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Abstract—Autonomous driving has become a popular area of 

research in recent years, with accurate perception and 

recognition of the environment being critical for successful 

implementation. Traditional methods for recognizing and 

controlling steering rely on the color and shape of traffic lights 

and road lanes, which can limit their ability to handle complex 

scenarios and variations in data. This paper presents an 

optimization of the You Only Look Once (YOLO) object 

detection algorithm for traffic light detection and end-to-end 

steering control for lane-keeping in the simulation environment. 

The study compares the performance of YOLOv5, YOLOv6, 

YOLOv7, and YOLOv8 models for traffic light signal detection, 

with YOLOv8 achieving the best results with a mean Average 

Precision (mAP) of 98.5%. Additionally, the study proposes an 

end-to-end convolutional neural network (CNN) based steering 

angle controller that combines data from a classical proportional 

integral derivative (PID) controller and the steering angle 

controller from human perception. This controller predicts the 

steering angle accurately, outperforming conventional open-

source computer vision (OpenCV) methods. The proposed 

algorithms are validated on an autonomous vehicle model in a 

simulated Gazebo environment of Robot Operating System 2 

(ROS2). 

Keywords—Yolo models; PID; CNN; gazebo; ROS2; traffic-

light; lane-keeping; autonomous 

I. INTRODUCTION 

The increasing number of vehicles on the road has raised 
concerns about traffic accidents and fatalities caused by 
various factors [1]. To address this, research has been 
conducted to create technologies that enhance driving safety, 
such as Advanced Driver Assistance Systems (ADAS) and 
autonomous driving systems. Traffic light signal recognition is 
a crucial component of these systems as it helps to detect the 
current status of traffic lights and provides real-time 
information for the vehicle control system to make accurate 
decisions. The conventional approaches for early detection of 
traffic lights rely on identifying manual features and color 
characteristics of signal lights, as [2]-[7]. These methods 
typically employ feature matching, color matching, or similar 
techniques to detect traffic lights based on their shape and 
color. Other approaches involve utilizing offline location 
information, which includes traffic light data from maps and 
GPS-based data, to track both the vehicle's present location 
and the status of traffic lights, as discussed in references [8]-
[10]. Conventional approaches to detecting traffic lights are 
constrained by technical aspects like the type of camera used 

and the surrounding installation conditions. Additionally, 
these methods rely on offline location data that needs to be 
constantly refreshed and is susceptible to security risks. 

In recent years, deep learning approaches, such as 
convolution neural network (CNN) [11], single shot multibox 
detector (SSD) [12], or YOLO architecture [13]-[15], have 
been used to accurately identify traffic lights and provide a 
real-time solution for traffic light detection. Among these 
approaches, the YOLO method has emerged as the best 
performer in detecting and recognizing traffic signals. 
Compared to other deep learning techniques, it offers 
smoother, more accurate results, and achieves real-time 
performance. Joseph et al. presented YOLO and an enhanced 
version called YOLOv2, which were utilized for detecting and 
classifying traffic lights [16]-[17]. Possatti et al. employed 
YOLOv3 [18] along with prior maps to identify crucial states 
of traffic lights for vehicles in their investigation. Tai et al. 
made advancements to YOLOv4 to enhance its precision in 
classifying green, red, and yellow traffic lights [19]. However, 
the past year has seen the release of a series of updated 
versions of YOLO, including YOLOv5 [20] [21], YOLOv6 
[22], YOLOv7 [23], and YOLOv8 [24], each of which shows 
improved accuracy and performance in implementation on the 
COCO dataset. 

To apply these improved models in the field of 
autonomous vehicles, we present our traffic light detection 
algorithm that utilizes the latest version of YOLO, YOLOv8 
[25]. Additionally, we demonstrate the superior performance 
of YOLOv8 compared to other models (YOLOv5-v6-v7), in 
terms of accuracy and real-time processing. We conduct 
experiments on the traffic light dataset obtained and 
augmented data from multiple sources, including the 
CinTA_v2 dataset, and GathoTF datasets shown in Fig. 1. 

