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Abstract—Software testing is essential process for 

maintaining the quality of software. Due to changes in customer 

demands or industry, software needs to be updated regularly. 

Therefore software becomes more complex and test suite size also 

increases exponentially. As a result, testing incurs a large 

overhead in terms of time, resources, and costs associated with 

testing. Additionally, handling and operating huge test suites can 

be cumbersome and inefficient, often resulting in duplication of 

effort and redundant test coverage. Test suite minimization 

strategy can help in resolving this issue. Test suite reduction is an 

efficient method for increasing the overall efficacy of a test suite 

and removing obsolete test cases. The paper demonstrates an 

improved artificial bee colony optimization algorithm for test 

suite minimization. The exploitation behavior of algorithm is 

improved by amalgamating the teaching learning based 

optimization technique. Second, the learner performance factor 

is used to explore the more solutions. The aim of the algorithm is 

to remove the redundant test cases, while still ensuring 

effectiveness of fault detection capability. The algorithm 

compared against three established methods (GA, ABC, and 

TLBO) using a benchmark dataset. The experiment results show 

that proposed algorithm reduction rate more than 50% with 

negligible loss in fault detection capability. The results obtained 

through empirical analysis show that the suggested algorithm has 

surpassed the other algorithms in performance. 

Keywords—Test suite; test suite minimization; TLBO; ABC; 

nature inspired algorithm 

I. INTRODUCTION 

Software engineering deals with the design, analysis, 
implementation, maintenance and testing of software. Once 
software is evolved, its defects and shortcomings are analyzed 
with the help of software testing [4]. Out of various testing 
methods, the regression testing is very important as it involves 
the modification or insertion of a code into the already working 
code [8]. More is the size of test suite more will be testing time 
for each run. This testing time even varies in weeks also. It 
becomes difficult for a developer to get early feedback of the 
software developed. Therefore, the developer cannot fix the 
problems arising into the software timely [1]. So, no more 
changes could be done in the software and root cause of test 
suite failure could not be fixed. Software engineers must utilize 
their time and resources effectively to prevent these issues [2]. 
A lot of researchers have carried out their work in this 
particular area [3]. Test case selection (TCS), test case 
prioritization (TCP), and test case minimization (TCM) are 
three techniques used to handle complex problems associated 
with testing. 

Test case selection (TCS) [21] is used to choose the test 
cases for the modified portion of the software. The test cases 
chosen from the test suite may depend on how well the selection 
process works. According to a specific criterion, test cases are 
prioritized, and the highest priority test cases are run first to 
achieve particular objectives. During test suite reduction, 
redundant test cases are removed from test suite [31]. Test case 
minimization, which gets rid of unnecessary ones, speeds up 
regression testing. The utilization of TCM depends on how it 
will help minimize time and cost for a particular software [6]. 
Based on criteria, minimization can reduce the size of test 
suite. There exist different criteria like path coverage, 
statement coverage, fault coverage, etc. It's important to always 
keep in mind that minimization of any kind carries risk and 
might not offer complete coverage. It might also omit some 
fault revealing test cases. The size of the test suite, 
effectiveness, fault detection cost, and execution time are the 
important parameters of software that should be measured at 
the time of reduction. The effectiveness of software is decided 
by measuring these parameters. The comparison of a reduced 
suite with a corresponding unreduced suite using criteria other 
than suite size is also an important issue. As the testing 
basically involves the detection of faults in the software, it can 
be said that fault detection capability is one of the measures for 
test suite quality. An important shortcoming of the reduction 
process is the complete elimination of test cases from a suite, 
which may lead to a decrease in the fault detection capability 
and effectiveness of the remaining suite. Thus, a proper 
exchange between fault detection effectiveness and execution 
time should be taken into account before the implementation of 
TSR [7]. Therefore, the problem of test suite minimization 
could be considered an NP-hard problem. Optimization 
techniques efficiently solve these problems. Therefore, it can 
also be said that effectiveness and efficiency can be increased 
in regression testing through optimization techniques. 
Optimization helps us extract the best fit solution for the 
problems [36]. Soft computing uses artificial intelligence and 
natural selection to solve very complex problems that 
analytical (hard computing) formulations cannot solve. By 
incorporating soft computing techniques in optimization, we 
can further improve the accuracy and speed of regression 
testing. Soft computing can handle uncertainty and imprecision 
in data, making it a valuable tool for optimizing complex 
systems. Many researchers have investigated different 
techniques to minimize test suite while maintaining the 
coverage as maximum as possible [34,37]. CMIMX technique 
with a prominent soft computing technique (ABC) was 
implemented to ensure the reduced set with maximum fault 



