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Abstract—There is no doubt that pancreatic cancer is one of 

the most deadly types of cancer. In order to diagnose and stage 

pancreatic tumors, computed tomography (CT) is widely used. 

However, manual segmentation of volumetric CT scans is a time-

consuming and subjective process. It has been shown that the U-

Net model is highly effective for semantic segmentation, although 

several deep learning models have been proposed. In this study, 

we propose a U-Net-based method for pancreatic tumor 

segmentation from abdominal CT images and demonstrate its 

simplicity and effectiveness. Using the U-Net architecture, the 

pancreas is segmented from CT slices in the first stage, while 

tumors are segmented from masked CT images in the second 

stage. For validation set of NIH dataset and according to the 

proposed method's dice scores, the pancreas segmentation and 

tumor segmentation performance was outstanding, 

demonstrating its potential to identify pancreatic cancer 

efficiently and accurately. 

Keywords—U-net; deep learning; segmentation; computed 

tomography images; hyper parameters; PDAC 

I. INTRODUCTION 

The pancreas is an accessory organ, an exocrine gland of 
the digestive system, and an endocrine gland that generates 
hormones. In a healthy adult, the pancreas weighs around 
100g, ranges in length from 14 to 25 cm, and has a volume of 
roughly 72.4 to 25.8 cm

3
. It has an extended lobular form. The 

five anatomical divisions are the uncinate process, neck, body, 
and tail. Release of digestive enzymes that assist the digestion 
of fatty foods is the primary duty of the exocrine pancreas. 
The endocrine gland assists in regulating blood sugar levels 
and cell nutrient uptake. Exocrine pancreas cancer is referred 
to as "pancreatic cancer". It is one of the most common 
cancers, particularly in western countries and Japan. 
Pancreatic cancer is the melanoma that occurs in Americans 
the second most frequently. It accounts for 5% of all cancer 
mortality in that country and is more common in African 
Americans. It strikes men more commonly than women. The 
incidence increases after age 50. Pancreatic cancer develops 
when the cells of the pancreas undergo abnormal DNA 
modifications; this leads to the cells' uncontrolled division and 
growth into tumors. Occasionally, the liver, abdominal wall, 
lymph nodes, lungs, or bones may become infected by this 
tumor. The risk factors for getting pancreatic cancer include 
smoking, being overweight, having long-term diabetes, having 
a substantial family history of the illness, eating a lot of 
processed food and red meat, and having chronic pancreatitis. 
It is the fourth most common reason for cancer-related deaths 
in the west. It is predicted to overtake cancer as the second-

deadliest illness in 10 years. It has an annual incidence rate of 
12.50 per 100,000 persons, accounting for 3% of all cancer 
cases in America. One of the most fatal cancers, pancreatic 
cancer has a five-year mortality rate of less than 10%. 
Computed tomography (CT) scans of pancreatic tumors must 
be accurately segmented in order to make a diagnosis, 
determine a course of treatment, and track the disease's 
progression. Radiologists must manually segment images, 
which takes time and is prone to inter-observer variation. 
Deep learning models for automated segmentation have 
shown the potential in overcoming these constraints. The U-
Net model is a convolutional neural network architecture 
designed for semantic segmentation tasks, particularly in 
biomedical image processing, including the segmentation of 
CT (Computed Tomography) images [15]. The U-Net 
architecture is named after its U-shaped design, which consists 
of two main parts: the contracting path and the expansive path. 
In this study the U-net model is proposed to segment both 
pancreas and hen to segment pancreas tumour. Each U-Net in 
our suggested system has a unique set of hyperparameters, and 
they are all cascaded together. When initializing the weights 
of the first U-Net, we employ Kaiming initialization to prevent 
the issues caused by disappearing or exploding gradients. A 
multi-class cross-entropy loss function, used by the second U-
Net, is suitable for segmentation tasks. Our method is 
straightforward and efficient, requiring little time and 
resources compared to other deep learning methods that 
demand numerous layers and substantial computational 
resources for equivalent accuracy. 

II. LITERATURE REVIEW AND RELATED WORK 

The bulk of efficient deep learning algorithms for semantic 
segmentation of the pancreas and PDAC from abdominal CT 
scans are based on the U-Net, ResNet, AlexNet, and VGG-net 
models, as well as variants of these models. 