Furthermore, research focused on utilizing camera images 
for angle prediction in autonomous vehicles to ensure proper 
lane-keeping has garnered considerable interest and made 
significant advancements. Earlier research employed image 
processing techniques, including color and edge detection, as 
well as critical lane regions such as the Canny edge detector, 
Hough Transform technique, and Isolate Region of Interest 
(IROI), to predict the steering angle [26]-[29].  The steering 
angle was then used in combination with a classic PID 
controller to ensure lane-keeping [30]-[33]. However, when 
faced with more complex scenarios, such as intersections, 
where lane images may be interrupted, a hybrid angle 
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controller must be employed to account for driver perception. 
To overcome these limitations, autonomous vehicle control 
techniques have emerged that utilize deep learning to emulate 
human driving behavior. 

 

Fig. 1. Traffic light dataset. 

In this research, we present a YOLOv8 architecture for 
traffic light recognition combined with an end-to-end CNN 
steering controller for lane-keeping in a simulated Gazebo 
environment of Robot Operating System 2 (ROS2). While the 
vehicle is following the lane, the traffic light signals are also 
detected and classified to send to the central controller. The 
primary contributions of this research are: 

 The new YOLOv8 model is applied in our traffic light 
detection algorithm. Using the multiple source traffic 
light dataset, the YOLOv8 model is trained, evaluated, 
and compared accuracy and real-time performance with 
previous models. 

 Based on the end-to-end convolution network, a 
steering angle predictor is designed. The model not only 
re-learns human driving behavior but is also trained 
with a data set of OpenCV+PID steering angle control 
methods to increase the accuracy of lane keeping and to 
give a steering angle when the lane is discontinuous. 

 To assess the effectiveness of our proposed method for 
traffic light detection and lane-keeping, we collected a 
dataset by driving a donkey car model following the 
lane and incorporating traffic lights into the Gazebo-
ROS2 simulation environment. We compared the 
performance of our method with that of previous 
methods using the same dataset. 

 
Fig. 2. Augmentation dataset. 

This paper is structured as follows: Section II describes the 
architecture of YOLO models used for traffic light detection 
and classification. Section III provides a detailed description 
of the end-to-end CNN steering angle predictor, including the 
data collection process, evaluation metrics, and network 
architecture. Section IV presents the experimental results and 
provides a discussion of the findings. Finally, Section V 
concludes the paper and suggests areas for future research. 

II. TRAFFIC LIGHT DETECTION AND CLASSIFICATION 

USING YOLO MODELS 

A. Preprocessing Data 

1) Data collection:  To evaluate the effectiveness of 

YOLO in traffic light detection, experiments are conducted 

using a synthetic dataset, which was collected from two 

different sources, the CinTA_v2 traffic light datasets, and 

GathoTF datasets. 

(https://www.kaggle.com/datasets/ngochoangtran1992/traf
ic-light-dataset). 

The CinTA_v2 dataset is a freely available traffic light 
dataset that was public in Roboflow. It contains 999 images 
captured under various weather and lighting conditions, and 
for this study, 999 images were randomly picked for training 
and evaluation. Each image has a resolution of 1280 x 960 
pixels. 

The GathoTF dataset consists of 2025 images and includes 
traffic light images taken in Can Tho city and traffic light 
images taken in a virtual environment created by the 
Gazebo/ROS2 program. In this environment, a self-driving car 
was simulated, and a camera mounted on the car took pictures 
at a frame rate of 30 fps and a resolution of 1024 x 600 pixels.
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TABLE I.  DETAILED DIFFERENCES BETWEEN YOLO MODELS 

 Model Backbone Neck Head Loss Function 

YOLOv5 

[36] 

The YOLOv5 algorithm is a fast and efficient object detection 

system that uses anchor-free detectors, a CSPDarknet53 
backbone, a PAN neck, and AutoML for anchor box 

optimization and employs a Mosaic data augmentation 

technique to improve generalization. 

CSPDarkent53 

Focus structure 
PANet 

B x (5 + C) output 

layer B: No, of 

bounding boxes 
C: Class score 

Binary Cross Entropy 

and Logit Loss 

Function 

YOLOv6 

[37] 

YOLOv6 is an updated version of the YOLO algorithm that 

incorporates a RepVGG backbone, VariFocal Loss for 

dynamically adjusting object contribution during training, 
SIoU and GIoU for classification and regression loss, and a 

Focal Attention mechanism for improved region detection. 