(IJACSA) International Journal of Advanced Computer Science and Applications, 

Vol. 14, No. 7, 2023 

676 | P a g e  

www.ijacsa.thesai.org 

coverage [20]. This paper proposed a new hybrid algorithm for 
test suite minimization. The proposed algorithm attains the 
minimize test suite with maximum coverage. The minimize test 
case achieve it by selecting two objectives. First, the algorithm 
aims to identify the minimized test suite that achieves 
maximum statement coverage.  Second, it should also satisfy 
the fault detection capability of selected test cases.  To 
accomplish our objective we have selected Artificial Bee 
Colony and Teaching Learning based optimization. The key 
contributions of our presented work are summarized as 
follows: 

 Integration of TLBO operator into ABC algorithm for 
enhanced search performance. 

 Introduction of learner's performance concept to 
accommodate varying abilities. 

 Minimization of test suite while maintaining optimal 
test case coverage. 

 Analysis of fault coverage loss resulting from test suite 
minimization. 

The remaining of this paper is organized as follows: 

Section II describes the literature study related to 
minimization techniques. The technical background of the 
techniques explained in Section III. Section IV illustrates 
proposed methodology. Experimental details are present in 
Section V. Section VI describes conclusion and future work. 

II. STATE-OF-THE-ART 

In this section, we present a comprehensive review of the 
existing literature on test suite minimization techniques for 
addressing NP-hard problems. Researchers have extensively 
explored the application of soft computing techniques to tackle 
these challenging problems [35]. We summarize the key 
findings and contributions of various studies in Table I, 
highlighting the author names, techniques used, coverage 
criteria, and defined results. 

ABC and TLBO algorithms have emerged and popular 
algorithm of literature and demonstrated the promising results 
across the different domains like long-term economic dispatch 
problem in hydropower systems [11]. Rao et al. initially 
proposed simple TLBO, which lack an inertia weight value 
[15]. I-TLBO, an enhanced version of TLBO was developed 
with the concept of adaptive teaching strategy and self-learning 
[13]. It was implemented to strengthen the exploration and 
exploitation capabilities. Zhang et al. [17] integrated TLBO 

algorithm into onlooker bee phase. Additionally, a novel 
searching approach for the bee phase was used to enhance 
population variety and quicken convergence. One such 
technique is FATLBO in which F and A stands for fuzzy and 
adaptive. This technique used fuzzy logic to adaptively adjust 
the parameters of TLBO algorithm [18]. LebTLBO was 
proposed by Chen et al. [14] to increase the performance of 
TLBO by incorporating the learning enthusiasm mechanism. It 
is clear from the literature review that previous research has 
mostly focused on test suite minimization using various 
coverage criteria. However, there are a number of gaps in the 
available literature, including a lack of analysis on fault 
coverage and limited use of the ABC algorithm and TLBO 
algorithm in the context of minimization principles. Therefore, 
we presented ABC and TLBO technique with addition of 
learning factor to enhance the capability to search more 
solution space. We suggest a unique method for test suite 
minimization termed Learner performance-based ABC and 
TLBO (LpABTLO) to fill these gaps. This method uses 
statement coverage as the coverage requirement and 
subsequently analyses fault detection loss. 

Our suggested LpABTLO technique aims to fill these gaps 
in order to develop test suite minimization techniques and 
deliver more thorough insights into fault coverage analysis. 

III. TECHNICAL BACKGROUND 

This section gives a technical overview of the TLBO 
algorithm and ABC, two key optimization strategies. These 
approaches gained a lot of focus in the different fields to solve 
optimization problems. 

