
(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 14, No. 7, 2023

675 | P a g e

www.ijacsa.thesai.org

An Improved Artificial Bee Colony Optimization

Algorithm for Test Suite Minimization

Neeru Ahuja, Pradeep Kumar Bhatia

Dept. of Computer Science and Engineering, Guru Jambheshwar University of Science and Technology,

Hisar, Haryana, India-125001

Abstract—Software testing is essential process for

maintaining the quality of software. Due to changes in customer

demands or industry, software needs to be updated regularly.

Therefore software becomes more complex and test suite size also

increases exponentially. As a result, testing incurs a large

overhead in terms of time, resources, and costs associated with

testing. Additionally, handling and operating huge test suites can

be cumbersome and inefficient, often resulting in duplication of

effort and redundant test coverage. Test suite minimization

strategy can help in resolving this issue. Test suite reduction is an

efficient method for increasing the overall efficacy of a test suite

and removing obsolete test cases. The paper demonstrates an

improved artificial bee colony optimization algorithm for test

suite minimization. The exploitation behavior of algorithm is

improved by amalgamating the teaching learning based

optimization technique. Second, the learner performance factor

is used to explore the more solutions. The aim of the algorithm is

to remove the redundant test cases, while still ensuring

effectiveness of fault detection capability. The algorithm

compared against three established methods (GA, ABC, and

TLBO) using a benchmark dataset. The experiment results show

that proposed algorithm reduction rate more than 50% with

negligible loss in fault detection capability. The results obtained

through empirical analysis show that the suggested algorithm has

surpassed the other algorithms in performance.

Keywords—Test suite; test suite minimization; TLBO; ABC;

nature inspired algorithm

I. INTRODUCTION

Software engineering deals with the design, analysis,
implementation, maintenance and testing of software. Once
software is evolved, its defects and shortcomings are analyzed
with the help of software testing [4]. Out of various testing
methods, the regression testing is very important as it involves
the modification or insertion of a code into the already working
code [8]. More is the size of test suite more will be testing time
for each run. This testing time even varies in weeks also. It
becomes difficult for a developer to get early feedback of the
software developed. Therefore, the developer cannot fix the
problems arising into the software timely [1]. So, no more
changes could be done in the software and root cause of test
suite failure could not be fixed. Software engineers must utilize
their time and resources effectively to prevent these issues [2].
A lot of researchers have carried out their work in this
particular area [3]. Test case selection (TCS), test case
prioritization (TCP), and test case minimization (TCM) are
three techniques used to handle complex problems associated
with testing.

Test case selection (TCS) [21] is used to choose the test
cases for the modified portion of the software. The test cases
chosen from the test suite may depend on how well the selection
process works. According to a specific criterion, test cases are
prioritized, and the highest priority test cases are run first to
achieve particular objectives. During test suite reduction,
redundant test cases are removed from test suite [31]. Test case
minimization, which gets rid of unnecessary ones, speeds up
regression testing. The utilization of TCM depends on how it
will help minimize time and cost for a particular software [6].
Based on criteria, minimization can reduce the size of test
suite. There exist different criteria like path coverage,
statement coverage, fault coverage, etc. It's important to always
keep in mind that minimization of any kind carries risk and
might not offer complete coverage. It might also omit some
fault revealing test cases. The size of the test suite,
effectiveness, fault detection cost, and execution time are the
important parameters of software that should be measured at
the time of reduction. The effectiveness of software is decided
by measuring these parameters. The comparison of a reduced
suite with a corresponding unreduced suite using criteria other
than suite size is also an important issue. As the testing
basically involves the detection of faults in the software, it can
be said that fault detection capability is one of the measures for
test suite quality. An important shortcoming of the reduction
process is the complete elimination of test cases from a suite,
which may lead to a decrease in the fault detection capability
and effectiveness of the remaining suite. Thus, a proper
exchange between fault detection effectiveness and execution
time should be taken into account before the implementation of
TSR [7]. Therefore, the problem of test suite minimization
could be considered an NP-hard problem. Optimization
techniques efficiently solve these problems. Therefore, it can
also be said that effectiveness and efficiency can be increased
in regression testing through optimization techniques.
Optimization helps us extract the best fit solution for the
problems [36]. Soft computing uses artificial intelligence and
natural selection to solve very complex problems that
analytical (hard computing) formulations cannot solve. By
incorporating soft computing techniques in optimization, we
can further improve the accuracy and speed of regression
testing. Soft computing can handle uncertainty and imprecision
in data, making it a valuable tool for optimizing complex
systems. Many researchers have investigated different
techniques to minimize test suite while maintaining the
coverage as maximum as possible [34,37]. CMIMX technique
with a prominent soft computing technique (ABC) was
implemented to ensure the reduced set with maximum fault