RepVGG And 

CSPRepStack 
RepPAN 

Decoupled 

Classification and 
Detection Head 

Varifocal Loss for 

Classification and 

Distribution Focal Loss 

for Detection 

YOLOv7 

[38] 

YOLOv7 is an object detection algorithm that uses an 

Extended Efficient Layer Aggregation backbone with group 

convolution, a Gradient Flow Propagation module for re-
parameterization, and an auxiliary head for improved 

prediction accuracy. 

EELAN PANet 

Lead Head for 

final output, 

Auxiliary Head 
for middle layer 

outputs 

BCE with Focal Loss 

for Classification, IoU 
loss for Detection 

YOLOv8 

[39] 

YOLOv8 is an object detection algorithm that uses a CSP-
inspired C2f module instead of the C3 module, allowing for 

more abundant gradient flow information while maintaining a 

lightweight design. 

CSP same as that 

of YOLOv5 but 

C3 module 

replaced by C2f 

module 

PAN-FPN Decoupled-Head 
VFL Loss and DFL 

Loss+CIOU 

Using our datasets to train and test evaluate its 
effectiveness in traffic light recognition and detection. The 
variety of datasets enabled us to enhance and improve the 
model's resilience and generalizability by exposing it to a 
variety of different scenarios and conditions. 

Algorithm 1: Data augmentation 

Input: Load the dataset of traffic light images and their 

corresponding labels. 

1.  For each image in the dataset, randomly select one or more of the 

following augmentation techniques: 

1.1: Image flipping: randomly flip the image horizontally or 

vertically. 

1.2: Image rotation: randomly rotate the image by 15 degrees to 

the right or left. 

1.3: Blur: apply a Gaussian blur with a kernel size of 8% to the 

image. 

1.4: Random cropping: randomly crop the image by 3%. 

1.5: Noise generation: add random Gaussian noise with a 

standard deviation of 8% to the image. 

1.6: Decolorization: randomly remove 7% of the color channels 

from the image. 

2.  Apply the selected augmentation techniques to the image and save 

the new image as a separate file in the dataset folder. 

3.  Update the label of the new image with the same label as the 

original image. 

4.  Repeat steps 1-3 for all images in the dataset. 

Result: Save the augmented dataset and use it to train and test the 
traffic light recognition system. 

2) Data augmentation: In order to enhance the precision 

of the traffic light recognition system and expand the dataset, 

Algorithm 1 was implemented. 

Following the augmentation procedure, the labeled data 
was reintegrated into the dataset, thereby augmenting the 
quantity of inherent angle data. The labeled data was then 

used to train a YOLO model. As a result of the data 
augmentation techniques, the original dataset of 4017 images 
was expanded to include 6695 additional images, resulting in a 
more diverse and robust dataset. Fig. 2 shows the example of 
the dataset after the augmentation. Next section, the different 
YOLO models are compared and analyzed when applying 
these models to traffic light detection and classification. 

B. Detection and Classification using YOLO Models 

This study employs four versions of YOLO architecture 
for traffic light recognition. YOLO architecture, originally 
introduced by Redmon et al. (2016) [34], approaches the 
detection task as a regression problem based on the Darknet 
architecture. Unlike popular Region Proposal Networks 
(RPN), YOLO predicts both bounding boxes (Bbox.) and class 
probabilities (Cls.) in a single network. This approach is based 
on a user-defined size grid cell responsible for detecting the 
object if it falls into the cell. To accurately evaluate the 
performance of these YOLOv models, we analyze the 
differences as well as the advantages and disadvantages of 
each model before applying them to the identification and 
classification of traffic lights. The comparison between 
structures of YOLOv5, YOLOv6, YOLOv7, and YOLOv8 are 
shown in Table I. The features of the modules are as follows: 

 YOLOv5 is an advanced object detection algorithm that 
utilizes anchor-free detectors to detect multiple objects 
in real-time [20], [35]. It uses a CSPDarknet53 
backbone and PAN (Path Aggregation Network). 

 Network for faster and more efficient detection. The 
Mosaic data augmentation technique combines multiple 
images into a single image to enhance generalization, 
while AutoML optimizes anchor boxes of varying sizes 
and aspect ratios for each grid cell. YOLOv5 offers 
superior speed and accuracy in object detection 
compared to other methods. 
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Fig. 3. YOLOv8 model.