A. Artificial Bee Colony Algorithm (ABC) [38] 

The novel swarm-based stochastic optimization method 
known as ABC, developed by Karaboga, mimics the foraging 
behavior of honey bees [33]. Honey bees are organized into 
three groups in ABC: workers, bystanders, and scouts [9]. 
Employee bees compose the initial half of the colony, and 
observer bees made up the remaining half [10]. During the 
employee bee phase, bees search for a food source and collect 
data on its quality. As a result, only one bee is assigned to each 
food source [11]. The food source with the higher fitness value 
is more likely to be picked by onlookers than the one with the 
lower fitness value. Each onlooker bee then searches for a 
nearby food source close to the selected one and reserves the 
best among them. If a food source remains unchanged for a 
specific period of time, the associated employed bee turns 
scout and explores a new food source randomly [12]. Fig. 1 
explains the working of algorithm. 

 

Fig. 1. Flowchart of ABC algorithm 
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TABLE I.  DEFINES THE LITERATURE STUDIES OF VARIOUS RESEARCHERS 

Author Name Technique Coverage Criterion Defined Result 

Khan et al. [27] GA and mutation analysis Software testing efficiency 
Optimized software testing efficiency through GA and 

mutation analysis 

Mala et al.[28] ABC algorithm Path coverage 
ABC: 99% coverage in 50 cycles, GA: 90% coverage 

in 300 generations 

Khari et al. [22] ABC and cuckoo search methods 
Test case size and path 

coverage 

ABC and cuckoo search minimize size of test case 

with path coverage 

Zeeshan Anwar et al. [5] 
Hybrid-adaptive neuro-fuzzy inference 

system with GA and PSO 

Regression test suites 

optimization 

Optimized regression test suites using hybrid 

technique 

Yoo and Harman [23] Pareto optimal solution Test suite reduction 
Provided Pareto optimal solutions for test suite 

reduction 

Sivaji et al. [25] AB-CNS algorithm 
Recall value, accuracy, 

execution time 

Reduced test cases using AB-CNS algorithm with 

improved effectiveness 

Bala et al. [24] 
Hybridized technique using harmony 

search and PSO 

Non-functional properties 

testing 

Achieved 100% coverage in less execution time 

compared to GA, HS, PSO 

Coviello et al. [26] GASSER technique based on NSGA-II 
Statement coverage, fault 

coverage 

Reduced test suite size by maximizing statement 

coverage, compared to traditional approaches 

Suri et al. [32] Hybris approach using GA and ABC Fault coverage Cover 100% fault with redcution in test suite size 

 

Fig. 2. Flowchart of TLBO. 

B. Teaching-Learning-based Optimization (TLBO) Algorithm 

[15] 

Rao et al. developed the TLBO algorithm that is a 
population-based optimization algorithm used to handle 
mechanical design optimization issues [15]. However, when 
solving complex optimization problems, the TLBO algorithm 
frequently encounters the issue of getting trapped in local 
optima [14]. Although it has consistently outperformed other 
evolutionary algorithms in theoretical and practical tests, the 
impact of control parameters on TLBO's performance cannot 
be overlooked [16]. The TLBO algorithm is composed of two 
distinct phases: the Teacher Phase and the Learner Phase. In 
the Teacher Phase, the teacher aims to enhance the students' 
knowledge. However, the progress of the students is not solely 
determined by the teacher's expertise, but also influenced by 
the mean level of the entire class [15]. Fig. 2 illustrates the 
working of TLBO. 

IV. PROPOSED METHODOLOGY 

This section presents a proposed model for test suite 
minimization problem as shown in Fig. 3. The proposed work 
is composed of three modules. The pseudo code of proposed 
work is described in algorithm 1. 

We have developed model for test suite minimization 
problem as illustrated in Fig. 3. There are three components 
comprise the proposed work. Algorithm 1 defines the pseudo 
code of proposed work. 

