
(IJACSA) International Journal of Advanced Computer Science and Applications

Vol. 14, No. 7, 2023

561 | P a g e

www.ijacsa.thesai.org

A Novel Software Quality Characteristic

Recommendation Model to Handle the Dynamic

Requirements of Software Projects that Improves

Service Quality and Cost

Kamal Borana1, Meena Sharma2, Deepak Abhyankar3

Research Scholar, Computer Engineering Department-Institute of Engineering and Technology,

Devi Ahilya Vishwavidyalaya, Indore, India1

Professor, Computer Engineering Department-Institute of Engineering and Technology,

Devi Ahilya Vishwavidyalaya, Indore, India2

Software Engineer, School of Computer Science & IT, Devi Ahilya Vishwavidyalaya, Indore, India3

Abstract—The software is created and constructed to

address particular issues in the applied field. In this context,

there is a need to be aware of the crucial characteristics to

assess the quality of software. But not all software requires

checking all the quality-of-service parameters, resulting in

effort loss and time consumption. Therefore, it is required to

develop software quality characteristics recommendation

model to address and resolve the issue. The proposed work

involved in this paper can be subdivided into three main parts

(1) a review of popular software quality models and their

comparison to create a complete set of predictable, and (2) the

design of an ML-based recommendation model for

recommending the software quality model and software quality

characteristics (3) performance analysis. The proposed

recommendation system utilizes the different software quality

of service attributes as well as the software attributes where

these models are suitably applied to satisfy the demands.

Profiling of applications and their essential requirements have

been performed Based on the different quality of service

parameters and the requirements of applications. These

profiles are learned by machine learning algorithms for

distinguishing the application-based requirement and

recommending the essential attributes. The implementation of

the proposed technique has been done using Python

technology. The simulation aims to demonstrate how to

minimize the cost of software testing and improve time and

accuracy by utilizing the appropriate quality matrix. Finally, a

conclusion has been drawn and the future extension of the

proposed model has been reported.

Keywords—Recommendation system; software quality model;

ML (Machine Learning); quality matrix; software quality

characteristics

I. INTRODUCTION

Machine learning provides ease in several real-world
applications; in addition, improves the capacity and
capability of existing research and methodologies.ML
techniques are also used to improve and optimize different
process models for improving the cost of employment and
productivity[1][2].In this context, software quality evaluation
is one of the essential steps. There are several different

software quality measuring models currently utilized. These
models include several different quality measuring
characteristics.

Software quality is an emerging research area in the field
of software engineering. The work presented here is relevant
to the research around software quality models which gives a
better understanding and knowledge of software quality
attributes in Software quality models. Achieving software
quality assurance requires the use of software quality models
[3]. These quality attributes might be used to describe the
software's quality. It might be difficult to decide which of the
excellent models to utilize [4]. In Addition, software quality
models are used for the global assessment of the software
product. Therefore, the proposed issue of applying and
selecting the appropriate quality matrix is defined here as the
recommendation problem. The recommendation engines are
the machine learning technique for evaluating the problem's
current scenario and suggesting the most suitable solutions
for the given set of problems [5].

There are different kinds of recommendation systems
available, which will also work as the information filter to
reduce the less relevant data and optimize the ranking of the
desired set of information [6][7]. The proposed software
quality characteristics recommendation model includes the
technique of machine learning to learn when, where, and
which software characteristic is appropriate for evaluation
based on profiling of the software quality of service
requirements. In this context, the proposed work is
subdivided into the following essential task:

 Examination of different software quality
characteristics and models.

 Implement and design a content-based
recommendation model to suggest the appropriate
quality matrix.

 Study the impact of the software quality characteristic
recommendation model over the existing models.

(IJACSA) International Journal of Advanced Computer Science and Applications

Vol. 14, No. 7, 2023

562 | P a g e

www.ijacsa.thesai.org

In this section, an outline of the proposed concept for the
software quality measuring model is provided. The next
section involves the study of different software quality
estimation models. Further, the proposed recommendation
model has been formulated and its implementation plan will
be explained. In addition, based on the implemented model
simulations have been carried out and their performance will
be reported. Finally, the conclusion has been reached and
their future extension plan will be proposed.

