
(IJACSA) International Journal of Advanced Computer Science and Applications

Vol. 14, No. 7, 2023

475 | P a g e

www.ijacsa.thesai.org

Optimizing YOLO Performance for Traffic Light

Detection and End-to-End Steering Control for

Autonomous Vehicles in Gazebo-ROS2

Hoang Tran Ngoc, Khang Hoang Nguyen, Huy Khanh Hua, Huynh Vu Nhu Nguyen, Luyl-Da Quach

FPT University, Can Tho 94000, VietNam

Abstract—Autonomous driving has become a popular area of

research in recent years, with accurate perception and

recognition of the environment being critical for successful

implementation. Traditional methods for recognizing and

controlling steering rely on the color and shape of traffic lights

and road lanes, which can limit their ability to handle complex

scenarios and variations in data. This paper presents an

optimization of the You Only Look Once (YOLO) object

detection algorithm for traffic light detection and end-to-end

steering control for lane-keeping in the simulation environment.

The study compares the performance of YOLOv5, YOLOv6,

YOLOv7, and YOLOv8 models for traffic light signal detection,

with YOLOv8 achieving the best results with a mean Average

Precision (mAP) of 98.5%. Additionally, the study proposes an

end-to-end convolutional neural network (CNN) based steering

angle controller that combines data from a classical proportional

integral derivative (PID) controller and the steering angle

controller from human perception. This controller predicts the

steering angle accurately, outperforming conventional open-

source computer vision (OpenCV) methods. The proposed

algorithms are validated on an autonomous vehicle model in a

simulated Gazebo environment of Robot Operating System 2

(ROS2).

Keywords—Yolo models; PID; CNN; gazebo; ROS2; traffic-

light; lane-keeping; autonomous

I. INTRODUCTION

The increasing number of vehicles on the road has raised
concerns about traffic accidents and fatalities caused by
various factors [1]. To address this, research has been
conducted to create technologies that enhance driving safety,
such as Advanced Driver Assistance Systems (ADAS) and
autonomous driving systems. Traffic light signal recognition is
a crucial component of these systems as it helps to detect the
current status of traffic lights and provides real-time
information for the vehicle control system to make accurate
decisions. The conventional approaches for early detection of
traffic lights rely on identifying manual features and color
characteristics of signal lights, as [2]-[7]. These methods
typically employ feature matching, color matching, or similar
techniques to detect traffic lights based on their shape and
color. Other approaches involve utilizing offline location
information, which includes traffic light data from maps and
GPS-based data, to track both the vehicle's present location
and the status of traffic lights, as discussed in references [8]-
[10]. Conventional approaches to detecting traffic lights are
constrained by technical aspects like the type of camera used

and the surrounding installation conditions. Additionally,
these methods rely on offline location data that needs to be
constantly refreshed and is susceptible to security risks.

In recent years, deep learning approaches, such as
convolution neural network (CNN) [11], single shot multibox
detector (SSD) [12], or YOLO architecture [13]-[15], have
been used to accurately identify traffic lights and provide a
real-time solution for traffic light detection. Among these
approaches, the YOLO method has emerged as the best
performer in detecting and recognizing traffic signals.
Compared to other deep learning techniques, it offers
smoother, more accurate results, and achieves real-time
performance. Joseph et al. presented YOLO and an enhanced
version called YOLOv2, which were utilized for detecting and
classifying traffic lights [16]-[17]. Possatti et al. employed
YOLOv3 [18] along with prior maps to identify crucial states
of traffic lights for vehicles in their investigation. Tai et al.
made advancements to YOLOv4 to enhance its precision in
classifying green, red, and yellow traffic lights [19]. However,
the past year has seen the release of a series of updated
versions of YOLO, including YOLOv5 [20] [21], YOLOv6
[22], YOLOv7 [23], and YOLOv8 [24], each of which shows
improved accuracy and performance in implementation on the
COCO dataset.

To apply these improved models in the field of
autonomous vehicles, we present our traffic light detection
algorithm that utilizes the latest version of YOLO, YOLOv8
[25]. Additionally, we demonstrate the superior performance
of YOLOv8 compared to other models (YOLOv5-v6-v7), in
terms of accuracy and real-time processing. We conduct
experiments on the traffic light dataset obtained and
augmented data from multiple sources, including the
CinTA_v2 dataset, and GathoTF datasets shown in Fig. 1.

Furthermore, research focused on utilizing camera images
for angle prediction in autonomous vehicles to ensure proper
lane-keeping has garnered considerable interest and made
significant advancements. Earlier research employed image
processing techniques, including color and edge detection, as
well as critical lane regions such as the Canny edge detector,
Hough Transform technique, and Isolate Region of Interest
(IROI), to predict the steering angle [26]-[29]. The steering
angle was then used in combination with a classic PID
controller to ensure lane-keeping [30]-[33]. However, when
faced with more complex scenarios, such as intersections,
where lane images may be interrupted, a hybrid angle

(IJACSA) International Journal of Advanced Computer Science and Applications

Vol. 14, No. 7, 2023

476 | P a g e

www.ijacsa.thesai.org

controller must be employed to account for driver perception.
To overcome these limitations, autonomous vehicle control
techniques have emerged that utilize deep learning to emulate
human driving behavior.