Algorithm 1. Hybrid Artificial Bee Colony 

1. Begin  

2. Define max_gen ,  max_population  

3. Initialize  Food source(population)  

4. Evaluate fitness function  

5. For i=1: max_gen  

6.       For i=1: max_population  

7.           Teacher based employee bee phase     as shown in 

Algorithm 2       

8.            Learner based onlooker bee phase as shown in 

Algorithm 3 

9.            Update teacher and mean  

10.            Memorize the best solution 

11.            Scout Phase 

12.        End for 

13.   End for  

14. Find  the fault detection capability as     shown in 

Algorithm 4 

15.   End  
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A. Dataset Extraction Module 

We have taken programs from different sources. As we 
know minimization techniques are based on adequacy criteria. 
Statement coverage and fault coverage matrix are extracted 
from source code. 

 
Fig. 3. Framework of proposed algorithm. 

B. Test Suite Minimization Module 

Second module describes the working of hybrid technique. 
There are two important factors related to heuristic 
optimization methods. The first is called "exploration,” and it 
entails a comprehensive search of the space while providing a 
variety of potential solutions at each stage. This factor 
demonstrates a method's ability to perform well in a global 
search. Exploitation, or the quality of solutions attained during 
each cycle, is the other consideration. This metric demonstrates 
a technique's capability in performing a local search and 
locating the optimal response close to a solution. These two 
considerations are in opposition to one another and deserve to 
be pointed out. Thus, if you prioritize global search over local 
search (i.e. exploitation), you may end up with a poor final best 
answer, and vice versa [30]. In the proposed technique two 
popular soft computing techniques ABC and TLBO are 
amalgamated with each other. It is developed by incorporating 
the exploitation capability of TLBO with changes. Both the 
techniques are complementary to each other. 

In the hybrid model we incorporated two significant 
changes to algorithms. First, instead of employee and onlooker 
bee phase, teacher and learner phases are embedded into 
model. ABC algorithm uses the same perturbation for 
Employee bee and onlooker bee. Therefore, ABC algorithm 
stagnates from the capability of exploitation. To solve this 
issue we have embedded the teacher and learner phase of 
TLBO algorithm into employee and onlooker bee phase with 
modification in operator. 

Second, from the literature we have observed that TLBO 
and its variants use same approach to update the knowledge of 
learners in the both phases of TLBO. Every student is unique, 
and their level of zeal for learning varies [14]. Some students 

are more interested to gain knowledge on other hand others 
shows less interest in studies and neglect the knowledge gained 
from others. As the result of this thought we have divided the 
learners according to learner performance. 

The main aim of this approach is to identify a smaller group 
of test cases that can cover the maximum statements while still 
providing the same level of coverage like the original test suite. 
Additionally, the proposed approach also checks the fault 
coverage for selected test cases. 

1) Population initialization:  The algorithm starts with 

random initialization of food source (test suite) using 

permutation encoding. In permutation encoding, test cases will 

not be repeated, and only unique test case can be part of a test 

suite. Like,  TS1= [8, 99, 21, 43, 23, 56]. Set dimension, trail 

counter and limit. 

2) APSC: It is essential to assess the quality of all the 

population's food sources to evaluate the effectiveness of a 

potential solution provided by that food supply. The objective 

function allows selecting the best individual that leads to a 

good solution and validates the process's deviation from its 

optimization target. The objective of the problem is to reduce 

the number of test cases while still providing maximum 

statement coverage. 

The average percentage of statement coverage (APSC) 
formula is defined in (1). 

Maximize         
∑      
 
   

   
 

 

   
 (1) 

Here, n and m represents the total number of test cases in 
test suite and statements. 

3) Fitness function: Fitness functions are employed in 

simulations to steer them towards the best possible design 

solutions. 

Fitness function is calculated using (2) 

       )  {

 

     )
                       )   

         )           )    
 (2) 

Here, f(x) represents the objective function, i.e., calculated 
in eq. 1. 

4) Teacher-based employee bee phase: In the basic TLBO 

bees positions are updated using eq.3. 

                  (        –         ) (3) 

Here, tf represents the teacher factor whose value can be 1 
or 2 and is calculated as  

tf.= round[1+ rand(0,1)]. 