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 14, No. 7, 2023

676 | P a g e

www.ijacsa.thesai.org

coverage [20]. This paper proposed a new hybrid algorithm for
test suite minimization. The proposed algorithm attains the
minimize test suite with maximum coverage. The minimize test
case achieve it by selecting two objectives. First, the algorithm
aims to identify the minimized test suite that achieves
maximum statement coverage. Second, it should also satisfy
the fault detection capability of selected test cases. To
accomplish our objective we have selected Artificial Bee
Colony and Teaching Learning based optimization. The key
contributions of our presented work are summarized as
follows:

 Integration of TLBO operator into ABC algorithm for
enhanced search performance.

 Introduction of learner's performance concept to
accommodate varying abilities.

 Minimization of test suite while maintaining optimal
test case coverage.

 Analysis of fault coverage loss resulting from test suite
minimization.

The remaining of this paper is organized as follows:

Section II describes the literature study related to
minimization techniques. The technical background of the
techniques explained in Section III. Section IV illustrates
proposed methodology. Experimental details are present in
Section V. Section VI describes conclusion and future work.

II. STATE-OF-THE-ART

In this section, we present a comprehensive review of the
existing literature on test suite minimization techniques for
addressing NP-hard problems. Researchers have extensively
explored the application of soft computing techniques to tackle
these challenging problems [35]. We summarize the key
findings and contributions of various studies in Table I,
highlighting the author names, techniques used, coverage
criteria, and defined results.

ABC and TLBO algorithms have emerged and popular
algorithm of literature and demonstrated the promising results
across the different domains like long-term economic dispatch
problem in hydropower systems [11]. Rao et al. initially
proposed simple TLBO, which lack an inertia weight value
[15]. I-TLBO, an enhanced version of TLBO was developed
with the concept of adaptive teaching strategy and self-learning
[13]. It was implemented to strengthen the exploration and
exploitation capabilities. Zhang et al. [17] integrated TLBO

algorithm into onlooker bee phase. Additionally, a novel
searching approach for the bee phase was used to enhance
population variety and quicken convergence. One such
technique is FATLBO in which F and A stands for fuzzy and
adaptive. This technique used fuzzy logic to adaptively adjust
the parameters of TLBO algorithm [18]. LebTLBO was
proposed by Chen et al. [14] to increase the performance of
TLBO by incorporating the learning enthusiasm mechanism. It
is clear from the literature review that previous research has
mostly focused on test suite minimization using various
coverage criteria. However, there are a number of gaps in the
available literature, including a lack of analysis on fault
coverage and limited use of the ABC algorithm and TLBO
algorithm in the context of minimization principles. Therefore,
we presented ABC and TLBO technique with addition of
learning factor to enhance the capability to search more
solution space. We suggest a unique method for test suite
minimization termed Learner performance-based ABC and
TLBO (LpABTLO) to fill these gaps. This method uses
statement coverage as the coverage requirement and
subsequently analyses fault detection loss.

Our suggested LpABTLO technique aims to fill these gaps
in order to develop test suite minimization techniques and
deliver more thorough insights into fault coverage analysis.

III. TECHNICAL BACKGROUND

This section gives a technical overview of the TLBO
algorithm and ABC, two key optimization strategies. These
approaches gained a lot of focus in the different fields to solve
optimization problems.

A. Artificial Bee Colony Algorithm (ABC) [38]

The novel swarm-based stochastic optimization method
known as ABC, developed by Karaboga, mimics the foraging
behavior of honey bees [33]. Honey bees are organized into
three groups in ABC: workers, bystanders, and scouts [9].
Employee bees compose the initial half of the colony, and
observer bees made up the remaining half [10]. During the
employee bee phase, bees search for a food source and collect
data on its quality. As a result, only one bee is assigned to each
food source [11]. The food source with the higher fitness value
is more likely to be picked by onlookers than the one with the
lower fitness value. Each onlooker bee then searches for a
nearby food source close to the selected one and reserves the
best among them. If a food source remains unchanged for a
specific period of time, the associated employed bee turns
scout and explores a new food source randomly [12]. Fig. 1
explains the working of algorithm.