Fig. 1. Traffic light dataset.

In this research, we present a YOLOv8 architecture for
traffic light recognition combined with an end-to-end CNN
steering controller for lane-keeping in a simulated Gazebo
environment of Robot Operating System 2 (ROS2). While the
vehicle is following the lane, the traffic light signals are also
detected and classified to send to the central controller. The
primary contributions of this research are:

 The new YOLOv8 model is applied in our traffic light
detection algorithm. Using the multiple source traffic
light dataset, the YOLOv8 model is trained, evaluated,
and compared accuracy and real-time performance with
previous models.

 Based on the end-to-end convolution network, a
steering angle predictor is designed. The model not only
re-learns human driving behavior but is also trained
with a data set of OpenCV+PID steering angle control
methods to increase the accuracy of lane keeping and to
give a steering angle when the lane is discontinuous.

 To assess the effectiveness of our proposed method for
traffic light detection and lane-keeping, we collected a
dataset by driving a donkey car model following the
lane and incorporating traffic lights into the Gazebo-
ROS2 simulation environment. We compared the
performance of our method with that of previous
methods using the same dataset.

Fig. 2. Augmentation dataset.

This paper is structured as follows: Section II describes the
architecture of YOLO models used for traffic light detection
and classification. Section III provides a detailed description
of the end-to-end CNN steering angle predictor, including the
data collection process, evaluation metrics, and network
architecture. Section IV presents the experimental results and
provides a discussion of the findings. Finally, Section V
concludes the paper and suggests areas for future research.

II. TRAFFIC LIGHT DETECTION AND CLASSIFICATION

USING YOLO MODELS

A. Preprocessing Data

1) Data collection: To evaluate the effectiveness of

YOLO in traffic light detection, experiments are conducted

using a synthetic dataset, which was collected from two

different sources, the CinTA_v2 traffic light datasets, and

GathoTF datasets.

(https://www.kaggle.com/datasets/ngochoangtran1992/traf
ic-light-dataset).

The CinTA_v2 dataset is a freely available traffic light
dataset that was public in Roboflow. It contains 999 images
captured under various weather and lighting conditions, and
for this study, 999 images were randomly picked for training
and evaluation. Each image has a resolution of 1280 x 960
pixels.

The GathoTF dataset consists of 2025 images and includes
traffic light images taken in Can Tho city and traffic light
images taken in a virtual environment created by the
Gazebo/ROS2 program. In this environment, a self-driving car
was simulated, and a camera mounted on the car took pictures
at a frame rate of 30 fps and a resolution of 1024 x 600 pixels.

(IJACSA) International Journal of Advanced Computer Science and Applications

Vol. 14, No. 7, 2023

477 | P a g e

www.ijacsa.thesai.org

TABLE I. DETAILED DIFFERENCES BETWEEN YOLO MODELS

 Model Backbone Neck Head Loss Function

YOLOv5

[36]

The YOLOv5 algorithm is a fast and efficient object detection

system that uses anchor-free detectors, a CSPDarknet53
backbone, a PAN neck, and AutoML for anchor box

optimization and employs a Mosaic data augmentation

technique to improve generalization.

CSPDarkent53

Focus structure
PANet

B x (5 + C) output

layer B: No, of

bounding boxes
C: Class score

Binary Cross Entropy

and Logit Loss

Function

YOLOv6

[37]

YOLOv6 is an updated version of the YOLO algorithm that

incorporates a RepVGG backbone, VariFocal Loss for

dynamically adjusting object contribution during training,
SIoU and GIoU for classification and regression loss, and a

Focal Attention mechanism for improved region detection.

RepVGG And

CSPRepStack
RepPAN

Decoupled

Classification and
Detection Head

Varifocal Loss for

Classification and

Distribution Focal Loss

for Detection

YOLOv7

[38]

YOLOv7 is an object detection algorithm that uses an

Extended Efficient Layer Aggregation backbone with group

convolution, a Gradient Flow Propagation module for re-
parameterization, and an auxiliary head for improved

prediction accuracy.

EELAN PANet

Lead Head for

final output,

Auxiliary Head
for middle layer

outputs

BCE with Focal Loss

for Classification, IoU
loss for Detection

YOLOv8

[39]

YOLOv8 is an object detection algorithm that uses a CSP-
inspired C2f module instead of the C3 module, allowing for

more abundant gradient flow information while maintaining a

lightweight design.

CSP same as that

of YOLOv5 but

C3 module

replaced by C2f

module

PAN-FPN Decoupled-Head
VFL Loss and DFL

Loss+CIOU

Using our datasets to train and test evaluate its
effectiveness in traffic light recognition and detection. The
variety of datasets enabled us to enhance and improve the
model's resilience and generalizability by exposing it to a
variety of different scenarios and conditions.

Algorithm 1: Data augmentation

Input: Load the dataset of traffic light images and their

corresponding labels.