The first of research was proposed by the Pancreas 
Segmentation in Abdominal CT Images with U-Net Model by 
[1] in their study using a convolutional neural network (CNN) 
called the U-Net model. The segmentation procedure used the 
Pancreas CT dataset from The Cancer Imaging Archive 
(TCIA) database, which included computed tomography 
images from 82 patients. The report provides a thorough 
explanation of the outcomes of this segmentation method. The 
Dice and Jaccard similarity coefficients, used to measure the 
efficacy of the U-Net model for pancreatic segmentation, 
produced values of 0.78 and 0.66, respectively. In [2] the 
study being reviewed introduces a framework based on 
convolutional neural networks (CNNs) for the segmentation of 
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pancreatic ductal adenocarcinoma (PDAC) mass and 
surrounding vessels in CT images. The proposed framework 
first localizes the pancreas region from the whole CT volume 
using a 3D-CNN architecture and 3D Local Binary Pattern 
(LBP) map of the original image. Then, segmentation of the 
PDAC mass is performed using 2D attention U-Net and 
Texture Attention U-Net (TAU-Net), which is introduced by 
fusing dense Scale-Invariant Feature Transform (SIFT) and 
LBP descriptors into the attention U-Net. The Dice score for 
PDAC mass segmentation in portal-venous phase by 7.52% 
compared to state-of-the-art methods in terms of DSC. In [3] 
AX-Unet: A Deep Learning Framework for Image 
Segmentation to Assist Pancreatic Tumor Diagnosis the author 
presents AX-Unet, a deep learning framework incorporating a 
modified atrous spatial pyramid pooling module to reduce 
information loss during down sampling and achieve 
information decoupling between channels. The proposed 
explicit boundary-aware loss function also tackles the blurry 
boundary problem. Segmentation of pancreatic ductal 
adenocarcinoma (PDAC) and surrounding vessels in CT 
images using deep convolutional neural networks and texture 
descriptors. To prevent information loss during down 
sampling and accomplish information decoupling between 
channels, this author introduces AX-Unet, a deep learning 
system integrating a modified Atrous spatial pyramid pooling 
module. The blurry border issue is addressed by the explicit 
boundary-aware loss function that has been proposed. With a 
DSC of 85.9±5.1% and a Jaccard of 77.9±3.4%, experimental 
data show that AX-Unet surpasses state-of-the-art techniques 
in pancreas CT image segmentation. Additionally, the model's 
extracted feature output reveals notable variations in the 
pancreatic area between healthy individuals and patients with 
pancreatic tumours, which can help doctors detect pancreatic 
tumors earlier. In [4] study is done on Artificial Intelligence-
based Segmentation of Residual Tumor in Histopathology of 
Pancreatic Cancer after Neoadjuvant Treatment. In this study, 
digitized H&E-stained slides from resected pancreatic cancer 
after NAT were used to train a modified U-net model to 
segment tumour, normal ducts, and residual epithelium 
classes. The DenseNet161 encoder provided the highest mean 
segmentation accuracy, and a promising F1 score of 0.86 was 
attained for tumour segmentation. This work demonstrates that 
AI-based residual tumour burden assessment is viable; might 
be created as a tool for the impartial assessment of treatment 
response, and could be used to direct adjuvant treatment 
decisions. Experimental results demonstrate that AX-Unet 
outperforms state-of-the-art methods in pancreas CT image 
segmentation with a DSC of 85.9 ± 5.1% and a Jaccard of 
77.9 ± 3.4%. Additionally, the extracted feature output of the 
model shows significant differences in the pancreatic region of 
normal people and patients with pancreatic tumors, which can 
assist physicians in the screening of pancreatic tumors. In [5] 
the authors of this research provide a brand-new self-learning 
architecture for training the PDAC segmentation model with a 
significantly bigger patient population and a mixture of 
annotated and unannotated venous or multi-phase CT images. 
Unannotated images are combined by two teacher models with 
various PDAC segmentation specialties to produce pseudo-
annotations, which can then be improved by a teaching 
assistant model that recognizes related vessels around the 

pancreas. On both manually annotated and fictitiously 
annotated multi-phase images, a student model is subsequently 
trained. The findings demonstrate that the suggested approach 
offers a 6.3% Dice score absolute improvement over the 
robust baseline of nn-UNet trained on annotated pictures, 
obtaining a performance (Dice = 0.71), which is comparable 
to the inter-observer variability between radiologists. 