 The YOLOv7 model incorporates an innovative 
architecture known as Extended Efficient Layer 
Aggregation (EELA) as its backbone. This novel design 
employs group convolution to broaden the 
computational block's channel, thereby enhancing the 
model's overall performance [38]. The algorithm also 
uses a new module called the Gradient Flow 
Propagation (GFP) module, which helps to determine 
which modules need re-parameterization in order to 
improve the model's accuracy. Finally, YOLOv7 
includes an auxiliary head that is designed to provide a 
coarse-to-fine definition for better predictions 
lightweight. 

 
Fig. 4. Comparison of the structure of CS_X (YOLOv5) and C2f (YOLOv8) 

in backbone. 

 The Backbone part of YOLOv8 is basically the same as 
that of YOLOv5, and the C3 module is replaced by the 
C2f module based on the CSP idea [39]. The C2f 
module learned from the ELAN idea in YOLOv7 and 
combined C3 and ELAN to form the C2f module so 
that YOLOv8 could obtain more abundant gradient 
flow information while ensuring lightweight. We use 
the model YOLOv8 for detecting, and classification 
traffic lights, as shown in Fig. 3. Fig. 4 is a comparison 
of the structure of CS_X (YOLOv5) and C2f 
(YOLOv8) in the backbone. 

Four YOLO models are proposed to compare and test the 
applicability of these models to traffic light signal recognition 
for autonomous vehicle systems. There are a total of three 
active traffic light states: s = {red, yellow, green}. The models 
will be trained on our augmentation datasets 

III. END-TO-END CNN STEERING ANGLE CONTROLLER 

A. Preprocessing Data 

1) Data collection: To ensure the vehicle is always in the 

center of the lane, a series of multi-step image processing 

using the OpenCV method and a PID steering controller is 

applied [33]. The steering angle will be predicted after image 

processing to detect the two lines of the lane. Combined with 

the PID controller, the vehicle will move more precisely. At 

this point, we will collect the input image data and the output 

steering angle to train the end-to-end CNN steering angle 

controller model. It contains 10,000 images captured from the 

camera mounted on the vehicle in the simulation environment 

Gazebo/ROS2. However, when the car went through the 

intersection and encountered complicated situations, the 

estimated steering angle from the lane detection was 

interrupted, so we used the joystick to control the car with 
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human perception. In this case, 10,000 pictures continue to be 

collected along with the steering angle from human 

perception. Fig. 5 shows the dataset for the end-to-end CNN 

steering angle controller model. 

 
Fig. 5. Dataset for the end-to-end CNN steering angle controller model. 

2) Data augmentation and normalization: To improve the 

accuracy and avoid issues with gradient explosion or 

vanishing of the lane-keeping model, data augmentation and 

normalization techniques are employed as Algorithm 2. 

Algorithm 2: Data Augmentation and Normalization 

Input: Training Dataset 

1. AUGMENT (image, steering angle): 

1.1. if random () < 0.5; 

                       image = pan(image) // crop out a smaller image from the 

left or right side 

1.2. if random () < 0.5; 

 image = zoom(image) // crop out a smaller image from the 

center 

1.3. if random () < 0.5; 

                   image = blur(image) // a Gaussian blur 

1.4.   if random () < 0.5; 

 image = adjust_brightness(image) // adjust brightness of 

the image 

1.5. image, steering angle = random flip (image, steering angle) 

// perform a horizontal flip on the image, which means 

flipping it from left to right, and adjust the corresponding 

steering angle accordingly. 

1.6. return image, steering angle 

2. NORMAL (image): 

2.1. height = image.height. 

2.2. image = image[height/2+100] //Remove top half of the 

image, as it is not relevant for the lane following 

2.3. image = convert_Color(image, cv2.COLOR_RGB2YUV) 

//The optimal choice is to utilize the YUV color space. 

2.4. image = GaussianBlur(image, (3,3), 0) 

2.5. image = resize (image, (200,66)) // input image size 

(200,66) our model 

2.6. image = image / 255 # normalizing, the processed image 

becomes black for some reason 

2.7. return image 

Result: Augmented and normalized image data with updated steering 
angles. 

 
Fig. 6. Normalisation and augmentation of dataset. 