Mean(xmean) can be calculated by using eq. 4 

      
∑   
  
   

  
       (4) 

Here np is number of bees. 
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But it suffers from poor diversity issue. To overcome this 
issue, DE (differential equation) mutation [19] is utilized. 
Though teacher strategy is hybridized with DE (differential 
equation) mutation is done to update learner’s position by eq. 
5. The steps of teacher based employee bee phase are shown in 
algorithm 2. 

       

{
            (        –         )              

                            )                                              
  (5) 

Here rand denotes uniformly distributed random number 
within [0,1]. r1, r2, and r3 are random solutions from {1…np} 
and r1, r2, r3 cannot be equal. f represents the scaling factor 
between 0 and 2. 

Algorithm 2 Teacher based Employee Bee Phase 

Step1 Select the best bee as Xbest. 

Step2 Calculate mean (Xmean) of all learner bees. 

Step3 Generate the new bee according to DE mutation eq. 5 

Step4 Calculate fitness function for new bees. 

Step5 Accept new bee if it is better than old ones. 

5) Tournament selection: Roulette wheel selection is 

based on a proportionate selection technique in which the best 

wheel can be chosen or not. We adopted tournaments to solve 

this problem. A tournament is a match involving several 

known-sized competitors who are randomly selected to 

compete. The value of each individual's fitness is used to 

select the winner. The size of the tournament is determined by 

the number of participants. 

6) Learner-based onlooker bee phase: As we have already 

discussed, in basic TLBO no variation exists while gaining 

knowledge among learners. Therefore, in the learner phase, 

we have used a factor called learner performance (Lp). 

Learner performance formulates variation in the best student's 

and other student's knowledge. If students have knowledge 

greater than the learner performance value, they will improve 

their knowledge by interacting with the best one as in equation 

6. Otherwise, the criteria for gaining knowledge gain will be 

the same as basic TLBO as specified in equations 7 and 8. We 

have tried the value of Lp from [0.7, 1] by trial and error 

method, out of which 0.8 is the best-suited value. Those 

students with a learning performance of 0.8 or more will learn 

from the best learner or teacher. 

                   (        ) (6) 

                             )        (     )  (7) 

                              )        (     )  (8) 

The steps to Learner-based onlooker bee phase are 
described in algorithm 3. 

Algorithm 3 Learner based Onlooker Bee Phase 

1.  Begin  

2.  Initialize   food source(population) 

3.  for each learner xi    

4.        If f(xi)<f(xj) 

5.               If  Lp>f(xj)  

6.            Update the new bee using equation   6 

7.              else 

8.                     Update the new bee using equation 7 

9.               end If 

10.           else 

11.       Update the new bee using equation 8 

12.       end If  

13.       Calculate fitness function for new bees.  

14.       Accept new bee if it is better than old ones.  

15.  end for  

16.  End 

7) Scout phase: When an employee bee's food source 

reaches a predetermined limit, it is reclassified as a scout bee. 

Similar to the worker bee phase, the new random scout bee is 

formed randomly. If this happens, the previous methods 

should be updated with the new bee solution. 

C. Fault Detection Capability 

There are different criteria for minimizing test suites. In the 
proposed technique, we have selected statement coverage as 
the criterion. However, the effectiveness of the technique can 
be checked by detecting losses for other criteria. Since one 
criterion can affect others, we have evaluated fault-revealing 
capability of the reduced test suite, as shown in Algorithm 4. 

Algorithm4. Fault Detection Capability Algorithm 

1. Begin  

2. Define Reduced test suite (RTS), Total Faults(TF), Fault 

matrix (FM)  

3. Initialize  variable F=0  

4. For i=1: size (RTS)  

5.      a= RTS[i] 

6.      For  j=1: size (FM)  

7.          If  (FM[a][j]==1) 

8.               F=F+1 

9.           End if  

10.    End for      

11.    Calculate detected faults  by  ((F/TF)*100)   

12. End for  

13. End  
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V. EXPERIMENTAL EVALUATION AND RESULTS 

In this subsection, we use benchmark programs to evaluate 
our proposed algorithm. Using Matlab2016a, we performed the 
experiments on a personal computer with a 2.00 GHz/core (i3) 
CPU and 4GB of memory. In order to validate the 
effectiveness of the proposed algorithm, a comparative analysis 
was conducted between its results and those obtained from the 
ABC, TLBO, and GA algorithms. Each algorithm was 
executed 20 times. The evaluation metrics used, the data sets 
explored, and the outcomes of the experiments are all detailed 
here. 