The paper is organized as follows: Section II reviews
software quality models based on basic and tailored criteria
which give a solid foundation in attribute selections.
Section III briefly introduces some essential attributes and a
proposed software quality characteristics recommendation
model is introduced which uses machine learning for
recommending the appropriate characteristics for software
quality estimation. Section IV describes the used Machine
learning algorithms in the proposed model. Section V gives
an analysis and validation of the results. Finally, this work is
concluded in Section VI where possible future research
directions are indicated.

II. REVIEW OF LITERATURE

In this study, two types of software quality models are
considered. The first one is based on basic software quality
models and the second one is based on the tailored software
quality models which are described in the below section.

A. Basic Software Quality Models

Each of the several software quality models consists of a
number of different attributes. Basic quality models denote
those models which were developed until 2000. This study
needs to explore some essential software quality models and
each model has various qualities.

1) McCall’s quality model: It exposes three task

domains.

a) Operation in a product refers to its capacity to be

easily understood, and able to deliver the desired results. It

addresses criteria for correctness, dependability,

effectiveness, integrity, and usability.

b) Revision in a product is the ability to endure

modifications, error rectification, and system adaptation. It

includes testability criteria, maintainability, and flexibility.

c) When a product is in a transition phase, it means it

can accommodate distributed processing in new

environments with rapidly changing technology.

The goal was on the relationship between metrics and
quality characteristics [3]. The problem is that it is dependent
on Yes and No responses, there is no accuracy in the results.

2) Boehm’s quality model: It adds maintainability to

McCall’s model [8]. High-level factors are as follows:

a) Utility describes efficient, reliable, and easy to use.

b) Maintainability describes the ability to modify,

testable, and features of understanding.

3) Dromey’s quality model: Three models have been

given by Dromey, i.e., the Requirement model, the design

model, and the implementation model. The product

properties are given below:

a) Correctness assesses if certain principles are

broken, along with usability and reliability.

b) Measures the effectiveness of a component's

deployment in terms of usability, maintainability, efficiency,

and reliability.

c) Descriptive evaluates the description of a

component, about maintainability, reusability, portability,

and usability.

d) Despite the design quality model considering the

development process, architectural integrity is not fully

attention Testability is implicitly included. None of the

domain-specific properties are discussed. Furthermore, one

drawback of the said model is allied with reliability and

maintainability, as judging them before the software system

is functioning is not practical. [8] [9]

4) FURPS quality model: The elements of the FURPS

model that are considered [8] [9] are:

a) Functionality encompasses capability sets,

security, and feature sets.

b) Usability includes stability in the user interface

view, help (online), user documentation, and materials

required in training.

c) Reliability focuses on the mean time between

failures (MTBF), frequency and strictness of the failure,

accuracy, recoverability, and predictability.

d) Functional needs like efficiency, speed,

availability, throughput, accuracy, resource utilization,

reaction time, recovery time, and are constrained by

performance.

e) Testability, extensibility, adaptability,

maintainability, and compatibility are all aspects of

supportability. Its failure to consider software portability is

one drawback. The model does not include any attributes

that are domain specific.

5) ISO 9126 quality model: The McCall and Boehm

models served as the basis for the ISO model [10][11][12]. It

works on four parts quality Model, quality in use metrics,

internal quality attribute, and external quality attribute. The

attention of that model is to an exploration of attributes into 6

independent characteristics which are reliability, usability,

efficiency, functionality, maintainability, and portability.

Now attributes are further split into internal quality

attributes, which refer to system features that can be assessed

without incorporating, and external quality attributes, which

refer to assessment by observation while it is being carried

out. [13]. This model addresses effectiveness, security, and

satisfaction [14].

6) ISO 25010 quality model: The modernized version of

ISO 9126 is ISO 25010. This approach divides quality into

eight smaller sub-characteristics. The ISO-9126 Model

serves as the sole foundation for the set of standards. The

model adds new features including compatibility and

(IJACSA) International Journal of Advanced Computer Science and Applications

Vol. 14, No. 7, 2023

563 | P a g e

www.ijacsa.thesai.org

security. As an extension of portability, it employs the term

transferability while conducting its operation.

B. Tailored Software Quality Models

Tailored software quality models were built from the
fundamental (basic) software quality models. This model
was made with certain individual components. There are
various tailored software quality models are there, and
selected tailored software quality models are presented
below.

1) BERTOA model: It defines the quality attributes for

the assessment of Commercial Off-The-Shelf Components.

The application of the model is to build Complex software.