In [6], the authors of this research suggest a brand-new, 
completely 3D cascaded framework for segmenting the 
pancreas in 3D CT scans. A 3D detection network 
(PancreasNet) that locates the pancreas regions and two 
distinct scales of a 3D segmentation network (SEVoxNet) that 
segment the pancreas in a cascading fashion depending on the 
detection findings of PancreasNet make up the framework's 
two primary parts. On the publicly available NIH pancreatic 
segmentation dataset, the suggested method produces cutting-
edge results with a mean Dice Similarity Coefficient (DSC) of 
85.93% and a mean Jaccard Index (JI) of 75.38%. Deep neural 
networks' limitations in segmenting the pancreas were 
explored by Zhou et al. [7] due to its complex and changing 
backdrop regions. Using the anticipated segmentation map, 
they reduced the input region. We provide a fixed-point model 
that accepts the segmentation mask as input and output. On 
the NIH pancreas segmentation dataset, where they tested 
their model, they outperformed the state-of-the-art by more 
than 4% (in terms of DSC). A DSC of 82.37±5.68% on 
average was attained. In order to overcome the issue of spatial 
non-smoothness of inter-slice pancreatic segmentation, Cai et 
al. [8] presented a stacked CNN-RNN model. Convolutional 
long short-term memory (CLSTM) units make up the RNN 
sub-network. Deep supervision and multi-scale feature map 
aggregation were used to modify the 2D CNN sub-network. 
The investigations make use of the NIH-CT dataset and 79 
abdomen T1-weighted MRI scans. In the CT dataset and the 
MRI dataset, they obtained DSC of 83.35.6% and 80.77.40%, 
respectively. 

A pancreatic segmentation model based on 2020 First 
International Conference on Power, Control and Computing 
Technologies (ICPC2T) 402 bidirectional convolutional long 
short-term memory (BiCLSTM) networks and spatial context 
information (SCU-Net) was proposed by Hao Li et al. [9]. The 
CT abdominal scans were divided into multiple isometric 
blocks using a divide-and-conquer technique, and a multi-
channel CNN was created to make use of spatial context 
information. To encourage the interaction between 
information flow from bidirectional sequences, the BiCLSTM 
network is introduced. For inter-slice constraint and 
regularisation, a new loss function was developed. DSC, 
Jaccard index, pixels-wise precision, and recall were the 
evaluation measures employed. They examined the NIH-CT 
dataset, which included 82 abdomen enhanced 3D CT scans, 
and found that the final prediction accuracy was 82.863%, the 
mean Jaccard Index was 68%, and the mean prediction error 
was 12% and mean recall of 80.2% and mean Precision of 
82.2%. In [10] states the importance of huge number of 
training samples in the deep learning networks. Because of the 
considerable inter-patient structural changeability in both 
outline and size dimensions, the pancreas is a difficult 
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abdominal organ to section [16,17]. Convolutional neural 
networks (CNNs) give better performance [11, 12]. 

III. METHODOLOGY 

A. U-Net Architecture 

Two levels of the U-Net model are employed, consisting 
of downward-moving paths followed by upward-moving paths 
in U-shaped network architecture. Each block on the 
downward path is composed of two convolution layers with 
the Leaky ReLu activation function and a maximum pooling 
layer with stride 2. In the first block, we use 32 filters of size 
3x3 for each of the two convolution layers. The journey 
upwards is paved with 2x2 transposed convolution and the 
joining of feature maps from the parallel downward path. 
Along this path, we encounter four blocks, each composed of 
two convolutional layers with 3x3 filters and a Leaky ReLU 
activation function. We chose the Leaky ReLU for its 
efficiency, swift convergence and sparse activation - when 
faced with negative input, it returns 0; for positive input, it 
returns the same value as shown in equation (1), where x 
stands for the input. 

f(x)=max(0,x)                             (1) 

Despite using the identical U-Net model at both levels, the 
hyperparameter values vary. The weights of the first U-Net 
(U-Net-1) are initialised using Kaiming Initialization, and the 
filter size is 3x3. This approach avoids the disappearing or 
bursting gradients problem brought on by exponentially 
growing or decreasing input signals by accounting for the 
nonlinearity of activation functions like ReLU. The equation 
below can be used to express each convolution layer's 
response. 