Fig. 1. Flowchart of ABC algorithm

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 14, No. 7, 2023

677 | P a g e

www.ijacsa.thesai.org

TABLE I. DEFINES THE LITERATURE STUDIES OF VARIOUS RESEARCHERS

Author Name Technique Coverage Criterion Defined Result

Khan et al. [27] GA and mutation analysis Software testing efficiency
Optimized software testing efficiency through GA and

mutation analysis

Mala et al.[28] ABC algorithm Path coverage
ABC: 99% coverage in 50 cycles, GA: 90% coverage

in 300 generations

Khari et al. [22] ABC and cuckoo search methods
Test case size and path

coverage

ABC and cuckoo search minimize size of test case

with path coverage

Zeeshan Anwar et al. [5]
Hybrid-adaptive neuro-fuzzy inference

system with GA and PSO

Regression test suites

optimization

Optimized regression test suites using hybrid

technique

Yoo and Harman [23] Pareto optimal solution Test suite reduction
Provided Pareto optimal solutions for test suite

reduction

Sivaji et al. [25] AB-CNS algorithm
Recall value, accuracy,

execution time

Reduced test cases using AB-CNS algorithm with

improved effectiveness

Bala et al. [24]
Hybridized technique using harmony

search and PSO

Non-functional properties

testing

Achieved 100% coverage in less execution time

compared to GA, HS, PSO

Coviello et al. [26] GASSER technique based on NSGA-II
Statement coverage, fault

coverage

Reduced test suite size by maximizing statement

coverage, compared to traditional approaches

Suri et al. [32] Hybris approach using GA and ABC Fault coverage Cover 100% fault with redcution in test suite size

Fig. 2. Flowchart of TLBO.

B. Teaching-Learning-based Optimization (TLBO) Algorithm

[15]

Rao et al. developed the TLBO algorithm that is a
population-based optimization algorithm used to handle
mechanical design optimization issues [15]. However, when
solving complex optimization problems, the TLBO algorithm
frequently encounters the issue of getting trapped in local
optima [14]. Although it has consistently outperformed other
evolutionary algorithms in theoretical and practical tests, the
impact of control parameters on TLBO's performance cannot
be overlooked [16]. The TLBO algorithm is composed of two
distinct phases: the Teacher Phase and the Learner Phase. In
the Teacher Phase, the teacher aims to enhance the students'
knowledge. However, the progress of the students is not solely
determined by the teacher's expertise, but also influenced by
the mean level of the entire class [15]. Fig. 2 illustrates the
working of TLBO.

IV. PROPOSED METHODOLOGY

This section presents a proposed model for test suite
minimization problem as shown in Fig. 3. The proposed work
is composed of three modules. The pseudo code of proposed
work is described in algorithm 1.

We have developed model for test suite minimization
problem as illustrated in Fig. 3. There are three components
comprise the proposed work. Algorithm 1 defines the pseudo
code of proposed work.

Algorithm 1. Hybrid Artificial Bee Colony

1. Begin

2. Define max_gen , max_population

3. Initialize Food source(population)

4. Evaluate fitness function

5. For i=1: max_gen

6. For i=1: max_population

7. Teacher based employee bee phase as shown in

Algorithm 2

8. Learner based onlooker bee phase as shown in

Algorithm 3

9. Update teacher and mean

10. Memorize the best solution

11. Scout Phase

12. End for

13. End for

14. Find the fault detection capability as shown in

Algorithm 4

15. End

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 14, No. 7, 2023

678 | P a g e

www.ijacsa.thesai.org

A. Dataset Extraction Module

We have taken programs from different sources. As we
know minimization techniques are based on adequacy criteria.
Statement coverage and fault coverage matrix are extracted
from source code.

Fig. 3. Framework of proposed algorithm.

B. Test Suite Minimization Module

Second module describes the working of hybrid technique.
There are two important factors related to heuristic
optimization methods. The first is called "exploration,” and it
entails a comprehensive search of the space while providing a
variety of potential solutions at each stage. This factor
demonstrates a method's ability to perform well in a global
search. Exploitation, or the quality of solutions attained during
each cycle, is the other consideration. This metric demonstrates
a technique's capability in performing a local search and
locating the optimal response close to a solution. These two
considerations are in opposition to one another and deserve to
be pointed out. Thus, if you prioritize global search over local
search (i.e. exploitation), you may end up with a poor final best
answer, and vice versa [30]. In the proposed technique two
popular soft computing techniques ABC and TLBO are
amalgamated with each other. It is developed by incorporating
the exploitation capability of TLBO with changes. Both the
techniques are complementary to each other.

In the hybrid model we incorporated two significant
changes to algorithms. First, instead of employee and onlooker
bee phase, teacher and learner phases are embedded into
model. ABC algorithm uses the same perturbation for
Employee bee and onlooker bee. Therefore, ABC algorithm
stagnates from the capability of exploitation. To solve this
issue we have embedded the teacher and learner phase of
TLBO algorithm into employee and onlooker bee phase with
modification in operator.