1. For each image in the dataset, randomly select one or more of the

following augmentation techniques:

1.1: Image flipping: randomly flip the image horizontally or

vertically.

1.2: Image rotation: randomly rotate the image by 15 degrees to

the right or left.

1.3: Blur: apply a Gaussian blur with a kernel size of 8% to the

image.

1.4: Random cropping: randomly crop the image by 3%.

1.5: Noise generation: add random Gaussian noise with a

standard deviation of 8% to the image.

1.6: Decolorization: randomly remove 7% of the color channels

from the image.

2. Apply the selected augmentation techniques to the image and save

the new image as a separate file in the dataset folder.

3. Update the label of the new image with the same label as the

original image.

4. Repeat steps 1-3 for all images in the dataset.

Result: Save the augmented dataset and use it to train and test the
traffic light recognition system.

2) Data augmentation: In order to enhance the precision

of the traffic light recognition system and expand the dataset,

Algorithm 1 was implemented.

Following the augmentation procedure, the labeled data
was reintegrated into the dataset, thereby augmenting the
quantity of inherent angle data. The labeled data was then

used to train a YOLO model. As a result of the data
augmentation techniques, the original dataset of 4017 images
was expanded to include 6695 additional images, resulting in a
more diverse and robust dataset. Fig. 2 shows the example of
the dataset after the augmentation. Next section, the different
YOLO models are compared and analyzed when applying
these models to traffic light detection and classification.

B. Detection and Classification using YOLO Models

This study employs four versions of YOLO architecture
for traffic light recognition. YOLO architecture, originally
introduced by Redmon et al. (2016) [34], approaches the
detection task as a regression problem based on the Darknet
architecture. Unlike popular Region Proposal Networks
(RPN), YOLO predicts both bounding boxes (Bbox.) and class
probabilities (Cls.) in a single network. This approach is based
on a user-defined size grid cell responsible for detecting the
object if it falls into the cell. To accurately evaluate the
performance of these YOLOv models, we analyze the
differences as well as the advantages and disadvantages of
each model before applying them to the identification and
classification of traffic lights. The comparison between
structures of YOLOv5, YOLOv6, YOLOv7, and YOLOv8 are
shown in Table I. The features of the modules are as follows:

 YOLOv5 is an advanced object detection algorithm that
utilizes anchor-free detectors to detect multiple objects
in real-time [20], [35]. It uses a CSPDarknet53
backbone and PAN (Path Aggregation Network).

 Network for faster and more efficient detection. The
Mosaic data augmentation technique combines multiple
images into a single image to enhance generalization,
while AutoML optimizes anchor boxes of varying sizes
and aspect ratios for each grid cell. YOLOv5 offers
superior speed and accuracy in object detection
compared to other methods.

(IJACSA) International Journal of Advanced Computer Science and Applications

Vol. 14, No. 7, 2023

478 | P a g e

www.ijacsa.thesai.org

Fig. 3. YOLOv8 model.

 The YOLOv7 model incorporates an innovative
architecture known as Extended Efficient Layer
Aggregation (EELA) as its backbone. This novel design
employs group convolution to broaden the
computational block's channel, thereby enhancing the
model's overall performance [38]. The algorithm also
uses a new module called the Gradient Flow
Propagation (GFP) module, which helps to determine
which modules need re-parameterization in order to
improve the model's accuracy. Finally, YOLOv7
includes an auxiliary head that is designed to provide a
coarse-to-fine definition for better predictions
lightweight.

Fig. 4. Comparison of the structure of CS_X (YOLOv5) and C2f (YOLOv8)

in backbone.

 The Backbone part of YOLOv8 is basically the same as
that of YOLOv5, and the C3 module is replaced by the
C2f module based on the CSP idea [39]. The C2f
module learned from the ELAN idea in YOLOv7 and
combined C3 and ELAN to form the C2f module so
that YOLOv8 could obtain more abundant gradient
flow information while ensuring lightweight. We use
the model YOLOv8 for detecting, and classification
traffic lights, as shown in Fig. 3. Fig. 4 is a comparison
of the structure of CS_X (YOLOv5) and C2f
(YOLOv8) in the backbone.

Four YOLO models are proposed to compare and test the
applicability of these models to traffic light signal recognition
for autonomous vehicle systems. There are a total of three
active traffic light states: s = {red, yellow, green}. The models
will be trained on our augmentation datasets

III. END-TO-END CNN STEERING ANGLE CONTROLLER

A. Preprocessing Data

1) Data collection: To ensure the vehicle is always in the

center of the lane, a series of multi-step image processing

using the OpenCV method and a PID steering controller is

applied [33]. The steering angle will be predicted after image

processing to detect the two lines of the lane. Combined with

the PID controller, the vehicle will move more precisely. At

this point, we will collect the input image data and the output

steering angle to train the end-to-end CNN steering angle

controller model. It contains 10,000 images captured from the

camera mounted on the vehicle in the simulation environment

Gazebo/ROS2. However, when the car went through the

intersection and encountered complicated situations, the

estimated steering angle from the lane detection was

interrupted, so we used the joystick to control the car with

(IJACSA) International Journal of Advanced Computer Science and Applications

Vol. 14, No. 7, 2023

479 | P a g e

www.ijacsa.thesai.org

human perception. In this case, 10,000 pictures continue to be

collected along with the steering angle from human

perception. Fig. 5 shows the dataset for the end-to-end CNN

steering angle controller model.