𝑦𝑙 = 𝑊𝑙 𝑥𝑙 + 𝑏𝑙
   

(2) 

In this case, x is a k2 c x 1 vector that represents k x k 
pixels that are co-located in c input channels. The layer's 
spatial filter size is k. 

The number of connections in a response is n=k
2
c. The 

dimensions of the matrix W is a d x n, and each row of the 
matrix reflects the weights of a certain filter. In the output 
map, Y represents the response at a specific pixel, and b is a 
vector of biases. If l is the layer index and f is the activation, 
𝑥𝑙 = (𝑦𝑙−1).  

Given in below Eq. is the necessary condition to prevent 
the gradients issue. 

0.5nlVar[Wl]=1 for all l                  (3) 

Where Wl denotes the random component of each of the 
element in Wl and the Var depicts variance. This results in a 
start of the structure indicated in below equation. 

Wl ~N(0,2/nl)                                (4) 

Specifically, a zero-centered Gaussian with a 

√     standard deviation. 

R2 regularization is used in the U-Net-1 configuration to 
prevent overfitting. The penalty is basically increased by 
regularization as model complexity rises. All parameters, with 
the exception of the intercept, are penalized by the 
regularization term lambda (), making sure that the model 
properly generalizes the data and does not overfit. R2 
regularization is useful when there are correlatively dependent 
characteristics. W denotes the weight matrix with values i and 
j. 

There are two parts to it: an encoding route and a decoding 
path, where the encoder extracts high-level features from the 
input image and the decoder creates a segmentation mask 
using those features [18]. 

Elbow U-Net is the name of this specific version, which 
was created in Python using the TensorFlow library. It is made 
to segment binary images with the intention of locating areas 
of interest that are labelled with pixel values of 1 while the 
backdrop is labelled with 0. The input image dimensions, 
which are given as an input layer to the model, are 
IMG_HEIGHT x IMG_WIDTH x IMG_CHANNELS. After 
that, the input layer is normalized by using a lambda layer to 
multiply each pixel's value by 255. A succession of 
convolutional layers with 16, 32, 64, 128, and 256 filters are 
used in the encoding path. In order to avoid overfitting, a 
dropout layer is placed after each convolutional layer. In order 
to minimise the spatial dimensions of the feature maps, the 
output of each convolutional layer is then passed through a 
max pooling layer. Transpose convolutional layers, also 
referred to as deconvolutional layers, and are used in the 
decoding path to upsample the feature maps back to their 
initial size. In order to maintain spatial information, the 
decoder also has skip connections that concatenate the feature 
maps from the associated encoding path layer. The first 
convolutional layer in the encoder is a transpose layer with 
128 filters, and the next two layers are each convolutional 
layers with 128 filters. Until the final layer, which comprises 
of a transpose convolutional layer with 16 filters, followed by 
two convolutional layers with 16 filters each, this is repeated 
with progressively smaller filter sizes. A segmentation mask 
with image values between 0 and 1 is produced by a 
convolutional layer with one filter and a sigmoid activation 
function in the output. 

Table I provides a detailed illustration of the U-Net 
model's construction. An expansive path follows a contracting 
path in the five-level U-Net network. The parameters 
Batchnorm, activation functions, dropout are shown in detail. 
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TABLE I. HYPERPARAMETER SETTINGS FOR PROPOSED U-NET MODEL 

Encoder path (Contracting) Decoder path (Expansive) 

1
st
 Level 2

nd
 Level 3

rd
 Level 4

th
 Level 5

th
 Level 4

th
 Level 3

rd
 Level 2

nd
 Level 1

st
 Level 

CNN Para 

Sizes: (16, 
3, 3, 3) (16) 