As depicted in Fig. 6, our dataset has been subjected to 
both normalization and augmentation. Meanwhile, the 
distribution of the steering angle within our dataset has been 
illustrated in Fig. 7. 

 

Fig. 7. Distribution of the steering angle within our dataset. 

B. Lane Keeping Using End-to-End CNN Model 

The proposed network architecture used an end-to-end 
neural network called Nvidia_model, Fig. 8 shows a 
convolutional neural network architecture with five Conv2D 
layers, followed by a flattened layer and three fully connected 
(FC) layers, and an output layer with a single neuron. 

 
Fig. 8. Convolutional neural network architecture. 
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The input to the network is a 3-dimensional tensor with 
shape (1200, 600, 3), which suggests that the input is an image 
with a width of 1200 pixels, a height of 600 pixels, and 3 color 
channels (e.g., RGB). The first layer in the network is a 
convolutional layer with 24 filters, each with a shape of (31, 
98). This layer has 1,824 parameters, which are learned during 
training. 

The next layer is another convolutional layer with 36 
filters, each with a shape of (14, 47). This layer has 21,636 
parameters. The third layer is a convolutional layer with 48 
filters, each with a shape of (5, 22). This layer has 43,248 
parameters. The fourth layer is a convolutional layer with 64 
filters, each with a shape of (3, 20). This layer has 27,712 
parameters. Finally, the fifth layer is a convolutional layer 
with 64 filters, each with a shape of (1, 18). This layer has 
36,928 parameters. 

After the last convolutional layer, the output is flattened 
into a 1-dimensional tensor with shape (1152). This flattened 
output is then fed into a fully connected (FC) layer with 1,164 
units. This FC layer has 1,342,092 parameters. The output of 
this layer is then fed into another FC layer with 100 units, 
which has 116,500 parameters. The next FC layer has 50 units 
and 5,050 parameters. Finally, there is a FC layer with 10 
units and 950 parameters. The total number of parameters in 
this model is 1,595,511. The output of the fourth fully 
connected layer is passed through and the output layer 
contains a single neuron, which predicts the steering angle. 

IV. EXPERIMENTAL RESULT 

A. Experimental System 

To evaluate the performance of our proposed algorithms, 
we conducted experiments in a simulated environment using 
Gazebo-ROS2. The simulation was run on an Ubuntu 20.04 
platform with an Intel Core i7 processor and 16 GB RAM. 
The simulated vehicle was equipped with a front-facing 
camera, simulated based on the actual parameters of the 
WGE100 camera. The camera captured images with a 
resolution of 1024×600 at a frame rate of 30 fps. The 
simulation environment was set up to include a variety of 
traffic light scenarios and lane configurations to test the 
robustness of our algorithms. 

The experimental system consisted of two parts: traffic 
light detection and end-to-end steering control. For traffic 
light detection, we trained our YOLOv8 model using the 
CinTA_v2 and GathoTF datasets, which were augmented 
using Algorithm 1 to increase their size and diversity. We 
evaluated the performance of the model in terms of accuracy, 
precision, and recall on a test set of 20% of the total dataset. 
We also compared the performance of YOLOv5, YOLOv6, 
and YOLOv7 models for traffic light detection. 

For end-to-end steering control, we designed a 
convolutional neural network-based steering angle controller 
that combines data from a classical PID controller and human 

perception. The model was trained on the same dataset used 
for traffic light detection and evaluated on a separate test set. 
We compared the performance of our model with that of a 
traditional PID controller and analyzed the results. 

In order to assess the effectiveness of our proposed 
algorithms, we employed a Donkey Car model, in which the 
steering angle was controlled based on the predictions made 
by our model. The Donkey Car was driven on a predefined 
route in the simulated environment as shown in Fig. 9, which 
included a variety of traffic light scenarios and lane 
configurations. We collected data from the camera and the 
steering angle sensor to evaluate the performance of our 
algorithms in real time. 

Overall, our experimental system allowed us to evaluate 
the effectiveness and robustness of our proposed algorithms 
for traffic light detection and end-to-end steering control in a 
simulated environment. The results of our experiments are 
presented and analyzed in the next section. 