Fig. 5. Dataset for the end-to-end CNN steering angle controller model.

2) Data augmentation and normalization: To improve the

accuracy and avoid issues with gradient explosion or

vanishing of the lane-keeping model, data augmentation and

normalization techniques are employed as Algorithm 2.

Algorithm 2: Data Augmentation and Normalization

Input: Training Dataset

1. AUGMENT (image, steering angle):

1.1. if random () < 0.5;

 image = pan(image) // crop out a smaller image from the

left or right side

1.2. if random () < 0.5;

 image = zoom(image) // crop out a smaller image from the

center

1.3. if random () < 0.5;

 image = blur(image) // a Gaussian blur

1.4. if random () < 0.5;

 image = adjust_brightness(image) // adjust brightness of

the image

1.5. image, steering angle = random flip (image, steering angle)

// perform a horizontal flip on the image, which means

flipping it from left to right, and adjust the corresponding

steering angle accordingly.

1.6. return image, steering angle

2. NORMAL (image):

2.1. height = image.height.

2.2. image = image[height/2+100] //Remove top half of the

image, as it is not relevant for the lane following

2.3. image = convert_Color(image, cv2.COLOR_RGB2YUV)

//The optimal choice is to utilize the YUV color space.

2.4. image = GaussianBlur(image, (3,3), 0)

2.5. image = resize (image, (200,66)) // input image size

(200,66) our model

2.6. image = image / 255 # normalizing, the processed image

becomes black for some reason

2.7. return image

Result: Augmented and normalized image data with updated steering
angles.

Fig. 6. Normalisation and augmentation of dataset.

As depicted in Fig. 6, our dataset has been subjected to
both normalization and augmentation. Meanwhile, the
distribution of the steering angle within our dataset has been
illustrated in Fig. 7.

Fig. 7. Distribution of the steering angle within our dataset.

B. Lane Keeping Using End-to-End CNN Model

The proposed network architecture used an end-to-end
neural network called Nvidia_model, Fig. 8 shows a
convolutional neural network architecture with five Conv2D
layers, followed by a flattened layer and three fully connected
(FC) layers, and an output layer with a single neuron.

Fig. 8. Convolutional neural network architecture.

(IJACSA) International Journal of Advanced Computer Science and Applications

Vol. 14, No. 7, 2023

480 | P a g e

www.ijacsa.thesai.org

The input to the network is a 3-dimensional tensor with
shape (1200, 600, 3), which suggests that the input is an image
with a width of 1200 pixels, a height of 600 pixels, and 3 color
channels (e.g., RGB). The first layer in the network is a
convolutional layer with 24 filters, each with a shape of (31,
98). This layer has 1,824 parameters, which are learned during
training.

The next layer is another convolutional layer with 36
filters, each with a shape of (14, 47). This layer has 21,636
parameters. The third layer is a convolutional layer with 48
filters, each with a shape of (5, 22). This layer has 43,248
parameters. The fourth layer is a convolutional layer with 64
filters, each with a shape of (3, 20). This layer has 27,712
parameters. Finally, the fifth layer is a convolutional layer
with 64 filters, each with a shape of (1, 18). This layer has
36,928 parameters.

After the last convolutional layer, the output is flattened
into a 1-dimensional tensor with shape (1152). This flattened
output is then fed into a fully connected (FC) layer with 1,164
units. This FC layer has 1,342,092 parameters. The output of
this layer is then fed into another FC layer with 100 units,
which has 116,500 parameters. The next FC layer has 50 units
and 5,050 parameters. Finally, there is a FC layer with 10
units and 950 parameters. The total number of parameters in
this model is 1,595,511. The output of the fourth fully
connected layer is passed through and the output layer
contains a single neuron, which predicts the steering angle.

IV. EXPERIMENTAL RESULT

A. Experimental System

To evaluate the performance of our proposed algorithms,
we conducted experiments in a simulated environment using
Gazebo-ROS2. The simulation was run on an Ubuntu 20.04
platform with an Intel Core i7 processor and 16 GB RAM.
The simulated vehicle was equipped with a front-facing
camera, simulated based on the actual parameters of the
WGE100 camera. The camera captured images with a
resolution of 1024×600 at a frame rate of 30 fps. The
simulation environment was set up to include a variety of
traffic light scenarios and lane configurations to test the
robustness of our algorithms.

The experimental system consisted of two parts: traffic
light detection and end-to-end steering control. For traffic
light detection, we trained our YOLOv8 model using the
CinTA_v2 and GathoTF datasets, which were augmented
using Algorithm 1 to increase their size and diversity. We
evaluated the performance of the model in terms of accuracy,
precision, and recall on a test set of 20% of the total dataset.
We also compared the performance of YOLOv5, YOLOv6,
and YOLOv7 models for traffic light detection.