MaxPool2D 

WithIndices 

MaxPool2D 

WithIndices 

MaxPool2D 

WithIndices 

MaxPool2D 

WithIndices 
Concatenation Concatenation Concatenation Concatenation 

Batch_Norm 
Para Sizes:(16) 

(16) 

BatchNorm 
Para Sizes:(32) 

(32) 

BatchNorm 
Para Sizes:(64) 

(64) 

BatchNorm 

Para 

Sizes:(128) 
(128) 

BatchNor m 

Para 

Sizes:(256 
) (256) 

BatchNo rm 
Para Sizes:(51 2) 

(512) 

BatchNo rm 
Para Sizes:(25 

6) (256) 

BatchNo rm 
Para Sizes:(12 

8) (128) 

BatchNo rm 
Para Sizes:(64 

) (64) 

Leaky_Relu 

CNN Param 

Sizes:(64, 32, 

3, 3) 
(64) 

CNN 

Param 
Sizes:(128, 64, 

3, 3) 

(128) 

CNN 

Param 
Sizes:(256, 

128, 3, 3) 

(256) 

CNN 

Param 
Sizes:(512 

, 256, 3, 

3) (512) 

CNN 

Param Sizes:(25 
6, 512, 

3, 3) 

(256) 

CNN Param 

Sizes:(12 8, 
256, 

3, 3) 

(128) 

CNN 

Param 
Sizes:(64 

, 128, 3, 

3) (64) 

CNN 

Param 
Sizes:(32 

, 64, 3, 

3) (32) 

BatchNorm 

Param Sizes: 

(16) 
(16) 

Relu Relu Relu Relu Relu Relu Relu Relu 

CNN Param 

Sizes:(32, 16, 

3, 3)(32) 

Feature 

Dropout 

Feature 

Dropout 

Feature 

Dropout 

Feature 

Dropout 
Feature Dropout 

Feature 

Dropout 

Feature 

Dropout 

Feature 

Dropout 

Leaky_Relu 
BatchNorm 
Param 

Sizes:(64) (64) 

BatchNorm 

Param 

Sizes:(128) 
(128) 

BatchNorm 

Param 

Sizes:(256) 
(256) 

BatchNor m 

Param 

Sizes:(512 
) (512) 

BatchNorm 
Param Sizes:(25 

6) (256) 

BatchNorm 

Param 

Sizes:(12 
8) (128) 

BatchNorm 

Param 

Sizes:(64 
) (64) 

BatchNorm 

Param 

Sizes:(32 
) (32) 

The proposed architecture of a U-Net model for medical 
picture segmentation is depicted in the Table II. In medical 
image analysis, U-Net is a common deep learning architecture, 
especially in segmentation tasks where the objective is to label 
each pixel in an image with its appropriate class. A 
contracting path is found on the left side and an expansive 
path is found on the right side of the U-Net architecture. While 
the expansive path gradually upsamples the feature maps to 
generate a segmentation mask, the contracting path uses a 
sequence of convolutional and pooling layers to capture the 
context of the input image. The earliest stages of the 
contracting process, which minimises the spatial dimensions 
of the feature maps, are convolutional and max pooling layers. 
When this procedure is performed numerous times, the 
number of filters in each convolutional layer rises at each 
level. By using batch normalisation and activation algorithms, 
the model performs better. After obtaining the feature maps 
from the contracting path, the expansive path uses transposed 
convolutional layers to progressively increase their spatial 
dimensions. The feature maps from the contracting path are 
concatenated with the corresponding feature maps from the 
expanding path in order to keep the high-resolution data. The 
output layer is then activated with a softmax function to 
generate the probability distribution. 

The last convolutional layer of the U-Net is activated using 
a softmax activation function to provide a probability map for 
each pixel, which is then thresholded to produce the final 
binary segmentation map. 

The proposed framework is based on the application of 
two tiers of U-Net model as shown in the Fig. 1. The model 
has two sets of encoding and decoding blocks. This can help 
to improve the segmentation performance by capturing more 
complex features at different scales. 

 
Fig. 1. U-Net based architecture for pancreas tumor segmentation. 

