts that 13 of them will 
correctly predict TB, and four of them will become COVID-
19. 

Fig. 8(a) depicts the prediction column, and thus the row 
must be the actual value. In the training data, the main 
diagonal (7992, 1909, 387) for the confusion matrix of the 
Kneighbors model (n neighbors=7) gives the correct 
prediction. When the actual and predicted values from the 
model are the same, this is the case. The actual normal number 
is on the first line. The model correctly predicts 7,992 of them, 
583 of which are normal to COVID-19 and 97 of which are 
normal to Tuberculosis. The COVID-19 number is in the 
second row. The model correctly predicts COVID-19 for 1909 
of them, 236 COVID-19 becomes normal, and 79 COVID-19 
becomes TB. Tuberculosis is the third row. The model 
correctly predicted 387 of them, with 4 TB being normal and 4 
TB being COVID-19. 

 
Confusion matrix training for 

model Kneighbors (n_neighbors=7) 
(a) 

 
Confusion matrix testing for model 

Kneighbors (n_neighbors=7) 
(b) 

Fig. 8. Confusion matrix for the training model and testing the Kneighbors 

model (n_neighbors=7). 

Fig. 8(b) depicts the predicted column, and thus the row 
must be the actual value. For the Kneighbors model matrix 
confusion (n neighbors=7) data testing, the main diagonal 
(327, 435, 12) yields the correct prediction. When the actual 
and predicted values from the model are the same, this is the 
case. The actual normal number is on the first line. The model 
predicts that 327 of them will correctly predict, 185 will be 
normal for COVID-19, and 6 will be normal for Tuberculosis. 
The actual number of COVID-19 is shown in the second row. 
The model predicts that 435 of them will correctly predict 
COVID-19, 13 will become normal, and 3 will develop 
Tuberculosis. Tuberculosis is in the third row. The model 
predicts that 12 of them will correctly predict TB and 4 will 
correctly predict COVID-19. 

Fig. 9(a) depicts the prediction column, implying that the 
row must represent the actual value. The training data for the 
ExtraTrees model confusion matrix (n estimators=500) gives 
the correct prediction along the main diagonal (8232, 2496, 
563). In this case, the model's actual and predicted values are 
the same. The true normal number is found on the first line. 
The model correctly predicts 8232 of them. The actual 
COVID-19 number is in the second row. 2496 of them 
correctly predict COVID-19, according to the model. 
Tuberculosis is in the third row. The model correctly predicted 
TB in 563 of them. 

 
Confusion matrix training for 

ExtraTrees model 

(n_estimators=500) 
(a) 

 
Confusion matrix testing for 

ExtraTrees model 

(n_estimators=500) 
(b) 

Fig. 9. Confusion matrix for training and testing the ExtraTrees model 

(n_estimators=500). 
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Fig. 9(b) shows the predicted column, and thus the row 
must be the actual value. The main diagonal (331, 488, 19) for 
the ExtraTrees model confusion matrix (n estimators=500) 
testing data provides the correct prediction. This is the case 
when the model's actual and predicted values are the same. 
The actual normal number appears on the first line. The model 
predicts that 331 of them will correctly predict COVID-19, 
134 will correctly predict Tuberculosis, and 2 will correctly 
predict Tuberculosis. The COVID-19 number is in the second 
row. The model predicts that 488 of them will correctly 
predict COVID-19 and 9 will correctly predict COVID-19 as 
normal. Tuberculosis is the third row. 19 of them correctly 
predict TB, with 1 TB being COVID-19, according to the 
model. 

 
Confusion matrix training for 

Support Vector Machine (SVM) 

model 

(a) 

 
Confusion Matrix testing for 

Support Vector Machine (SVM) 

model  

(b) 

Fig. 10. Confusion matrix for training and testing models for Support Vector 

Machine (SVM). 

Fig. 10(a) shows the prediction column, and thus the row 
must be the actual value. The Support Vector Machine (SVM) 
data model confusion matrix's main diagonal (8232, 2496, 
563) yields correct predictions. This is the case when the 
model's actual and predicted values are the same. The true 
normal number is found on the first line. The model correctly 
predicts 8232 of them. The actual COVID-19 number is in the 
second row. 2496 of them correctly predict COVID-19, 
according to the model. Tuberculosis is in the third row. The 
model correctly predicted TB in 563 of them. 