Second, from the literature we have observed that TLBO
and its variants use same approach to update the knowledge of
learners in the both phases of TLBO. Every student is unique,
and their level of zeal for learning varies [14]. Some students

are more interested to gain knowledge on other hand others
shows less interest in studies and neglect the knowledge gained
from others. As the result of this thought we have divided the
learners according to learner performance.

The main aim of this approach is to identify a smaller group
of test cases that can cover the maximum statements while still
providing the same level of coverage like the original test suite.
Additionally, the proposed approach also checks the fault
coverage for selected test cases.

1) Population initialization: The algorithm starts with

random initialization of food source (test suite) using

permutation encoding. In permutation encoding, test cases will

not be repeated, and only unique test case can be part of a test

suite. Like, TS1= [8, 99, 21, 43, 23, 56]. Set dimension, trail

counter and limit.

2) APSC: It is essential to assess the quality of all the

population's food sources to evaluate the effectiveness of a

potential solution provided by that food supply. The objective

function allows selecting the best individual that leads to a

good solution and validates the process's deviation from its

optimization target. The objective of the problem is to reduce

the number of test cases while still providing maximum

statement coverage.

The average percentage of statement coverage (APSC)
formula is defined in (1).

Maximize
∑

 (1)

Here, n and m represents the total number of test cases in
test suite and statements.

3) Fitness function: Fitness functions are employed in

simulations to steer them towards the best possible design

solutions.

Fitness function is calculated using (2)

) {

)
)

))
 (2)

Here, f(x) represents the objective function, i.e., calculated
in eq. 1.

4) Teacher-based employee bee phase: In the basic TLBO

bees positions are updated using eq.3.

 (–) (3)

Here, tf represents the teacher factor whose value can be 1
or 2 and is calculated as

tf.= round[1+ rand(0,1)].

Mean(xmean) can be calculated by using eq. 4

∑

 (4)

Here np is number of bees.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 14, No. 7, 2023

679 | P a g e

www.ijacsa.thesai.org

But it suffers from poor diversity issue. To overcome this
issue, DE (differential equation) mutation [19] is utilized.
Though teacher strategy is hybridized with DE (differential
equation) mutation is done to update learner’s position by eq.
5. The steps of teacher based employee bee phase are shown in
algorithm 2.

{
 (–)

)
 (5)

Here rand denotes uniformly distributed random number
within [0,1]. r1, r2, and r3 are random solutions from {1…np}
and r1, r2, r3 cannot be equal. f represents the scaling factor
between 0 and 2.

Algorithm 2 Teacher based Employee Bee Phase

Step1 Select the best bee as Xbest.

Step2 Calculate mean (Xmean) of all learner bees.

Step3 Generate the new bee according to DE mutation eq. 5

Step4 Calculate fitness function for new bees.

Step5 Accept new bee if it is better than old ones.

5) Tournament selection: Roulette wheel selection is

based on a proportionate selection technique in which the best

wheel can be chosen or not. We adopted tournaments to solve

this problem. A tournament is a match involving several

known-sized competitors who are randomly selected to

compete. The value of each individual's fitness is used to

select the winner. The size of the tournament is determined by

the number of participants.

6) Learner-based onlooker bee phase: As we have already

discussed, in basic TLBO no variation exists while gaining

knowledge among learners. Therefore, in the learner phase,

we have used a factor called learner performance (Lp).

Learner performance formulates variation in the best student's

and other student's knowledge. If students have knowledge

greater than the learner performance value, they will improve

their knowledge by interacting with the best one as in equation

6. Otherwise, the criteria for gaining knowledge gain will be

the same as basic TLBO as specified in equations 7 and 8. We

have tried the value of Lp from [0.7, 1] by trial and error

method, out of which 0.8 is the best-suited value. Those

students with a learning performance of 0.8 or more will learn

from the best learner or teacher.

 () (6)

) () (7)

) () (8)

The steps to Learner-based onlooker bee phase are
described in algorithm 3.

Algorithm 3 Learner based Onlooker Bee Phase

1. Begin

2. Initialize food source(population)

3. for each learner xi

4. If f(xi)<f(xj)

5. If Lp>f(xj)

6. Update the new bee using equation 6

7. else

8. Update the new bee using equation 7

9. end If

10. else

11. Update the new bee using equation 8

12. end If

13. Calculate fitness function for new bees.

14. Accept new bee if it is better than old ones.

15. end for

16. End

7) Scout phase: When an employee bee's food source

reaches a predetermined limit, it is reclassified as a scout bee.

Similar to the worker bee phase, the new random scout bee is

formed randomly. If this happens, the previous methods

should be updated with the new bee solution.