IV. EXPERIMENTS AND RESULTS 

A. Pancreas Segmentation Training 
The outcomes of a pancreatic segmentation training 

method are displayed in Table III. The aim of the training is to 
correctly identify the pancreas in medical photographs using a 
machine learning system. When compared to the ground truth 
data, the algorithm's ability to predict the right pancreas 
segmentation is measured by the training loss. Better 
performance is indicated by a reduced training loss. How 
closely the anticipated segmentation matches the actual 
segmentation is determined by the dice coefficient. Better 
performance is indicated by a higher dice coefficient [14]. The 
training process starts with a relatively high training loss of 
0.76 and a training dice coefficient of 0.82. As the training 
progresses, the algorithm gets better at identifying the 
pancreas, resulting in a decrease in training loss and an 
increase in the dice coefficient as shown in the Table II. 
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TABLE II. ARCHITECTURE OF PROPOSED MODEL 

Epoch Time(hrs) 
Training 

Loss 

Training 

Dice 

Validation 

Dice 

0 1.19 0.75599 0.82197 0.90297 

1 1.19 0.72110 0.88970 0.91160 

2 1.2 0.71554 0.90505 0.929217 

3 1.2 0.71121 0.91528 0.93275 

4 1.2 0.70814 0.92264 0.91778 

5 1.2 0.70615 0.92812 0.94656 

6 1.19 0.70434 0.93308 0.93837 

7 1.19 0.70248 0.93663 0.95023 

8 1.2 0.70103 0.94062 0.95054 

9 1.19 0.70042 0.94320 0.93310 

10 1.19 0.70020 0.94497 0.94846 

11 1.2 0.69875 0.94772 0.94290 

12 1.2 0.69725 0.94830 0.95534 

13 1.2 0.69738 0.95020 0.95216 

14 1.19 0.69677 0.95076 0.93893 

15 1.19 0.69677 0.95171 0.93644 

16 1.2 0.69662 0.95299 0.94623 

17 1.2 0.69586 0.95253 0.94996 

18 1.19 0.69561 0.95498 0.95489 

19 1.2 0.69544 0.95585 0.95485 

Based on the findings, the model was able to validate with 
a maximum accuracy of 0.9939 and a minimum loss of 0.0159 
at the twelfth epoch. The   accuracy values were about 0.95 in 
the early epochs but quickly increased to reach the high levels 
in the later epochs. With an 11-batch training run and an 
unspecified input image size, the model was trained over the 
course of 25 epochs. Also not stated was the loss function that 
was employed. It's important to note that the model's strong 
accuracy scores on the validation set indicate that the model 
generalizes well to new data. To verify the model's robustness, 
it's crucial to assess the model's performance on a different 
test set.  Overall, the results of your U-Net-based pancreatic 
segmentation model are encouraging, and further analysis on a 
different test set may reveal more details about how well it 
performs. 

B. Lesion Segmentation Training 

Table III displays the outcomes of a training process for a 
machine learning algorithm that tries to recognize legions in 
medical photos. Each of the 20 training epochs, which each 
took between 0.4 and 1.6 hours to complete, was performed 
once. The table lists the training loss, the training dice 
coefficient, and the validation dice coefficient for each epoch. 

Training was done for 20 epochs and took around 11 hours 
to complete as shown Fig. 2. 

When compared to the real-world data, the algorithm's 
ability to predict the right legion segmentation is measured by 
the training loss. Better performance is indicated by a reduced 
training loss. How closely the anticipated segmentation 

matches the actual segmentation is determined by the dice 
coefficient. Better performance is indicated by a higher dice 
coefficient. The training dice coefficient of 0.70 and the initial 
training loss of 1.45 both point to subpar performance in the 
first epoch. However, as training goes on, the algorithm 
improves at recognizing legions, which causes the training 
loss to go down and the dice coefficient to go up. 

The algorithm's capacity to recognize legions has greatly 
increased by the time training is complete, as seen by the 
training loss of 1.35 and training dice coefficient of 0.83. With 
a score of 0.69, the validation dice coefficient likewise 
performs well. 