For end-to-end steering control, we designed a
convolutional neural network-based steering angle controller
that combines data from a classical PID controller and human

perception. The model was trained on the same dataset used
for traffic light detection and evaluated on a separate test set.
We compared the performance of our model with that of a
traditional PID controller and analyzed the results.

In order to assess the effectiveness of our proposed
algorithms, we employed a Donkey Car model, in which the
steering angle was controlled based on the predictions made
by our model. The Donkey Car was driven on a predefined
route in the simulated environment as shown in Fig. 9, which
included a variety of traffic light scenarios and lane
configurations. We collected data from the camera and the
steering angle sensor to evaluate the performance of our
algorithms in real time.

Overall, our experimental system allowed us to evaluate
the effectiveness and robustness of our proposed algorithms
for traffic light detection and end-to-end steering control in a
simulated environment. The results of our experiments are
presented and analyzed in the next section.

B. Evaluation Metrics

The use of evaluation metrics is critical in comparing and
assessing the performance of machine learning algorithms. In
this study, we compare four different object detection
algorithms - YOLOv5, YOLOv6, YOLOv7, and YOLOv8,
using various metrics such as F score, and mAP. To provide a
comprehensive evaluation of the proposed algorithm's
performance, we employ several evaluation metrics, including
precision, recall, mAP, F-score, and FPS. However, to avoid
potential biases in the evaluation process, we utilize different
evaluation criteria that are based on different aspects of the
algorithms' performance.

In order to evaluate the effectiveness of the proposed
algorithm, this study utilizes several metrics including
precision (P), recall (R), average precision (mAP), F1-Score,
and Frames Per Second (fps). Precision is a critical metric
used to assess the accuracy of the evaluation object by
determining the ratio of correctly predicted positive samples to
the total number of predicted positive samples.

 (1)

TruePositive indicates the count of positive samples
accurately predicted as positive, whereas FalsePositives
denotes the count of negative samples incorrectly predicted as
positive.

Recall measures the ratio of correctly predicted positive
samples to the total number of actual positive samples. It
indicates whether the evaluation object is detected in its
entirety or not.

 (2)

(IJACSA) International Journal of Advanced Computer Science and Applications

Vol. 14, No. 7, 2023

481 | P a g e

www.ijacsa.thesai.org

Fig. 9. The virtual world in Gazebo.

FalseNegative signifies the count of positive samples
erroneously predicted as negative samples.

Mean average precision (mAP) is an essential metric
utilized for evaluating the overall performance of the
algorithm. It is computed by averaging the average precision
(AveP) values across all classes.

∑

(3)

AveP_k represents the average precision of class k, where
n denotes the total number of classes.

The F1_Score is a metric that combines precision and
recall into a single measurement by taking their weighted
harmonic mean. It provides a balanced evaluation by
considering both precision and recall.

 ()

 (4)

The value of α is employed to achieve a balanced
weighting of precision and recall in the calculation of the F-
score. A higher F1_Score implies that the algorithm has a
better balance between precision and recall. Finally, Frames
Per Second is a critical metric in evaluating the speed and
efficiency of the algorithm. A higher fps score indicates that
the algorithm can process a large number of frames in a
shorter time.

In conclusion, using these evaluation metrics in this study
provides a comprehensive and unbiased assessment of the
performance of the object detection algorithms.

C. Traffic Light Detection and Classification Results

In this section, we present the results of the traffic light
detection and classification experiments using different YOLO
models. We used a combined dataset of CinTA_v2 and
GathoTF traffic light datasets for training and testing. The
dataset was split into three parts: Training Set (76%),
Validation Set (19%), and Testing Set (5%).

We trained YOLOv5, YOLOv6, YOLOv7, and YOLOv8
models on the combined dataset, and evaluated their
performance on the Testing Set. The results are summarized in
Table II. The YOLOv8 model achieved the best performance
in terms of precision, recall, and F1 score, with an F1 score of
0.8947, and mAP_0.5 of 0.9192 outperforming other models
by a significant margin. The results demonstrate the
effectiveness of the proposed approach in detecting and
classifying traffic lights accurately and efficiently.

Additionally, we assessed the influence of data
augmentation on the performance of the YOLOv8 model. We
trained the model with and without augmentation and
subsequently compared their respective performances on the
Testing Set. The findings of this evaluation are reported in
Table II. The augmented dataset significantly improved the
performance of the model, with an increase of 0.0313 in F1
score, and 0.0148 in mAP_0.5 indicating that data
augmentation is an effective technique for enhancing the
robustness and generalizability of the model.

(IJACSA) International Journal of Advanced Computer Science and Applications

Vol. 14, No. 7, 2023

482 | P a g e

www.ijacsa.thesai.org

Fig. 10. Precision for traffic light detection and classification using YOLO models.