C. Fault Detection Capability

There are different criteria for minimizing test suites. In the
proposed technique, we have selected statement coverage as
the criterion. However, the effectiveness of the technique can
be checked by detecting losses for other criteria. Since one
criterion can affect others, we have evaluated fault-revealing
capability of the reduced test suite, as shown in Algorithm 4.

Algorithm4. Fault Detection Capability Algorithm

1. Begin

2. Define Reduced test suite (RTS), Total Faults(TF), Fault

matrix (FM)

3. Initialize variable F=0

4. For i=1: size (RTS)

5. a= RTS[i]

6. For j=1: size (FM)

7. If (FM[a][j]==1)

8. F=F+1

9. End if

10. End for

11. Calculate detected faults by ((F/TF)*100)

12. End for

13. End

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 14, No. 7, 2023

680 | P a g e

www.ijacsa.thesai.org

V. EXPERIMENTAL EVALUATION AND RESULTS

In this subsection, we use benchmark programs to evaluate
our proposed algorithm. Using Matlab2016a, we performed the
experiments on a personal computer with a 2.00 GHz/core (i3)
CPU and 4GB of memory. In order to validate the
effectiveness of the proposed algorithm, a comparative analysis
was conducted between its results and those obtained from the
ABC, TLBO, and GA algorithms. Each algorithm was
executed 20 times. The evaluation metrics used, the data sets
explored, and the outcomes of the experiments are all detailed
here.

A. Evaluation Metrics

To rigorously evaluate and compare the effectiveness of
our proposed approach with state-of-the-art methods, we
leveraged well-established structural coverage measures. These
measures have been widely adopted and extensively studied as
reliable indicators of a test suite's efficacy. By employing these
measures, we aimed to provide a robust performance
evaluation of our algorithm. Table II illustrates the evaluation
metrics.

B. Dataset

For the validation of the algorithm, we used datasets from
different sources [30, 29]. These programs vary in size from
small to large, helping to determine whether performance
variations are due to test suite size scalability.

C. Computational Analysis and Discussion on Results

In this subsection, we calculated the outcomes of the
proposed algorithm and evaluated it in comparison to the other
algorithms. Our proposed approach has undergone a
comprehensive evaluation, focusing on two key factors:
efficiency and effectiveness. Through rigorous testing and
analysis, we have thoroughly assessed the performance of our
approach in terms of these crucial aspects. The effectiveness of
the program is measured by the APRS, APSL, and APFL,
while efficiency is measured by the execution cost. Therefore,
APCR is used as efficiency metric.

1) Efficiency: The efficiency of the algorithm is assessed

by measuring the execution cost required to find the reduced

test suite. As we know, the larger the test suite, the higher the

computational cost. Reduction of the test cases can help to

decrease the total computational cost. Table III illustrates the

cost reduction percentage achieved by reducing the test suite

size compared to the original cost. As determined from Fig. 4,

TLBO performed best for large-sized programs, followed by

the proposed algorithm, ABC-TLBO, GA, and ABC. There is

a minor difference in the result of the proposed and TLBO

algorithms. For small-sized programs, the proposed algorithm

performed best. The difference between the proposed and

ABC-TLBO algorithms was less for small-sized programs. As

evident from Table III, the execution cost difference between

algorithms is merely a fraction of a second. Therefore, while

weighing the benefits of the algorithm, efficiency plays a

relatively small role in algorithm selection. TLBO performed

best, followed by the proposed algorithm, ABC-TLBO, GA,

and ABC.

2) Effectiveness: Removing unnecessary test cases may

affect the fault detection capability. Table IV shows the

experimental outcomes of LpABTLO and other algorithms on

the minimization problem. It is clear from Fig. 5 that

LpABTLO reduces more test cases than other algorithms.

LpABTLO reduces 51% of test cases without compromising

the fault detection rate. Moreover, as the size of the program

and the number of test cases increase, the reduction rate also

increases for all the techniques. However, LpABTLO

reduction is higher than other techniques. It provides the

optimal result. The comparative analysis for statement

coverage is presented through Fig. 6. For small-sized

programs, the statement coverage of LpABTLO and ABC-

TLBO is similar, but ABC lags behind GA and TLBO. ABC-

TLBO is the second best after LpABTLO in coverage without

any fault loss in small-sized programs. For large-sized

programs, LpABTLO and ABC-TLBO attain 96.91% and

96.43%, respectively, while GA, ABC, and TLBO get

94.32%, 92.56%, and 94.51%, respectively. By utilizing

statement coverage as a metric for testing, we have also

examined the loss in fault detection capabilities resulting from

reduced test cases. The percentage of fault-detection loss is

depicted in Fig. 7. The figure shows that LpABTLO has the

least fault coverage loss compared to other algorithms. GA has

the maximum fault coverage loss after ABC. The technique

that can reduce the size of the test case, cover maximum

statements, and without loss in fault detection capability is the

best choice for selection. LpABTLO covers all the conditions.