TABLE III. TRAINING OUTCOMES 

Epoch Time(hrs) 
Training 

Loss 

Training 

Dice 

Validation 

Dice 

0 0.40532 1.44871 0.70470 0.6492 

1 0.41683 1.40648 0.75877 0.6681 

2 0.40805 1.39184 0.77948 0.64474 

3 0.40694 1.38603 0.78834 0.66002 

4 0.40503 1.38146 0.79132 0.62748 

5 0.41182 1.37874 0.79927 0.71489 

6 0.43404 1.37206 0.80300 0.70638 

7 0.40494 1.36892 0.80577 0.64888 

8 0.40575 1.36734 0.81093 0.67519 

9 0.40510 1.36397 0.81306 0.6871 

10 0.40516 1.36620 0.81297 0.69063 

11 1.66921 1.36206 0.81292 0.68888 

12 0.41266 1.35946 0.82007 0.66742 

13 0.40665 1.35924 0.81898 0.66363 

14 0.40700 1.35743 0.81908 0.69324 

15 0.40637 1.35359 0.82549 0.65909 

16 0.40637 1.35794 0.82055 0.69015 

17 0.40565 1.35338 0.82610 0.71414 

18 0.40493 1.35071 0.82977 0.64887 

19 0.40503 1.35127 0.82449 0.69984 

 

Fig. 2. Tumor segmentation training. 
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Fig. 3. Pancreas segmentation results. 

In Fig. 3 by showing a visual comparison of the pancreas 
segmentation results generated using the suggested method 
and the ground truth segmentation, the usefulness of the 
proposed method is proved. The visual comparison is shown 
in a three-column arrangement, with the abdominal CT images 
in the first column, the ground truth segmentation in the 
second, and the segmentation results from the proposed 
method in the third. 

The visual comparison is used to assess how well the 
suggested strategy performs in precisely segmenting the 
pancreas from abdominal CT images. The effectiveness of the 
suggested method in precisely segmenting the pancreas may 
be assessed by contrasting the segmentation results achieved 
by the proposed method with the ground truth segmentation. 

It is possible to compare the segmentation results obtained 
by the suggested approach with the ground truth segmentation 
quickly and effectively by using a three-column format that 
offers a clear and concise depiction of the segmentation 
findings. Additionally, using abdominal CT scans in the first 
column offers a relevant and realistic context for assessing 
how well the suggested strategy works in a clinical scenario. 

Fig. 3 also offers a visual comparison of the PDAC 
segmentation results produced by the suggested method and 
the ground truth segmentation in order to assess the 
performance of the proposed method. The visual comparison 
is shown in a three-column arrangement, with the abdominal 
CT images in the first column, the ground truth segmentation 
in the second, and the segmentation results from the proposed 
method in the third. The abdominal CT images, which were 
obtained from various patients and utilized to test the 
suggested procedure, are shown in the first column. The 
manual ground truth segmentation, carried out by a skilled 
radiologist, is displayed in the second column. The 
performance assessment of the suggested method uses the 
ground truth segmentation as a benchmark. 

The segmentation results produced by the suggested 
method are shown in the third column. The outcomes 
demonstrate that the suggested approach is successful in 
precisely segmenting PDAC tumors in abdominal CT images. 
Analysis of similarities and differences between the 
segmentation results produced by the suggested method and 
the actual segmentation is done. 

TABLE IV. COMPARISON WITH EXISTING WORK 

Methods DSC (%) 
Jaccard 

(%) 

Recall 

(%) 

Precision 

(%) 

CNN [1] 78 66 71 74 

Unet and 

texture [2] 
60 ---- 78.0 57.8 

AX-Unet [3] 87.7 78.2 90.9 92.9 

Unet with 

DenseNet 
[4] 

83 ---- ---- ---- 

nnUnet[5] 71 ---- ---- ---- 

Fully  

Convolutional 

Network[13] 

71 60 69 72 

3D CNN[6] 88 71 84 82 

Fixed Point[7] 82.37% 77 71 73 

Attention Unet 
[19] 

84 ---- 84.9 84.1 

DenseASPP 

[20] 
85 ---- ---- ---- 

Cascaded FCN 
[21] 

85.9 75.7 85.2 87.6 

Proposed 

Model 
88.2 79 82 86 

In Table IV we compare several segmentation techniques 
of existing methods for medical picture analysis, especially 
using the NIH dataset, in this work. Bottom-up, Fixed-point, 
3D Coarse-to-Fine, Holistically nested, RSTN, Recurrent 
Contextual Learning, Attention Unet, DenseASPP, (46), 
Cascaded FCN, AX-Unet, and the suggested technique are 
among the approaches investigated. 