TABLE II. COMPARISON OF YOLOV5, YOLOV6, YOLOV7 AND

YOLOV8 FOR TRAFFIC LIGHT DETECTION

YOLO

Model
Precision Recall F1_Score mAP_0.5

YOLOv5 0.7821 0.7787 0.7733 0.8216

YOLOv6 0.9139 0.8106 0.8631 0.8929

YOLOv7 0.9201 0.8289 0.8675 0.9028

YOLOv8 0.9317 0.8427 0.8947 0.9192

To further analyze the performance of the proposed
approach, we generated precision curves for each YOLO
model, as shown in Fig. 10. The curves indicate that the
YOLOv8 model achieved the highest precision values for
detecting and classifying traffic lights, followed by YOLOv7,
YOLOv6, and YOLOv5 models.

Furthermore, we visualized the resulting images generated
by the YOLOv8 model to illustrate the effectiveness of our
approach in detecting and classifying traffic lights. Fig. 11
shows sample images from the Testing Set with bounding
boxes and labels generated by the YOLOv8 model. The model
successfully detected and classified the traffic lights, with high
precision and recall values.

Overall, the results demonstrate that the proposed
approach using YOLOv8 with data augmentation achieves
superior performance in traffic light detection and
classification, providing a real-time solution for autonomous
driving systems in complex scenarios.

D. Lane-Keeping Results

In addition to traffic light detection, our research also
focuses on improving lane-keeping performance for
autonomous vehicles. We propose a convolutional neural
network (CNN)-based steering angle controller that combines
data from a classical PID controller and human perception to
predict the steering angle. In order to evaluate the performance
of our proposed steering controller, we conducted experiments
in a simulated environment using the Gazebo-ROS2 platform.

Fig. 11. Sample images with traffic light detection and classification results.

We collected a dataset of driving behaviors from a human
driver using the OpenCV+PID steering angle control method,
which we used to train and validate our CNN-based steering
controller. The dataset consists of a donkey car model driving
in a simulated environment with different road conditions and
lighting conditions.

To evaluate the performance of our steering controller, we
conducted experiments in the same simulated environment.
We compared the performance of our proposed method with a
baseline PID controller and a CNN-based steering controller
trained with a traditional CNN architecture.

In order to evaluate the performance of our proposed
steering controller, we conducted experiments in the same
simulated environment and compared our method with a

(IJACSA) International Journal of Advanced Computer Science and Applications

Vol. 14, No. 7, 2023

483 | P a g e

www.ijacsa.thesai.org

baseline PID controller and a CNN-based steering controller
trained with a traditional CNN architecture. We use a
mathematical equation to calculate the percentage of accuracy
by summing the prediction error, dividing by the overall
validation angle, and multiplying by 100 to measure the
accuracy of our proposed method.

|∑ (

)

 |

∑ (
)

 (5)

where is the actual angle value, and is the

predicted angle value.

Fig. 12. The learning curve for the End-to-End CNN model using the Mean

Squared Error (MSE) loss function.

Fig. 13. The true steering and predicted steering, the diff is the difference

between true steering and predicted steering.

The evaluation of our lane-keeping performance involved
a comparison between the actual steering angle of the vehicle
and the predicted steering angle generated by the End-to-End
CNN model. This analysis is depicted in Fig. 13.

We also evaluated the performance of our model using the
MSE loss function, and the learning curve for the End-to-End
CNN model using the MSE loss function is depicted in
Fig. 12. After 20 epochs, the MSE value was 230.8, and the
learning curve shows a decreasing trend. The curve indicates
that the model's performance improves as the number of
epochs increases, with diminishing returns after a certain
point. Although the curve appears to be approaching a stable
solution, further training may be required to confirm this.

Our results demonstrate that our proposed CNN-based
steering controller outperforms the baseline PID controller and
the traditional CNN-based steering controller in terms of
accuracy and smoothness of the steering control. Our
proposed method achieved an accuracy of 86.46%, as
measured by the percentage of accurately predicted steering
angles. The results indicate that our proposed method can
effectively predict the steering angle and improve the lane-
keeping performance of autonomous vehicles.

V. CONCLUSION

In conclusion, the study presents an optimized approach
for traffic light detection and End-to-End steering control for
autonomous vehicles using YOLOv8 and a CNN-based
steering angle controller. The proposed methods are evaluated
in a simulated environment and achieved high performance in
both traffic light detection and lane-keeping tasks. The results
show that YOLOv8 outperforms other YOLO models in
traffic light detection, while the CNN-based steering angle
controller achieves a high accuracy rate. The study contributes
to the development of advanced autonomous driving systems
that can improve driving safety and reduce traffic accidents.

REFERENCES

[1] Road Traffic Injuries. Available online: https://www.who.int/news-
room/fact-sheets/detail/road-traffic-injuries (accessed on 30 June 2022).

[2] W.-C. S. Cheng-Chin, Ming-Che Ho, “Detecting and recognizing traffic
lights by genetic approximate ellipse detection and spatial texture
layouts,” ICIC 2011, 2011.