Hence, LpABTLO is superior to other techniques.

TABLE II. REPRESENTS THE EVALUATION METRICS

Metric Formula Definition

Average percentage of reduced

size

APRS = ((OTS – Ored) / OTS)

* 100

Percentage of reduced test suite's size compared to the original test suite. Higher value of

RSP is better.

Average percentage of fault

detection capability loss
APFL = ((F - Fred) / F) * 100

Quantifies the degree of fault coverage loss in the reduced test suite compared to the

original test suite. Lower value of APFL is better.

Average percentage of

statement coverage loss
APSL = ((S - Sred) / S) * 100

Quantifies the degree of statement coverage loss in the reduced test suite compared to the

original test suite. Lower value of APSL is better.

Average percentage of Cost

reduction
APCR = ((E - Ered) / E) * 100 Measures the extent of cost reduction achieved during the test suite reduction process.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 14, No. 7, 2023

681 | P a g e

www.ijacsa.thesai.org

TABLE III. COMPARISON OF COST REDUCTION OF PROPOSED APPROACH (LPABTLO) WITH OTHER ALGORITHMS

Dataset Algorithms APCR

Traingle classification Problem(TCP) LpABTLO 88.433

 GA 85.212

 ABC-TLBO 87.876

 ABC 83.650S

 TLBO 84.985

Quardratic equation(QE) LpABTLO 89.980

 GA 84.785

 ABC-TLBO 88.675

 ABC 82.490

 TLBO 86.456

Crossword LpABTLO 75.700

 GA 74.132

 ABC-TLBO 74.235

 ABC 70.214

 TLBO 76.870

Freemind LpABTLO 69.320

 GA 67.875

 ABC-TLBO 69.231

 ABC 65.773

 TLBO 69.750

TABLE IV. COMPARATIVE STUDY OF ALGORITHMS FOR DIFFERENT METRICS

Program Versions Algorithms APSC APRS APSL APFL

Traingle classification Problem(TCP) LpABTLO 97.56 51.275 0 0

 GA 95.21 46.584 0 1.25

 ABC-TLBO 96.32 50.923 0 0

 ABC 94.83 43.552 0 1.3

 TLBO 95.83 48.237 0 0

Quardratic equation(QE) LpABTLO 98.86 55.869 0 0

 GA 96.7 48.538 0 2.31

 ABC-TLBO 97.56 52.512 0 0

 ABC 96.102 44.325 0 1.42

 TLBO 97.20 47.675 0 0

Crossword LpABTLO 95.53 65.762 0 .546

 GA 93.76 62.453 .643 1.642

 ABC-TLBO 96.56 66.675 .025 .679

 ABC 92.23 63.218 .854 1.758

 TLBO 94.35 64.77 0 .783

Freemind LpABTLO 96.91 68.523 .046 1.641

 GA 94.32 61.768 .875 2.321

 ABC-TLBO 96.43 65.762 .065 1.897

 ABC 92.56 62.605 .947 2.987

 TLBO 94.51 65.543 0.43 1.934

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 14, No. 7, 2023

682 | P a g e

www.ijacsa.thesai.org

Fig. 4. Program wise comparative analysis of algorithms for cost reduction.

Fig. 5. Program wise comparative analysis of algorithms for size reduction.

Fig. 6. Program wise comparative analysis of algorithms for statement coverage.

0

10

20

30

40

50

60

70

80

90

100

TCP QE Crossword Freemind

LpABTLO

GA

ABC-TLBO

ABC

TLBO

0

10

20

30

40

50

60

70

80

TCP QE Crossword Freemind

LpABTLO

GA

ABC-TLBO

ABC

TLBO

88

90

92

94

96

98

100

TCP QE Crossword Freemind

LpABTLO

GA

ABC-TLBO

ABC

TLBO

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 14, No. 7, 2023

683 | P a g e

www.ijacsa.thesai.org

Fig. 7. Analysis of fault detection loss of programs using different algorithms.

VI. CONCLUSION

Regression testing is considered an NP-hard problem.
Optimizing methods can be used to solve these issues by
identifying the optimal approach. We have proposed a hybrid
algorithm with a combination of ABC and TLBO. As the ABC
algorithm uses the same perturbation for the Employee bee and
onlooker bee, it stagnates from the capability of exploitation.
To solve this issue, we have embedded both phases of the
TLBO algorithm into the employee and onlooker bee phase
with modification in the operator. The algorithm found the
results in two steps. Firstly, it removes redundant test cases to
have maximum structural coverage. Further, it checks the fault
revealing capability loss due to minimization. We have tested
the proposed algorithm against ABC, TLBO, and ABC-TLBO
on different-sized programs. It has been determined that the
proposed algorithm outperforms than the constituent.