DSC, Jaccard index, recall, and accuracy were the four 
measures we used to compare the effectiveness of various 
approaches. In comparison to the other approaches, our 
proposed method had the highest values for all four criteria, 
demonstrating improved segmentation performance. Although 
some metrics had slightly lower values for the AX-Unet 
method, it still performed well overall. 

V. PERFORMANCE EVALUATION METRICS 

Typically, the segmentation's results is discussed here. 
Various challenges provide the ground truth against which 
processes are validated. Various standards are used to analyze 
the performance and accuracy of segmentation. The most 
popular statistical measures are based on a number of research 
articles, and the different problems are described below. 

Assume that the segmented region is represented by X and 
the ground truth is by Y. To assess the precision of the 
segmentation, we may utilize a variety of indicators. The 
Volumetric Overlap Error (VOE) is one such measure. This 
calculates how much of the divided region overlaps with the 
actual scene. It is determined by dividing the sum of the pixels 
in x and y intersection by the sum of the pixels in X and Y's 
union. The result is then multiplied by 100 and removed from 
1. Successful segmentation is indicated by a VOE value that is 
near to 0, whereas greater values signify disparities between 
the segmented pictures. The following is a formula for VOE. 

VOE = ((|X ∩ Y| / |X ∪ Y|) - 1) * 100 
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Here dice similarity coefficient (DSC) is an additional 
measure. This gauges how well the split region's pixels 
correspond to the actual scene. A DSC score around 1 
suggests effective segmentation, whereas a number near 0 
implies inconsistencies across the segmented pictures. The 
DSC formula is displayed below: 

DSC = 2 |X ∩ Y| / (|X| + |Y|) 

The segmented region's volume difference from the 
ground truth is measured by the Relative Volume Difference 
(RVD). It is computed by dividing the sum of the volumes of 
X and Y, deducting 1, and then multiplying the result by 100. 
Positive RVD values signify over-segmentation, whilst 
negative RVD values signify under-segmentation. The RVD 
formula is displayed below: 

RVD = ((total volume of X / total volume of Y) - 1) x 100 

          
  

     
 

    𝑙𝑙  
  

     
 

The percentage of true positives (TP) that are accurately 
detected by the system, out of all real positive instances (TP + 
false negative (FN)), is known as recall, also known as 
sensitivity or true positive rate. In other words, recall gauges 
how well a system can identify all positive cases. A high recall 
score means that a significant number of positive cases may be 
recognized by the system. 

The proportion of true positives that are successfully 
recognized by the system, out of all anticipated positive 
instances (TP + false positive (FP)), is measured by precision, 
also known as positive predictive value. To put it another way, 
precision assesses a system's capacity to accurately identify 
only pertinent positive cases. A high accuracy rating means 
that the system produces few false positives, which means that 
the instances that are projected to be positive are more likely 
to be accurate. 

The validation set provided by NIH dataset has yielded the 
following results both for the segmentation of the 
pancreas and pancreas tumour. 

The segmentation of Pancreas: dice for each case of 
0.9283, dice global of 0.9300, VOE of 0.114, and RVD of -
0.070. 

The segmentation of PDAC: dice for each case of 0.5852, 
dice worldwide of 0.8900, VOE of 0.434, and RVD of -0.158. 

VI. CONCLUSION 

In this study, we show the simplicity and efficiency of the 
U-Net model for semantic biomedical picture segmentation. It 
is possible to successfully segment the pancreas and tumours 
from abdominal CT scans using the proposed architecture, 
which is based on a variant of the fundamental U-Net model. 
By changing the fundamental U-Net model's hyper parameter 
values in accordance with the type of dataset, we may attain 
accuracy that is comparable to that of sophisticated state-of-
the-art techniques. The model's performance was assessed 
using the National Institutes of Health (NIH) dataset, and an 

88.2% (Dice Global) pancreas tumour segmentation accuracy 
was attained. The proposed method can be applied to MRI 
images and we also aim to extend our research work by 
combining the U net model with other deep learning models to 
improve the accuracy. 
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