A. Evaluation Metrics 

To rigorously evaluate and compare the effectiveness of 
our proposed approach with state-of-the-art methods, we 
leveraged well-established structural coverage measures. These 
measures have been widely adopted and extensively studied as 
reliable indicators of a test suite's efficacy. By employing these 
measures, we aimed to provide a robust performance 
evaluation of our algorithm. Table II illustrates the evaluation 
metrics. 

B. Dataset 

For the validation of the algorithm, we used datasets from 
different sources [30, 29]. These programs vary in size from 
small to large, helping to determine whether performance 
variations are due to test suite size scalability. 

C. Computational Analysis and Discussion on Results 

In this subsection, we calculated the outcomes of the 
proposed algorithm and evaluated it in comparison to the other 
algorithms. Our proposed approach has undergone a 
comprehensive evaluation, focusing on two key factors: 
efficiency and effectiveness. Through rigorous testing and 
analysis, we have thoroughly assessed the performance of our 
approach in terms of these crucial aspects. The effectiveness of 
the program is measured by the APRS, APSL, and APFL, 
while efficiency is measured by the execution cost. Therefore, 
APCR is used as efficiency metric. 

1) Efficiency: The efficiency of the algorithm is assessed 

by measuring the execution cost required to find the reduced 

test suite. As we know, the larger the test suite, the higher the 

computational cost. Reduction of the test cases can help to 

decrease the total computational cost. Table III illustrates the 

cost reduction percentage achieved by reducing the test suite 

size compared to the original cost. As determined from Fig. 4, 

TLBO performed best for large-sized programs, followed by 

the proposed algorithm, ABC-TLBO, GA, and ABC. There is 

a minor difference in the result of the proposed and TLBO 

algorithms. For small-sized programs, the proposed algorithm 

performed best. The difference between the proposed and 

ABC-TLBO algorithms was less for small-sized programs. As 

evident from Table III, the execution cost difference between 

algorithms is merely a fraction of a second. Therefore, while 

weighing the benefits of the algorithm, efficiency plays a 

relatively small role in algorithm selection. TLBO performed 

best, followed by the proposed algorithm, ABC-TLBO, GA, 

and ABC. 

2) Effectiveness: Removing unnecessary test cases may 

affect the fault detection capability. Table IV shows the 

experimental outcomes of LpABTLO and other algorithms on 

the minimization problem. It is clear from Fig. 5 that 

LpABTLO reduces more test cases than other algorithms. 

LpABTLO reduces 51% of test cases without compromising 

the fault detection rate. Moreover, as the size of the program 

and the number of test cases increase, the reduction rate also 

increases for all the techniques. However, LpABTLO 

reduction is higher than other techniques. It provides the 

optimal result. The comparative analysis for statement 

coverage is presented through Fig. 6. For small-sized 

programs, the statement coverage of LpABTLO and ABC-

TLBO is similar, but ABC lags behind GA and TLBO. ABC-

TLBO is the second best after LpABTLO in coverage without 

any fault loss in small-sized programs. For large-sized 

programs, LpABTLO and ABC-TLBO attain 96.91% and 

96.43%, respectively, while GA, ABC, and TLBO get 

94.32%, 92.56%, and 94.51%, respectively. By utilizing 

statement coverage as a metric for testing, we have also 

examined the loss in fault detection capabilities resulting from 

reduced test cases. The percentage of fault-detection loss is 

depicted in Fig. 7. The figure shows that LpABTLO has the 

least fault coverage loss compared to other algorithms. GA has 

the maximum fault coverage loss after ABC. The technique 

that can reduce the size of the test case, cover maximum 

statements, and without loss in fault detection capability is the 

best choice for selection. LpABTLO covers all the conditions. 

Hence, LpABTLO is superior to other techniques. 