2) GEQUAMO model: The breakdown of the sub-layers

in this model, known as GEQUAMO (Generic, Multi-

layered, and Customizable Model) [15], allows for the

flexible inclusion of user requirements. End users can create

their models with the aid of that model.

3) ALVARO model: The methodology used in the

Alvaro model is essentially used to certify software

components and identify quality components. The model

involves a framework that may be divided into four

sections: components related to the model quality,

framework for technical certification, certification process,

and framework with metrics. For quality assessment and

technical certification, all components are utilized.

4) RAWASHDEH model: Rawashdeh’s model is

conquered by the Dromey and ISO 9126[16] models. It

addresses the genuine requirements of various users. To

produce high-quality products four processes are suggested

by the said model.

a) Selecting a limited group of quality characteristics,

applied using a top-down method, dividing each

characteristic into several subordinate characteristics.

b) Examine how internal and external measures differ.

This includes characteristics such as requirements or lines of

code, as well as external metrics, behavior during testing

procedures, and components.

c) Quality attributes for each user must be identified.

d) Any new quality model can be built from ISO 9126,

and the Dromey model.

In addition to the above software models S. S.
Kamaruddin et al [6] provide a feature subset selection
approach to choose the right attributes for software quality
assessment to address this dynamic software quality
assessment problem. The current models for evaluating the
quality of software do not permit dynamic assessment. As
new quality attributes surface, they can be incorporated into
the model in dynamic software quality evaluation. To
establish dynamic software quality evaluation, they
concentrated on creating an intelligent technology that can
learn and include new quality criteria into the model.
Additionally, S. S. Kamaruddin et al [7] introduce a filter-
wrapper-based feature ranking method that can learn from
and order quality attributes depending on fresh data from
software quality assessment instances. The Most Priority of

Feature (MPF) score method and the software quality
attribute weights learning algorithm make up the suggested
feature ranking strategy. The issue of repetition in the
rankings of the software quality attribute is not addressed by
the present ranking methodologies. The redundancy problem
is solved by the suggested method by selecting
characteristics with good classification accuracy utilizing
classifiers.

III. PROPOSED METHODOLOGY

In this section, a proposed software quality characteristics
recommendation model is introduced which uses machine
learning for recommending the appropriate characteristics for
software quality estimation. The proposed model is aimed at
reducing the quality estimation time overhead. But according
to the available different quality estimation matrices as
discussed in the above section, it has been observed some
essential characteristics which are followed by entire models
these characteristics are described in Table I.

TABLE I. PROPERTIES OF BASIC AND TAILORED SOFTWARE QUALITY

MODELS

Properties Tailored models Basic models

Functionality Yes No

Maturity Yes No

Resource-utilisation Yes No

Testability Yes No

Compliance Yes No

Understandability Yes No

Usability Yes No

Learnability Yes No

Reliability No Yes

Therefore, the characteristics available in Table I have
been included in our quality matrix. In addition, based on the
requirements a list of questions is also included that help to
decide the additional quality characteristics requirements.

Key Questions have been prepared with the consultation
of IBM India Pvt. Ltd.

Q1. Is the model involving any calculations?

If the software is being developed for performing any
calculation, then the following characteristics need to be
included:

1. Accuracy

2. Correctness

3. Efficiency

Q2. Is the model involve security, privacy, and
communication modules?

If the software involves communication and data
security, then the following properties need to be considered.

1. Integrity

(IJACSA) International Journal of Advanced Computer Science and Applications

Vol. 14, No. 7, 2023

564 | P a g e

www.ijacsa.thesai.org

2. Fault Tolerance

3. Time Behaviour

Q3. Is the software involved in data collection and
analysis?

If yes, then the following characteristics must involve:

1. Human Engg.

2. Analysability

Q4. Is the software utilized by a person who has a new or
non-technical background?

If yes, then need to consider the followings:

1. Recoverability

2. Suitability

3. Attractiveness

4. Operability

Q5. Is the software needed to change, modify, or scale
shortly?

If yes, then need to consider the followings:

1. Adaptability

2. Changeability

3. Flexibility

4. Modifiability

5. Reusability

6. Operability

7. Suitability

Q6. Does the software need to deploy in multiple
places/multiple machines/multiple clients with the same or
different configurations?

If yes, then need to consider the followings:

1. Flexibility

2. Installability

3. Maintainability

4. Portability

5. Transferability

6. Configurability

7. Compatibility

8. Reusability

9. Interoperability

Q7. Is software deployed in resource-constrained
scenarios?