B. Evaluation Metrics 

The use of evaluation metrics is critical in comparing and 
assessing the performance of machine learning algorithms. In 
this study, we compare four different object detection 
algorithms - YOLOv5, YOLOv6, YOLOv7, and YOLOv8, 
using various metrics such as F score, and mAP. To provide a 
comprehensive evaluation of the proposed algorithm's 
performance, we employ several evaluation metrics, including 
precision, recall, mAP, F-score, and FPS. However, to avoid 
potential biases in the evaluation process, we utilize different 
evaluation criteria that are based on different aspects of the 
algorithms' performance. 

In order to evaluate the effectiveness of the proposed 
algorithm, this study utilizes several metrics including 
precision (P), recall (R), average precision (mAP), F1-Score, 
and Frames Per Second (fps). Precision is a critical metric 
used to assess the accuracy of the evaluation object by 
determining the ratio of correctly predicted positive samples to 
the total number of predicted positive samples. 

   
            

                          
  (1) 

TruePositive indicates the count of positive samples 
accurately predicted as positive, whereas FalsePositives 
denotes the count of negative samples incorrectly predicted as 
positive. 

Recall measures the ratio of correctly predicted positive 
samples to the total number of actual positive samples. It 
indicates whether the evaluation object is detected in its 
entirety or not. 

   
            

                          
  (2) 
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Fig. 9. The virtual world in Gazebo. 

FalseNegative signifies the count of positive samples 
erroneously predicted as negative samples. 

Mean average precision (mAP) is an essential metric 
utilized for evaluating the overall performance of the 
algorithm. It is computed by averaging the average precision 
(AveP) values across all classes. 

    
 

 
∑     

   

   

  
 

(3) 

AveP_k represents the average precision of class k, where 
n denotes the total number of classes. 

The F1_Score is a metric that combines precision and 
recall into a single measurement by taking their weighted 
harmonic mean. It provides a balanced evaluation by 
considering both precision and recall. 

         (    ) 
   

      
  (4) 

The value of α is employed to achieve a balanced 
weighting of precision and recall in the calculation of the F-
score. A higher F1_Score implies that the algorithm has a 
better balance between precision and recall. Finally, Frames 
Per Second is a critical metric in evaluating the speed and 
efficiency of the algorithm. A higher fps score indicates that 
the algorithm can process a large number of frames in a 
shorter time. 

In conclusion, using these evaluation metrics in this study 
provides a comprehensive and unbiased assessment of the 
performance of the object detection algorithms. 

C. Traffic Light Detection and Classification Results 

In this section, we present the results of the traffic light 
detection and classification experiments using different YOLO 
models. We used a combined dataset of CinTA_v2 and 
GathoTF traffic light datasets for training and testing. The 
dataset was split into three parts: Training Set (76%), 
Validation Set (19%), and Testing Set (5%). 

We trained YOLOv5, YOLOv6, YOLOv7, and YOLOv8 
models on the combined dataset, and evaluated their 
performance on the Testing Set. The results are summarized in 
Table II. The YOLOv8 model achieved the best performance 
in terms of precision, recall, and F1 score, with an F1 score of 
0.8947, and mAP_0.5 of 0.9192 outperforming other models 
by a significant margin. The results demonstrate the 
effectiveness of the proposed approach in detecting and 
classifying traffic lights accurately and efficiently. 

Additionally, we assessed the influence of data 
augmentation on the performance of the YOLOv8 model. We 
trained the model with and without augmentation and 
subsequently compared their respective performances on the 
Testing Set. The findings of this evaluation are reported in 
Table II. The augmented dataset significantly improved the 
performance of the model, with an increase of 0.0313 in F1 
score, and 0.0148 in mAP_0.5 indicating that data 
augmentation is an effective technique for enhancing the 
robustness and generalizability of the model. 
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Fig. 10. Precision for traffic light detection and classification using YOLO models. 

TABLE II.  COMPARISON OF YOLOV5, YOLOV6, YOLOV7 AND 

YOLOV8 FOR TRAFFIC LIGHT DETECTION 

YOLO 

Model 
Precision Recall F1_Score mAP_0.5 

YOLOv5 0.7821 0.7787 0.7733 0.8216 

YOLOv6 0.9139 0.8106 0.8631 0.8929 

YOLOv7 0.9201 0.8289 0.8675 0.9028 

YOLOv8 0.9317 0.8427 0.8947 0.9192 

To further analyze the performance of the proposed 
approach, we generated precision curves for each YOLO 
model, as shown in Fig. 10. The curves indicate that the 
YOLOv8 model achieved the highest precision values for 
detecting and classifying traffic lights, followed by YOLOv7, 
YOLOv6, and YOLOv5 models. 