REFERENCES

[1] Noemmer, R., & Haas, R. (2020, January). An evaluation of test suite
minimization techniques. In International Conference on Software
Quality (pp. 51-66). Springer, Cham.

[2] Manish Asthana, Kapil Dev Gupta and Arvind Kumar Test Suite
Optimization Using Lion Search Algorithm Y.-C. Hu et al. (eds.),
Ambient Communications and Computer Systems, Advances in
Intelligent Systems and Computing 1097, https://doi.org/10.1007/978-
981-15-1518-7_7.

[3] Singh, L., Singh, S. N., Dawra, S., & Tuli, R. (2019, March). A new
technique for test suite minimization in regression testing. In
Proceedings of 2nd International conference on advanced computing
and software engineering (ICACSE).

[4] Khan, F. A., Bora, D. J., & Gupta, A. K. (2017). An Efficient Heuristic
Based Test Suite Minimization Approach. Indian Journal of Science and
Technology, 10(29).

[5] Anwar, Z., Afzal, H., Bibi, N., Abbas, H., Mohsin, A., & Arif, O.
(2019). A hybrid-adaptive neuro-fuzzy inference system for multi-
objective regression test suites optimization. Neural Computing and
Applications, 31(11), 7287-7301.

[6] Shi, A., Gyori, A., Mahmood, S., Zhao, P., & Marinov, D. (2018, July).
Evaluating test-suite reduction in real software evolution. In Proceedings
of the 27th ACM SIGSOFT International Symposium on Software
Testing and Analysis (pp. 84-94).

[7] Parsa, S., & Khalilian, A. (2010). On the optimization approach towards
test suite minimization. International Journal of Software Engineering
and its applications, 4(1), 15-28.

[8] Yoo S, Harman M (2012) regression testing minimization, selection and
prioritization: a survey. Softw Test Verif Reliab 22(2):67–120.

[9] Jagdish Chand Bansal, Harish Sharma, K.V. Arya, Kusum Deep &
Millie Pant (2014) Self-adaptive artificial bee colony, Optimization,
63:10, 1513-1532, DOI: 10.1080/02331934.2014.917302.

[10] Cui, L., Li, G., Wang, X., Lin, Q., Chen, J., Lu, N., & Lu, J. (2017). A
ranking-based adaptive artificial bee colony algorithm for global
numerical optimization. Information Sciences, 417, 169-185.

[11] Liao, X., Zhou, J., Zhang, R., & Zhang, Y. (2012). An adaptive artificial
bee colony algorithm for long-term economic dispatch in cascaded
hydropower systems. International Journal of Electrical Power &
Energy Systems, 43(1), 1340-1345.

[12] Song, X., Zhao, M., Yan, Q., & Xing, S. (2019). A high-efficiency
adaptive artificial bee colony algorithm using two strategies for
continuous optimization. Swarm and Evolutionary Computation, 50,
100549.

[13] Karaboga, D. (2005). An idea based on honey bee swarm for numerical
optimization (Vol. 200, pp. 1-10). Technical report-tr06, Erciyes
university, engineering faculty, computer engineering department.

[14] Chen, X., Xu, B., Yu, K., & Du, W. (2018). Teaching-learning-based
optimization with learning enthusiasm mechanism and its application in
chemical engineering. Journal of Applied Mathematics, 2018.

[15] Rao, R. V., Savsani, V. J., & Vakharia, D. P. (2011). Teaching–learning-
based optimization: a novel method for constrained mechanical design
optimization problems. Computer-aided design, 43(3), 303-315.

[16] Shukla, A. K., Singh, P., & Vardhan, M. (2020). An adaptive inertia
weight teaching-learning-based optimization algorithm and its
applications. Applied Mathematical Modelling, 77, 309-326.

[17] Zhang, M., Pan, Y., Zhu, J., & Chen, G. (2018, July). ABC-TLBO: A
hybrid algorithm based on artificial bee colony and teaching-learning-
based optimization. In 2018 37th Chinese Control Conference (CCC)
(pp. 2410-2417). IEEE.

[18] Din, F., & Zamli, K. Z. (2017, October). Fuzzy adaptive teaching
learning-based optimization strategy for pairwise testing. In 2017 7th
IEEE International Conference on System Engineering and Technology
(ICSET) (pp. 17-22). IEEE.