If yes, then the followings need to include:

1. Stability

2. Resource Utilisation

3. Self Contained

4. Replaceability

5. Manageability

Q8. Is software having many modules which require
assistance?

If yes, then the followings need to include:

1) Supportability: To decide the suitable quality of

service the proposed model has been demonstrated in Fig. 1.

The flowchart of the proposed software quality

characteristics recommendation model is presented here in

Fig. 2. Additionally, the key components are described in

Table I. The proposed model accepts two inputs, namely the

project source code and the prepared questionnaire. These

questionnaires are prepared based on the activities involved

in the project development life cycle. Based on these

questionnaires the dataset has been prepared. The Highlight

of the dataset is defined in Table II.

The given Table II provides a limited number of dataset
instances but provides a structure of the dataset which is used
for training. By using a similar method, prepared a total of
2𝑛−1 + 1 = 28−1 + 1 = 129 instances. In this situation for
making training with a supervised machine learning
algorithm, it is required to decide the class labels of these
instances. To calculate class labels of instances, let a project
quality requirement can be satisfied with an initial set of
software quality characteristics as given in Table I.

This table is denoted as A1. Additionally, the answers to
the questions can be denoted as:

An = {A1, A2…, A8} (1)

Each true answer to the questions includes a set of quality
characteristics, where A1 is always constant and A1 = True
(T). Therefore, the set of attributes for a unique class label
can be calculated using:

C = A1∪Ai (2)

Where Ai is the set of characteristics where i’th
question’s answer is true.

Some examples of unique class calculations have been
given in Table II. Additionally, the dataset has a similar
number of classes to predict. The meaning of the class label
is defined in Table III.

(IJACSA) International Journal of Advanced Computer Science and Applications

Vol. 14, No. 7, 2023

565 | P a g e

www.ijacsa.thesai.org

Fig. 1. Flow chart of proposed software quality characteristics recommendation model.

Fig. 2. Support Vector Machine (SVM) classifier diagram.

(IJACSA) International Journal of Advanced Computer Science and Applications

Vol. 14, No. 7, 2023

566 | P a g e

www.ijacsa.thesai.org

TABLE II. EXAMPLE OF DATASET USED

A1 Q1 Q2 Q3 Q4 Q5 Q6 Q7 Q8 Class

T F F F F F F F F C1

T T F F F F F F F C2

T F T F F F F F F C3

T F F T F F F F F C4

T F F F T F F F F C5

T F F F F T F F F C6

T F F F F F T F F C7

T F F F F F F T F C8

T F F F F F F F T C9

TABLE III. EXAMPLES OF CLASS LABEL SEQUENCES

Class Means

C1 𝐴1

C2 A1 ∪ 𝐴1 𝑖𝑓 𝐴1 = 𝑡𝑟𝑢𝑒

C3 A1 U A2 𝑖𝑓A2 = true

The mapping for each class label is prepared in the dataset.
In the proposed model, the name given for this process is the
profiling of historical projects. Now, it is needed to train
machine learning algorithms on the prepared profiles. In this
context, five widespread ML algorithms have been used such
as K nearest neighbor (KNN), Support vector machine (SVM),
artificial neural network (ANN), C4.5 decision tree, and
Bayesian.

IV. USED ML ALGORITHMS

A. Support Vector Machine (SVM)

One or more hyperplanes are created by the SVM classifier
for regression and classification [17]. The line is used to divide
the 2D linearly separable data. The line function is:

y = ax + b (3)

Here in Equation (3) variable x is renamed with x1
and y is renamed with x2 then the line Equation can be defined
as:

ax1 - x2 + b = 0 (4)

Now, if define𝑥 = (𝑥1, 𝑥2) and 𝑤 = (𝑎, −1), then:

w⋅x+b=0 (5)

This is the hyperplane equation. After obtaining the
hyperplane, it can be used to create predictions. Hypothesis
function h is called a Hypothesis function shown in below
Equation (6).

ℎ(𝑥𝑖) = {
+1 𝑖𝑓𝑤 ⋅ 𝑥 + 𝑏 ≥ 0
−1 𝑖𝑓𝑤 ⋅ 𝑥 + 𝑏 ≤ 0

 (6)

In addition to this SVM, the classifier can also be explored
by the below flowchart.

