
(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 14, No. 7, 2023

828 | P a g e

www.ijacsa.thesai.org

An Intelligent Malware Classification Model Based

on Image Transformation

Mohamed Abo Rizka1, Mohamed Hamed2, Hatem A. Khater3

College of Computing and Information Technology-Heliopolis Campus,

Arab Academy for Science, Technology & Maritime Transport, Cairo, Egypt1, 2

Electrical Department-Faculty of Engineering, Horus University Egypt, New Damietta 34518, Egypt3

Abstract—Due to financial incentives, the number of malware

infections is steadily rising. Accuracy and effectiveness are

essential because malware detection systems serve as the first line

of defense against harmful attacks. A zero-day vulnerability is a

hole in the target operating system, device driver, application, or

other tools employing a computer environment that was

previously unknown to anybody other than the hacker.

Traditional malware detection systems usually use conventional

machine learning algorithms, which call for time-consuming and

error-prone feature gathering and extraction. Convolutional

neural networks (CNNs) have been demonstrated to outperform

conventional learning techniques in a number of applications,

including the classification of images. This success prompts us to

suggest a CNN-based malware categorization architecture. We

evaluated our methodology using a bigger dataset made up of 25

families within a corpus of 9342 malware. Last but not least,

comparisons are made between the model's measurement and

performance with other cutting-edge deep learning techniques.

The overall testing accuracy of 98.31% in the provided results

attested to the excellent accuracy and robustness of the suggested

procedure at a lower computational cost.

Keywords—Malware Classification; zero-day; Convolutional

Neural Networks (CNN); grayscale image transformation; Bytehist

I. INTRODUCTION

The quick enhancement of communication and information
technologies has had a significant impact on cyber security.
Systems and techniques for spotting intrusions and preventing
them have significantly advanced. Even with more advanced
security measures in place, hackers continue to develop
methods to identify weaknesses and seize control of devices
and systems. Static analysis approaches, like signature-driven
method, pattern-match method, or data mining technology,
examine the data inside the file to determine whether an
executable portable file contains a programme that shouldn't be
launched. The goal of the dynamic analysis method, which
involves running the malware itself, is to observe how the
portable executable file behaves while it is in use [1][2][3].
Methods for detection and classification were greatly hampered
by the attackers' knowledge of infiltration tactics and strategies.
Known as zero-day vulnerabilities and zero-day assaults, one
of the most popular attack types in use today is malware [1].
The academic community and the security business have
employed deep learning, machine learning, and intelligent
systems to try and forecast potentially risky conduct. The first
quarter of 2021 saw a 68.9% spike in new PowerShell malware
and a 41.2% increase in business malware compared to the

previous quarter [3]. The aforementioned statistics demonstrate
that researchers in information technology disciplines have
started to see IT as applying machine learning-based (neural
language) detection and classification algorithms and NL
processing to sort through the ever-increasing volume of
malware and cunning escape strategies being deployed [3][4].
Due to the frequent requirement for traditional malware
research approaches to design crucial traits, which costs money
and time, machine learning has been found to be more effective
[5]. Malware categorization has also been effectively
accomplished using (CNN). The first stage of this scientific
study will involve converting files from a regular image format
to binary language, which will then be translated into grayscale
images. Second, the files will be grouped into families of
harmful programs. Twenty five (25) families of Trojan horses,
malware, backdoors, etc. are negatively impacted. The
accuracy in the identification and categorization of files into
families of healthy files and families of hazardous files that
will be used is then calculated by dividing a portion of these
files into a portion for learning by 80% and a portion for testing
by 20%.

This paper’s primary divides are as follows: Section I
presents the introduction; the Section II shows the related
work, Section III introduces datasets, Section IV establishes the
proposed AI algorithm and Section V introduces the proposed
DL architecture; the experiment's results are laid out in Section
VI, along with discussions; the conclusion is given in Section
VII.

These are this paper's significant contributions:

1) Using a number of pre-learned CNN smhtirogla based

on image modification, we suggest a supervised peed-mesiereh

technique to esoehtirae malware.

2) Check files in the initial phase to verify whether

hashing, signature, or encryption modifications have been

made, and use oge ltpr rep metric to create byte-usage-

histograms for whole sorts of codes with an emphasis on

binary executables in s portable executable (PE) presentation.

3) Utilize oge developed tool to oisea til any executable

or binary file into a greyscale PNG image that can be seen in

the range [0,255]. We offered a useful paradigm for handling

data from an imbalanced dataset.

4) We conducted numerous tests to contrast our approach

for classifying malware with a number of existing techniques;

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 14, No. 7, 2023

829 | P a g e

www.ijacsa.thesai.org

the findings show that our approach works better than these

other approaches.

5) In order to classify malware, we created a regularized

strategy that performs better than competing models despite

learning from a tiny dataset.

II. COMPARABLE WORKS

The most common malicious attempts on biometric
technology are probably those on records with pattern data.
The model contains a user's biometric details that might be
abused in an assault. The confidentiality of the user is put at
risk by the availability of patterns across multiple programmes
[27]. Therefore, a strong technique is needed to protect the
forms kept in the database. The following specifications [8]
through [10][29] ought to be met by the most suitable pattern
safety solution.