Fig. 10(b) shows the predicted column, implying that the 
row must be the actual value. For the Confusion Support 
Vector Machine (SVM) model testing data, the main 
diagonals (331, 488, 19) provide the correct predictions. When 
the model's actual and predicted values are the same, this is 
the case. The true normal number is on the first line. The 
model predicts that 331 of them will correctly predict, 134 
will become COVID-19, and 2 will become Tuberculosis. The 
actual COVID-19 number is in the second row. The model 
predicts that 488 of them correctly predict COVID-19, with 9 
of them becoming normal. Tuberculosis is in the third row. 
The model predicts that 19 of them will correctly predict TB, 
with one TB being COVID-19. 

Fig. 11(a) shows the predicted column, and thus the row 
must be the actual value. The training data for the Random 
Forest model confusion matrix (n estimators=500) 

gives the correct prediction along the main diagonal (8232, 
2496, 563). This is the case when the model's actual and 
predicted values are the same. The true normal number is 
found on the first line. The model correctly predicts 8232 of 
them. The actual COVID-19 number is in the second row. 
2496 of them correctly predict COVID-19, according to the 
model. Tuberculosis is in the third row. The model correctly 
predicted TB in 563 of them. 

 
Confusion matrix training for 

random forest model 

(n_estimators=500)  

(a)  

 
Confusion matrix testing for 

random forest model 

(n_estimators=500)  
(b)  

Fig. 11. Confusion matrix for training and testing models for random forest 

(SVM). 

Fig. 11(b) depicts the prediction column, and thus the row 
must be the actual value. The main diagonals (330, 464, 18) 
for the Random Forest Confusion model (n estimators=500) 
test data give the correct predictions. This is the case when the 
model's actual and predicted values are the same. The actual 
normal number appears on the first line. The model predicts 
that 330 of them will be correct, with 159 being normal and 
two being Tuberculosis. The COVID-19 number is in the 
second row. The model predicts that 464 of them will 
correctly predict COVID-19, 10 will be normal, and 1 will be 
Tuberculosis. Tuberculosis is the third row. The model 
correctly predicted TB for 18 of them. 

Table IV shows comparison of the accuracy values with 
several researchers. Bakir et al applied deep learning 
techniques to detect pneumonia from X-ray images. They used 
an artificial neural network (ANN) model to classify bacterial, 
viral, and healthy lungs into multiple classes. His proposed 
ANN model with ResNet feature extraction, in multi-class 
classification he achieved 81.67% classification accuracy [27]. 
Kim, Sungyeup et al used chest X-ray (CXR) images to 
diagnose three classes, normal, pneumonia and peumothorax. 
The method used uses a deep learning model (EfficientNet 
V2-M) to produce an accuracy value of 82.15% [28]. 

TABLE IV. COMPARISON OF ACCURACY VALUE WITH OTHER 

RESEARCHERS 

Prior Work Model Acc (%) 

Bakir et al [27] ANN model 81.67% 

Kim, Sungyeup et al [28] EfficientNet V2-M 82.15%. 

Proposed Method ExtraTrees 85% 
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VI. CONCLUSION 

Through the use of multiple machine learning techniques, 
this study contributes to the multi-class classification of lung 
diseases. The research methodology used in this study is an 
experimental multi-class classification of lung disease using 
an augmentation process to obtain balanced data. 

The experimental results produce the Extra Trees 
classification which has Precision, Recall, F-Score, and 
Accuracy score of 100% for training, and testing data, 89% for 
Precision, 88% for Recall, 87% for Fi-Score, and 85% for 
Accuracy higher than the Performance of other machine 
learning models such as Kneighbors, Support Vector Machine 
(SVM), Random Forest and more effective in Classification of 
lung diseases. Comparison with other researchers shows that 
the proposed model has a higher accuracy value compared to 
other models. 

In further research, the dataset as a whole is still not large 
enough and of low quality for highly accurate and useful deep 
learning results that can be used as benchmarks for the 
identification of lung disease types by viewing X-rays. More 
high-quality images are needed to increase the accuracy of 
average ratings to higher levels in multiple-class classification. 
The data is expected to grow over time, enabling better 
classification results. 
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