The below Fig. 3 explores the support vector machine and
talks about classification and regression. With the help of the
SVM algorithm, we may swiftly categorize new data points in
the future by determining the optimal line or decision border of
n-dimensional space. A hyperplane is the name given to this
optimal decision boundary.

Fig. 3. Proposed software quality characteristic recommendation model.

B. Naive Bayes

A probabilistic classifier is the Naive Bayes classification
[18]. The Bayes theorem can be used to derive this. Need to
train the Naive Bayes algorithm as supervised learning using
observations from nature. Two types of probabilities are given
below: Posterior Probability P (H/X) and Prior Probability P
(H), Where H is an assumption and X is data. Thus, Baye's
Theorem stated: In the below Fig. 4 explore the flow chart of
Naive Bayes classification in which every iteration according
to the probability value of attributes is updated.

P(
𝐴

𝐵
) =

𝑃(
𝐵

𝐴
)𝑃(𝐴)

𝑃(𝐵)
 (7)

C. K-Nearest Neighbor Classification

The KNN is a traditional tool for both classification and
prediction applications [19]. It is a lazy learning classifier. The
KNN method has three key parts. First, it calculates the
distance between the sample under consideration and each
training sample. To calculate the distances mostly Euclidean
distance will be used. Euclidean is described by:

𝑑(𝑒, 𝑓) = √∑ (𝑓𝑖 − 𝑒𝑖)
2𝑁

𝑖=1 (8)

Where q is the query vector and p is the dataset samples.

(IJACSA) International Journal of Advanced Computer Science and Applications

Vol. 14, No. 7, 2023

567 | P a g e

www.ijacsa.thesai.org

Fig. 4. Flow chart of naive bayes classification.

The method assigns a class label to the sample in question
after measuring the distance between the two samples. Based
on the k nearest samples from the training sample, the class
label is assigned. In this case, the designer will supply the
integer k. Not a lot of data is needed for the k-NN to learn. It is
the algorithm's main benefit.

In the below Fig. 5 explores the flow chart of the KNN
Classifier which is based on the Euclidean distance.

Fig. 5. Flow chart of KNN classifier.

D. Artificial Neural Network (ANN)

In processes where complicated multivariable, non-direct
relationships between information and yield factors are present,
ANN is becoming a popular showing tool [20].

ANN is primarily a data handling discipline, with its
underpinnings in the operational principles of organic neural
systems. It is like our cerebrum, which gets the data, translates,
and gives the yield. Many preparation elements are known as
hubs or neurons make up an ANN. These components are
highly coupled with one another and serve as a system to
produce standard results. The new features of ANN include its
ability to understand instances and infer conclusions from
precise information. Additionally, the speed and precision
levels are unmatched. The charming element of ANN is no past
information or science behind the procedure is required and
thus they are alluded to as discovery displays. Also, ANN
models can go up against every single semantic variable or
parameter that can't be estimated, and ordinary demonstrating
techniques are in this manner unacceptable and may neglect to
give reasons. Neural networks could classify patterns for which
they have not been taught, as well as a high tolerance for noisy
input. The neural network's internal weights, which are applied
by the transactions employed during the learning process, are a
primary issue of the training phase. The predicted output is
added to each training transaction for the neural network. The
concept of ANN can be visualized below in Fig. 6:

Fig. 6. Mathematical model of artificial neural network.

E. C4.5 Decision Tree

The program must produce decision rules. This is an
expansion of the well-known ID3 decision tree [21]. To obtain
data partition, entropy as well as information gain is required in
the program. Additionally, the highest information gain
attribute is selected to create a tree. Partitioned sub-lists are
used by the C4.5 method to shape a full decision tree. The
algorithm considers the restrictions of the next set. If samples
in the dataset cover a similar class, then it forms a leaf node as
a decision tree.

1) If the computation of IG (information gain) is not

attainable then it creates a node higher up, then the expected

value of the class is used by the tree.

2) If a previously undetected class is met, the decision

node has been created from a target value.

(IJACSA) International Journal of Advanced Computer Science and Applications

Vol. 14, No. 7, 2023

568 | P a g e

www.ijacsa.thesai.org

Fig. 7. Flow chart of decision tree (C4.5 or J48) algorithm.