Furthermore, we visualized the resulting images generated 
by the YOLOv8 model to illustrate the effectiveness of our 
approach in detecting and classifying traffic lights. Fig. 11 
shows sample images from the Testing Set with bounding 
boxes and labels generated by the YOLOv8 model. The model 
successfully detected and classified the traffic lights, with high 
precision and recall values. 

Overall, the results demonstrate that the proposed 
approach using YOLOv8 with data augmentation achieves 
superior performance in traffic light detection and 
classification, providing a real-time solution for autonomous 
driving systems in complex scenarios. 

D. Lane-Keeping Results 

In addition to traffic light detection, our research also 
focuses on improving lane-keeping performance for 
autonomous vehicles. We propose a convolutional neural 
network (CNN)-based steering angle controller that combines 
data from a classical PID controller and human perception to 
predict the steering angle. In order to evaluate the performance 
of our proposed steering controller, we conducted experiments 
in a simulated environment using the Gazebo-ROS2 platform. 

 
Fig. 11. Sample images with traffic light detection and classification results. 

We collected a dataset of driving behaviors from a human 
driver using the OpenCV+PID steering angle control method, 
which we used to train and validate our CNN-based steering 
controller. The dataset consists of a donkey car model driving 
in a simulated environment with different road conditions and 
lighting conditions. 

To evaluate the performance of our steering controller, we 
conducted experiments in the same simulated environment. 
We compared the performance of our proposed method with a 
baseline PID controller and a CNN-based steering controller 
trained with a traditional CNN architecture. 

In order to evaluate the performance of our proposed 
steering controller, we conducted experiments in the same 
simulated environment and compared our method with a 
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baseline PID controller and a CNN-based steering controller 
trained with a traditional CNN architecture. We use a 
mathematical equation to calculate the percentage of accuracy 
by summing the prediction error, dividing by the overall 
validation angle, and multiplying by 100 to measure the 
accuracy of our proposed method. 
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where         is the actual angle value, and       is the 

predicted angle value. 

 
Fig. 12. The learning curve for the End-to-End CNN model using the Mean 

Squared Error (MSE) loss function. 

 

 

 
Fig. 13. The true steering and predicted steering, the diff is the difference 

between true steering and predicted steering. 

The evaluation of our lane-keeping performance involved 
a comparison between the actual steering angle of the vehicle 
and the predicted steering angle generated by the End-to-End 
CNN model. This analysis is depicted in Fig. 13. 

We also evaluated the performance of our model using the 
MSE loss function, and the learning curve for the End-to-End 
CNN model using the MSE loss function is depicted in 
Fig. 12. After 20 epochs, the MSE value was 230.8, and the 
learning curve shows a decreasing trend. The curve indicates 
that the model's performance improves as the number of 
epochs increases, with diminishing returns after a certain 
point. Although the curve appears to be approaching a stable 
solution, further training may be required to confirm this. 

Our results demonstrate that our proposed CNN-based 
steering controller outperforms the baseline PID controller and 
the traditional CNN-based steering controller in terms of 
accuracy and smoothness of the steering control. Our 
proposed method achieved an accuracy of 86.46%, as 
measured by the percentage of accurately predicted steering 
angles. The results indicate that our proposed method can 
effectively predict the steering angle and improve the lane-
keeping performance of autonomous vehicles. 

V. CONCLUSION 

In conclusion, the study presents an optimized approach 
for traffic light detection and End-to-End steering control for 
autonomous vehicles using YOLOv8 and a CNN-based 
steering angle controller. The proposed methods are evaluated 
in a simulated environment and achieved high performance in 
both traffic light detection and lane-keeping tasks. The results 
show that YOLOv8 outperforms other YOLO models in 
traffic light detection, while the CNN-based steering angle 
controller achieves a high accuracy rate. The study contributes 
to the development of advanced autonomous driving systems 
that can improve driving safety and reduce traffic accidents. 
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