TABLE II.  REPRESENTS THE EVALUATION METRICS 

Metric Formula Definition 

Average percentage of reduced 

size 

APRS = ((OTS – Ored) / OTS) 

* 100 

Percentage of reduced test suite's size compared to the original test suite. Higher value of 

RSP is better. 

Average percentage of fault 

detection capability loss 
APFL = ((F - Fred) / F) * 100 

Quantifies the degree of fault coverage loss in the reduced test suite compared to the 

original test suite. Lower value of APFL is better. 

Average percentage of 

statement coverage loss 
APSL = ((S - Sred) / S) * 100 

Quantifies the degree of statement coverage loss in the reduced test suite compared to the 

original test suite. Lower value of  APSL is better. 

Average percentage of Cost 

reduction 
APCR = ((E - Ered) / E) * 100 Measures the extent of cost reduction achieved during the test suite reduction process. 
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TABLE III.  COMPARISON OF COST REDUCTION OF PROPOSED APPROACH (LPABTLO) WITH OTHER ALGORITHMS 

Dataset Algorithms APCR 

Traingle classification Problem(TCP) LpABTLO 88.433 

 GA 85.212 

 ABC-TLBO 87.876 

 ABC 83.650S 

 TLBO  84.985 

Quardratic equation(QE) LpABTLO 89.980 

 GA 84.785 

 ABC-TLBO 88.675 

 ABC 82.490 

 TLBO 86.456 

Crossword LpABTLO 75.700 

 GA 74.132 

 ABC-TLBO 74.235 

 ABC 70.214 

 TLBO 76.870 

Freemind LpABTLO 69.320 

 GA 67.875 

 ABC-TLBO 69.231 

 ABC 65.773 

 TLBO 69.750 

TABLE IV.  COMPARATIVE STUDY OF ALGORITHMS FOR DIFFERENT METRICS 

Program Versions Algorithms APSC APRS APSL APFL 

Traingle classification Problem(TCP) LpABTLO 97.56 51.275 0 0 

 GA 95.21 46.584 0 1.25 

 ABC-TLBO 96.32 50.923 0 0 

 ABC 94.83 43.552 0 1.3 

 TLBO 95.83 48.237 0 0 

Quardratic equation(QE) LpABTLO 98.86 55.869 0 0 

 GA 96.7 48.538 0 2.31 

 ABC-TLBO 97.56 52.512 0 0 

 ABC 96.102 44.325 0 1.42 

 TLBO 97.20 47.675 0 0 

Crossword LpABTLO 95.53 65.762 0 .546 

 GA 93.76 62.453 .643 1.642 

 ABC-TLBO 96.56 66.675 .025 .679 

 ABC 92.23 63.218 .854 1.758 

 TLBO 94.35 64.77 0 .783 

Freemind LpABTLO 96.91 68.523 .046 1.641 

 GA 94.32 61.768 .875 2.321 

 ABC-TLBO 96.43 65.762 .065 1.897 

 ABC 92.56 62.605 .947 2.987 

 TLBO 94.51 65.543 0.43 1.934 
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Fig. 4. Program wise comparative analysis of algorithms for cost reduction. 

 

Fig. 5. Program wise comparative analysis of algorithms for size reduction. 

 

Fig. 6. Program wise comparative analysis of algorithms for statement coverage. 
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Fig. 7. Analysis of fault detection loss of programs using different algorithms. 

VI. CONCLUSION 

Regression testing is considered an NP-hard problem. 
Optimizing methods can be used to solve these issues by 
identifying the optimal approach. We have proposed a hybrid 
algorithm with a combination of ABC and TLBO. As the ABC 
algorithm uses the same perturbation for the Employee bee and 
onlooker bee, it stagnates from the capability of exploitation. 
To solve this issue, we have embedded both phases of the 
TLBO algorithm into the employee and onlooker bee phase 
with modification in the operator. The algorithm found the 
results in two steps. Firstly, it removes redundant test cases to 
have maximum structural coverage. Further, it checks the fault 
revealing capability loss due to minimization. We have tested 
the proposed algorithm against ABC, TLBO, and ABC-TLBO 
on different-sized programs. It has been determined that the 
proposed algorithm outperforms than the constituent. 
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