Before presenting the decision tree's phases, it is necessary
to acknowledge the information acquired. Thus, compelled to
discuss entropy first, considering that the aftereffect decision
tree classifies data into two classes, i.e., P (+ve) and N (-ve).
The binary classification of entropy S is given by E(S):

E(S) =-P(+ve) log2 P(+ve)-P(-ve) log2 P(-ve) (9)

The above Figure 7 is exploring the step-by-step process of
the C4.5 decision tree algorithm. The best potential
characteristic to separate tree branches must be chosen to
reduce the depth of the tree when traversing it. It can be seen
that the best choice will be the property with the least entropy.
As a necessary decrease in entropy in connection to each
characteristic during splitting, the information gain can be
described. The IG (information-gain) calculates, Gain (E, A) of
an attribute A using equation number (10).

𝐺𝑎𝑖𝑛(𝐸, 𝐴) = 𝐸𝑛𝑡𝑟𝑜𝑝𝑦(𝑠) − ∑
𝐸𝑣

𝐸
𝑋𝐸𝑛𝑡𝑟𝑜𝑝𝑦(𝐸𝑣)𝑣

𝑛=1 (10)

The system accepts the ongoing project activities-based
questions after the algorithm has been trained with the profiled
attributes of the projects. Based on the trained machine learning
and the input current project questioners the model predicts the
most suitable characteristics for the project.

V. EXPERIMENTS AND RESULT ANALYSIS

Three datasets of the machine learning algorithm's
classification problem are used in this experiment. Here the
dataset obtained from Kaggle [22] is denoted as Dataset 1, the
dataset obtained from GitHub [23] is given as Dataset 2 and the
prepared dataset is denoted as Dataset 3. The precision, recall,
and f-score are calculated based on class wise, and then the
mean of the performance is calculated. The performance of the
model is also reported using the bar graph in Fig. 8. Fig. 8(A)
demonstrates the precision of the proposed model, 8(B) shows
the recall, 8(C) shows the f-score and finally Fig. 8(D) shows
the accuracy of the presented model. The performance
demonstrates the comparison of five different machine learning
algorithms for predicting the quality characteristics as a
recommendation of the quality characteristics. According to the

obtained performance of the model, support vector machine
(SVM) and artificial neural network (ANN) is providing higher
performance as compared to C4.5, KNN, and Bayesian. But the
Support vector machine has a higher amount of time
complexity. Thus, it is suggested to be utilizing the ANN as the
final machine learning algorithm which is suitably worked with
the proposed recommendation system.

(A)

(B)

(C)

0

0.2

0.4

0.6

0.8

1

1.2

P
re

ci
si

o
n

ML Algorithms

Dataset1 Dataset2 Dataset3

0

0.2

0.4

0.6

0.8

1

1.2

SVM ANN C4.5 K-NN Bayesian

R
e
c
a

ll

ML Algorithms

Dataset 1 Dataset 2 Dataset 3

0

0.2

0.4

0.6

0.8

1

1.2

SVM ANN C4.5 K-NN Bayesian

F
-S

c
o

r
e

ML Algorithms

Dataset 1 Dataset 2 Dataset 3

(IJACSA) International Journal of Advanced Computer Science and Applications

Vol. 14, No. 7, 2023

569 | P a g e

www.ijacsa.thesai.org

(D)

Fig. 8. (A). Precision of the proposed recommendation model, (B). Recall of

the proposed recommendation model, (C). F Score of the proposed

recommendation model, (D). Accuracy of the proposed recommendation
model.

VI. CONCLUSION AND FUTURE WORK

Concerning the criteria of the project, the presented
investigation aims to produce an intelligent model that offers
software quality characteristics. These recommendations are
based on the involved activities in the project. These activities
are summarized as questionnaires during different software
development process life cycles. The project source code and
documentation are utilized with the proposed recommendation
system to analyze. The past project’s quality assurance
characteristics were utilized to develop an ML model to predict
the desired attributes. The ML algorithm needs to train with a
limited set of sequences for predicting the possible attributes to
evaluate the software. Here, the suggested model has been
evaluated using five machine-learning methods across three
distinct datasets. Accuracy, F-score, precision, and recall are
used to evaluate performance. A suggested model demonstrates
higher prediction accuracy which means that model
successfully be able to serve as the software quality
characteristics recommendation model. Additionally, the model
is also helpful to lower expenses and increase the revenue of
software development companies.

Soon the following future extension has been proposed for
investigation:

1) Apply real-world data to evaluate the performance of

the proposed model.

2) Prepare detailed questionnaires for each stage of

software development which influences the characteristics of

the software quality testing matrix.