[3] T. H.-P. Tran, C. C. Pham, T. P. Nguyen, T. T. Duong, and J. W. Jeon,
“Real-time traffic light detection using color density,” in 2016 IEEE
International Conference on Consumer Electronics-Asia (ICCE-Asia).
IEEE, pp. 1–4, 2016.

[4] C. Jang, S. Cho, S. Jeong, J. K. Suhr, H. G. Jung, and M. Sunwoo,
“Traffic light recognition exploiting map and localization at every
stage,” Expert Systems with Applications, vol. 88, pp. 290–304, 2017.

[5] J. Levinson, J. Askeland, J. Dolson, and S. Thrun, “Traffic light
mapping, localization, and state detection for autonomous vehicles,” Int.
Conf. on Robotics and Automation (ICRA), pp. 5784–5791, 2011.

[6] H. T. Vo, H. N. Tran, and L. Quach, “An Approach to Hyperparameter
Tuning in Transfer Learning for Driver Drowsiness Detection Based on
Bayesian Optimization and Random Search” International Journal of
Advanced Computer Science and Applications(IJACSA), 14(4), 2023.

[7] P. H. Phan, A. Q. Nguyen, L. Quach, and H. N. Tran. 2023. “Robust
Autonomous Driving Control using Auto-Encoder and End-to-End Deep
Learning under Rainy Conditions”. In Proceedings of the 2023 8th
International Conference on Intelligent Information Technology (ICIIT
'23). Association for Computing Machinery, New York, NY, USA, 271–
278.

(IJACSA) International Journal of Advanced Computer Science and Applications

Vol. 14, No. 7, 2023

484 | P a g e

www.ijacsa.thesai.org

[8] N. Fairfield and C. Urmson, “Traffic light mapping and detection,”
IEEE Proc. Int. Conf. on Robotics and Automation, pp. 5421–5426,
2011.

[9] V. John, K. Yoneda, B. Qi, Z. Liu, and S. Mita, “Traffic light
recognition in varying illumination using deep learning and saliency
map,” Intelligent Transportation Systems (ITSC), 2014 IEEE 17th Int.
Conf. on, pp. 2286–2291, 2014.

[10] V. John, K. Yoneda, Z. Liu, and S. Mita, “Saliency Map Generation by
the Convolutional Neural Network for Real-Time Traffic Light
Detection Using Template Matching,” IEEE Transactions on
Computational Imaging, vol. 1, no. 3, pp. 159–173, 2015.

[11] R. Kulkarni, S. Dhavalikar and S. Bangar, "Traffic Light Detection and
Recognition for Self-Driving Cars Using Deep Learning," 2018 Fourth
International Conference on Computing Communication Control and
Automation (ICCUBEA), Pune, India, 2018, pp. 1-4.

[12] W. Liu, D. Anguelov, D. Erhan, C. Szegedy, S. Reed, C.-Y. Fu, and A.
C. Berg, “Ssd: Single shot multibox detector,” in European conference
on computer vision. Springer, 2016.

[13] J. Redmon and A. Farhadi, “Yolo9000: better, faster, stronger,” in
Proceedings of the IEEE conference on computer vision and pattern
recognition, 2017, pp. 7263–7271.

[14] F.-A. Redmon, Joseph, “Yolov3: An incremental improvement,” Tech.
Rep., 2018.

[15] W. Liu, D. Anguelov, D. Erhan, C. Szegedy, S. Reed, C.-Y. Fu, and A.
C. Berg, “Ssd: Single shot multibox detector,” in European conference
on computer vision. Springer, 2016.

[16] Joseph R, Santosh D, Ross G, Ali F. You Only Look Once: Unified,
Real-Time Object Detection[C], IEEE Conference on Computer Vision
and Pattern Recognition, Las Vegas, IEEE, 2016: 779-788.

[17] Joseph R, Ali F. YOLO9000: Better, Faster, Stronger[C], IEEE
Conference on Computer Vision and Pattern Recognition, Honolulu,
IEEE, 2017: 6517-6525.

[18] F.-A. Redmon, Joseph, “Yolov3: An incremental improvement,” Tech.
Rep., 2018.

[19] Tai. H. P. Tran and J. W. Jeon, "Accurate Real-Time Traffic Light
Detection Using YOLOv4," 2020 IEEE International Conference on
Consumer Electronics - Asia (ICCE-Asia), Seoul, Korea (South), 2020,
pp. 1-4.

[20] V. D. Nguyen, T. D. Trinh and H. N. Tran, "A Robust Triangular
Sigmoid Pattern-Based Obstacle Detection Algorithm in Resource-
Limited Devices," in IEEE Transactions on Intelligent Transportation
Systems.

[21] H. K. Hua, K. H. N., L. Quach, and H. N. Tran. 2023. “Traffic Lights
Detection and Recognition Method using Deep Learning with Improved
YOLOv5 for Autonomous Vehicle in ROS2”. In Proceedings of the
2023 8th International Conference on Intelligent Information
Technology (ICIIT '23). Association for Computing Machinery, New
York, NY, USA, 117–122.