[19] Chen, X., Xu, B., Mei, C., Ding, Y., & Li, K. (2018). Teaching–
learning–based artificial bee colony for solar photovoltaic parameter
estimation. Applied energy, 212, 1578-1588.

[20] Ahuja, N., & Bhatia, P. K. (2022). Test Suite Minimization Based upon
CMIMX and ABC. In Proceedings of Data Analytics and Management
(pp. 347-356). Springer, Singapore.

0

0.5

1

1.5

2

2.5

3

3.5

TCP QE Crossword Freemind

LpABTLO

GA

ABC-TLBO

ABC

TLBO

https://doi.org/10.1007/978-981-15-1518-7_7
https://doi.org/10.1007/978-981-15-1518-7_7

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 14, No. 7, 2023

684 | P a g e

www.ijacsa.thesai.org

[21] Sampath, S., Bryce, R., & Memon, A. M. (2013). A uniform
representation of hybrid criteria for regression testing. IEEE transactions
on software engineering, 39(10), 1326-1344.

[22] Khari, M., Kumar, P., Burgos, D., &Crespo, R. G. (2018). Optimized
test suites for automated testing using different optimization techniques.
Soft Computing, 22(24), 8341-8352.

[23] Yoo, S., & Harman, M. (2010). Using hybrid algorithm for pareto
efficient multi-objective test suite minimisation. Journal of Systems and
Software, 83(4), 689-701.

[24] Bala, N. M., & bin Safei, S. (2022). A Hybrid Harmony Search and
Particle Swarm Optimization Algorithm (HSPSO) for Testing Non-
functional Properties in Software System. Statistics, Optimization &
Information Computing, 10(3), 968-982.

[25] Sivaji, U., & Rao, P. S. (2021). Test case minimization for regression
testing by analyzing software performance using the novel method.
Materials Today: Proceedings.

[26] Coviello, C., Romano, S., Scanniello, G., & Antoniol, G. (2020,
October). GASSER: Genetic Algorithm for teSt Suite Reduction. In
Proceedings of the 14th ACM/IEEE International Symposium on
Empirical Software Engineering and Measurement (ESEM) (pp. 1-6).

[27] Khan, S., Nadeem, A., & Awais, A. (2006). TestFilter: A statement-
coverage based test case reduction technique. 2006 IEEE International
Multitopic Conference. https://doi.org/10.1109/inmic.2006.358177.

[28] Mala, D. J., & Mohan, V. (2009). ABC tester-artificial bee colony based
software test suite optimization approach. International Journal of
Software Engineering, 2(2), 15-43.

[29] https://www.cs.umd.edu/~atif/Benchmarks/UMD2007b.html.

[30] Pandey, A., & Banerjee, S. (2018). Test suite minimization in regression
testing using hybrid approach of ACO and GA. International Journal of
Applied Metaheuristic Computing (IJAMC), 9(3), 88-104.

[31] Panichella, A., Di Penta, M., Oliveto, R., & De Lucia, A. (2013). An
empirical comparison of test suite reduction techniques for software
maintenance. Empirical Software Engineering, 18(4), 609-639.

[32] Zaman, M., Nabi, N., & Shafique, M. (2015). An effective test suite
reduction technique for regression testing using genetic algorithm.
Journal of Systems and Software, 110, 148-159.

[33] Nabi, N., & Shafique, M. (2015). A hybrid evolutionary approach for
test suite reduction using genetic algorithm. Information and Software
Technology, 57, 285-297.

[34] Suri, B., Mangal, I., & Srivastava, V. (2011). Regression test suite
reduction using an hybrid technique based on BCO and genetic
algorithm. Special Issue of International Journal of Computer Science &
Informatics (IJCSI), ISSN (PRINT), 2231-5292.

[35] Kulkarni, N. J., Naveen, K. V., Singh, P., & Srivastava, P. R. (2011).
Test case optimization using artificial bee colony algorithm. In
Advances in Computing and Communications: First International
Conference, ACC 2011, Kochi, India, July 22-24, 2011, Proceedings,
Part III 1 (pp. 570-579). Springer Berlin Heidelberg.

[36] Khari, M., Kumar, P., Burgos, D., & Crespo, R. G. (2018). Optimized
test suites for automated testing using different optimization techniques.
Soft Computing, 22, 8341-8352.

[37] Zhang, Y. N., Yang, H., Lin, Z. K., Dai, Q., & Li, Y. F. (2017). A test
suite reduction method based on novel quantum ant colony algorithm. In
2017 4th International Conference on Information Science and Control
Engineering (ICISCE) (pp. 825-829). IEEE.

https://doi.org/10.1109/inmic.2006.358177
https://www.cs.umd.edu/~atif/Benchmarks/UMD2007b.html