3) To enhance the model performance, can apply deep

learning techniques.

REFERENCES

[1] Sircar, K. Yadav, K. Rayavarapu, N. Bist, H. Oza, “Application of
machine learning and artificial intelligence in oil and gas industry”,
Petroleum Research 6 (2021) 379-391.

[2] Siebert, J., Joeckel, L., Heidrich, J., Trendowicz, A., Nakamichi, K.,
Ohashi, K., Namba, I., Yamamoto, R., Aoyama, M.: Construction of a
quality model for machine learning systems, Software Quality Journal,
30:307–335, 2022.

[3] M. Bhushan, S. Goel, “Improving software product line using an
ontological approach”, Sadhana, 41, 1381–1391, 2016.

[4] J. P. Miguel, D. Mauricio, G. Rodríguez, “A Review of Software Quality
Models for The Evaluation of Software Products”, International Journal
of Software Engineering & Applications (IJSEA), Vol.5, No.6,
November 2014.

[5] F.O. Isinkaye, Y.O. Folajimi, B.A. Ojokoh “Recommendation systems:
Principles, methods and evaluation”, Egyptian Informatics Journal
Volume 16, Issue 3, November 2015, Pages 261-273.

[6] S. S. Kamaruddin, J. Yahaya, A. Deraman, R. Ahmad, “Feature Subset
Selection Method for Dynamic Software Quality Assessment”, 5th
Malaysian Software Engineering Conference (My SEC), 2011.

[7] S. S. Kamaruddin, J. Yahaya, A. Deraman, R. Ahmad, “Filter-Wrapper
based Feature Ranking Technique for Dynamic Software Quality
Attributes”, Knowledge Management International Conference (KMICe)
2012, Johor Bahru, Malaysia, 4 – 6 July 2012.

[8] IEEE STD 610.12-1990 “IEEE Standard Glossary of Software
Engineering-Terminology”,
http://web.ecs.baylor.edu/faculty/grabow/Fall2013/csi3374/secur
Standards/IEEE610.12.pdf, 1990.

[9] Al-Badareen A. Bassam, “Software Quality Evaluation: User’s View,”
International Journal of Applied Mathematics and Informatics, Issue 3,
Volume 5, pp 200 207, 2011.

[10] ISO/IEC 9126-1: Software Engineering - Product Quality- Part 1:
“Quality Model, International Organization for Standardization,”
Switzerland, 2001.

[11] ISO/IEC 9126-2: Software Engineering - Product Quality- Part 2:
“External Metrics International Organization for Standardization,”
Switzerland, 2002.

[12] ISO/IEC 9126-3: Software Engineering - Product Quality- Part 3:
“Internal Metrics, International Organization for Standardization,”
Switzerland, 2003.

[13] A. Alvaro, E. S. de Almeida, S. R. de Lemos Meira, “A Software
Component Quality Framework,”ACM SIGSOFT SEN 35, 1 Mar. 2010.

[14] B. W. Boehm, J. R. Brown, M. Lipow, “Characteristics of Software
Quality,” North Holland, (1978).

[15] C. Jones, “Strengths and Weaknesses of Software Metrics,” Version 5,
March 22, 2006.

[16] J.A. McCall et al, “Factors in Software Quality,” Griffiths Air Force
Base, N.Y. Rome Air Development Center Air Force Systems
Command, 1977.

[17] Cristianini, N., & Shawe-Taylor, J. (2000). Support Vector Machines
and Other Kernel-Based Learning Methods. Cambridge University Press.

[18] Duda., R. O., Hart, P. E., & Stork, D. G. (2001). Pattern Classification.
Wiley-Interscience.

[19] Bishop, C. M. (2006). Pattern Recognition and Machine Learning.
Springer.

[20] Goodfellow, I., Bengio, Y., & Courville, A. (2016). Deep Learning. MIT
Press.

[21] Lior Rokach, Oded Maimon (2008). Data Mining with Decision Trees:
Theory and Applications.

[22] https://www.kaggle.com/datasets/semustafacevik/software-defect-
prediction

[23] https://github.com/feiwww/GHPR_dataset

0

0.2

0.4

0.6

0.8

1

1.2

SVM ANN C4.5 K-NN Bayesian

A
c
c
u

r
a

c
y

ML Algorithms

Dataset 1 Dataset 2 Dataset 3