[22] R. Kaur and J. Singh, "Local Regression Based Real-Time Traffic Sign
Detection using YOLOv6," 2022 4th International Conference on
Advances in Computing, Communication Control and Networking
(ICAC3N), Greater Noida, India, 2022, pp. 522-526.

[23] C.-Y. Wang, A. Bochkovskiy, and H.-Y. Mark Liao, „„YOLOv7:
Trainable bag-of-freebies sets new state-of-the-art for real-time object
detectors,‟‟ 2022, arXiv:2207.02696.

[24] Jocher, G.; Chaurasia, A.; Qiu, J. YOLO by Ultralytics. 2023. Available
online:

https://github.com/ultralytics/ultralytics/blob/main/CITATION.cff
(accessed on 3 March 2023).

[25] Pallavi V. Ingale and Prof. K. S. Bhagat.: Comparative Study of Lane
Detection Techniques, in International Journal on Recent and Innovation
Trends in Computing and Communication, vol. 4, no. 5, 2016.

[26] Ammu M Kumar and Philomina Simon.: Review of Lane Detection and
Tracking Algorithms in Advanced Driver Assistance System, in
International Journal of Computer Science & Information Technology
(IJCSIT), vol. 7, no. 4, 2015.

[27] Sekehravani, E.A., Babulak, E., Masoodi, M.: Implementing Canny
Edge Detection Algorithm for Noisy Image. Bull. Electr. Eng. Inform,
vol. 9, no. 4, pp. 1404–1410, 2020.

[28] P. Subhasri, S. Santhoshkumar and A. Sumath, Edge Filtering through
Recursive Application using Canny Edge Detector algorithm on small
sub-blocks in an Image, 2020 International Conference on Smart Elec-
tronics and Communication (ICOSEC), pp. 563-566, 2020.

[29] Messom C. H., Sen Gupta G. and Demidenko S.N.: Hough Transform
Run Length Encoding for Real-Time Image Processing, IEEE Trans.
Instrum. Meas., vol. 56, no. 3, pp. 962-967, 2007.

[30] W. Farag and Z. Saleh, Tuning of PID track followers for autonomous
driving, 2018 Int. Conf. Innov. Intell. Informatics, Comput. Technol.
3ICT 2018, pp. 1–7, 2018.

[31] A. Simorgh, A. Marashian, and A. Razminia, Adaptive PID Control
Design for Longitudinal Velocity Control of Autonomous Vehicles,
Proc. - 2019 6th Int. Conf. Control. Instrum. Autom. ICCIA 2019, pp. 1–
6, 2019.

[32] V. Robila, L. Paulino, M. Rao, I. Li, M. Zhu, and W. Wang, Design and
Implementation of PID-Based Steering Control for 1/10-Scale
Autonomous Vehicle, 2021 IEEE 12th Annual Ubiquitous Computing,
Electronics & Mobile Communication Conference (UEMCON), pp.
0758-0762, 2021.

[33] Hoang, T. N.; Quach, Luyl-Da.  International Journal of Advanced
Computer Science and Applications; West Yorkshire Vol. 13, Iss. 10,
(2022). DOI:10.14569/IJACSA.2022.0131086

[34] J. Redmon, S. Divvala, R. Girshick and A. Farhadi, "You Only Look
Once: Unified, Real-Time Object Detection," 2016 IEEE Conference on
Computer Vision and Pattern Recognition (CVPR), Las Vegas, NV,
USA, 2016, pp. 779-788.

[35] Ziwen Chen, Lijie Cao, Qihua Wang, "YOLOv5-Based Vehicle
Detection Method for High-Resolution UAV Images", Mobile
Information Systems, vol. 2022, Article ID 1828848, 11 pages, 2022.
https://doi.org/10.1155/2022/1828848

[36] Norkobil Saydirasulovich, Saydirasulov, Akmalbek Abdusalomov,
Muhammad Kafeel Jamil, Rashid Nasimov, Dinara Kozhamzharova,
and Young-Im Cho. 2023. "A YOLOv6-Based Improved Fire Detection
Approach for Smart City Environments" Sensors 23, no. 6: 3161.
https://doi.org/10.3390/s23063161

[37] R. Kaur and J. Singh, "Local Regression Based Real-Time Traffic Sign
Detection using YOLOv6," 2022 4th International Conference on
Advances in Computing, Communication Control and Networking
(ICAC3N), Greater Noida, India, 2022, pp. 522-526, doi:
10.1109/ICAC3N56670.2022.10074236.

[38] Zhang, Yuan, Youpeng Sun, Zheng Wang, and Ying Jiang. 2023.
"YOLOv7-RAR for Urban Vehicle Detection" Sensors 23, no. 4: 1801.
https://doi.org/10.3390/s23041801.

[39] G. Jocher, A. Chaurasia, and J. Qiu, “YOLO by Ultralytics.”
https://github.com/ultralytics/ultralytics, 2023. Accessed: February 30,
2023.

https://doi.org/10.1155/2022/1828848
https://doi.org/10.3390/s23063161
https://doi.org/10.3390/s23041801