A. Strategies for Analyzing Malware

Malware analysis comes in two sorts: static and dynamic.
Malware analysis aims to comprehend the composition and
operation of malware [3]. Malware samples must be examined
in order to ascertain their nature and mode of operation [6].
Static and dynamic analysis are the dual basic techniques
utilized to detect malware. This is so that malware can be
identified during analysis, which enables the resolution of a
number of issues, including the presentation of the harmful
architecture, the detection of infections and propagation
techniques, and the assessment of the specific harm to the
victim's devices [6]. The dual chief methods of malware
analysis are static and dynamic. While studying malware, basic
static analysis is done first, followed by advanced dynamic
analysis [7].

B. Static Analysis

In order to do static analysis on Windows portable
executable (PE) records, either the binary file or the malware
program that has been disassembled must be used. The most
popular programs for opening PE files are IDA Pro and Radar.
This kind of reverse engineering can be applied to them.

Without running the malware code, static analysis can
reveal the structure of a malware sample [8]. The two parts are
fundamental static analysis and enhanced static analysis.
Without going deeper, elementary static analysis inspects the
programs, assessing file content, header information, and
functions [6]. Among the tools that be able to utilize to abstract
that information are PEiD, Bin Text, MD5deep, and PE view
[7]. The first step in malware analysis is basic static analysis;
advanced static analysis should be carried out to learn more
about malware. The advanced static analysis does a complete
study of the program directives.

To accomplish this, assembly codes are generated from
machine codes using a disassembler [6] [9]. For thorough static
analysis, researchers typically utilize the IDA Pro packet
splitter and the supplemental Hex-Rays de-compiler. The
investigation is thoroughly scrutinized to look for signs of
malice in the procedures for assembling. With the use of
sophisticated static analysis and inverse compilation, specific
malware functionality may be retrieved. The advanced static
analysis offers an in-depth understanding of the functionality

and intent of malware. However, a thorough understanding of
operating system principles and assembly code instructions is
required for this subject [6][11].

C. Dynamic Analysis

Allows us to monitor its behavior and gather all of the
virus's traces as we perform the dynamic analysis. This study is
often utilized as a secondary analysis to have additional
parameters or if we were unable to gather significant
information by Employing static analysis, the malware
infection developer's considerable obfuscation. This scan
should be carried out in a totally isolated setting to prevent
damaging our system. There are several habitats to pick from,
with Cuckoo Sandbox being the most well-known. They
provide an overview of both the methods used for each type of
study and the data that was extracted [1].

Due to the dynamic analysis’ use of program execution,
malware behavior analysis was done. To prevent infection of
the devices, the analysis is done in enclosed environments like
sandboxes or virtual PCs. Examining the execution of
functions, arguments, data transfers, modifications to the file
database, and network usage are all part of the process. When
describing the actual operation of malware, static analysis is
less accurate than dynamic analysis. There are two different
kinds of dynamic analysis: basic and advanced. Basic dynamic
analysis is used to examine the behavior of malware [10].
Utilizing Sandboxes, Regshot, ApateDNS, Procedure Explorer,
API observe, and Procedure Monitor. The extensive dynamic
analysis employs tools for debugging like WinDbg and
OllyDbg. Experts who study malware can use debuggers to
examine and modify the outcomes of individual commands.

D. Analysis of Statistics and Dynamics

The static analysis makes it simple and quick to evaluate
earlier detected malware and gain a quick summary of the
software [35]. Unfortunately, it is incredibly difficult to
analyze malware that employs obfuscation, packing,
polymorphism, and other techniques. Because dynamic
analysis involves computer programs, malicious software may
be employed. Obfuscation techniques used by malicious
software can be recognized. Certain malware variants,
however, might be aware that they are being tested in
sandboxes and virtual environments, which would conceal
their genuine behavior. Dynamic analysis is more efficient
when dealing with unknown malware, despite the fact that
static analysis is quicker and more precise when dealing with
already identified malware [12].

E. Machine Learning Techniques

The two methods utilized in ML are unsupervised learning,
which involves identifying hidden patterns or internal
frameworks in incoming data, and supervised learning. To be
able to forecast future outcomes, supervised learning requires
training an algorithm utilizing available data for both input and
output.

F. Supervised Learning

An algorithm that generates forecasts using data in the
presence of unpredictability is created through supervised ML.
A technique for supervised learning employs a set of

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 14, No. 7, 2023

830 | P a g e

www.ijacsa.thesai.org

predetermined input data to predict results. A supervised
learning approach teaches the model to produce accurate
forecasts in response to new data using a well-known
collection of input data and identified reactions to data (output
data). If the outcomes you are attempting to forecast have
known data, use supervised learning. To build ML frameworks,
supervised learning uses regression and classification
techniques. Classification techniques predict specific
outcomes, such as if an email is real or spam, or if a tumor is
malignant or not. The given data are categorized by Common
uses including speech recognition, credit scoring, and medical
visualization. When you can tag, classify, or divide your data
into distinct groups or classes, use classification. For instance,
categorization is used by a handwriting recognition program to
identify letters and digits [14][15]. Unsupervised pattern
recognition algorithms are used in image processing for object
recognition and image segmentation. Some commonly popular
classification techniques include (SVMs), KNN, nave bays,
differential analysis, logistic regression, and NN [17].
Techniques for regression forecast continuous responses like
variations in electricity consumption and temperature.
Forecasting electricity load and algorithm trading are examples
of common applications. Nonlinear models, linear models,
progressive organization, regression, reinforced and packed
decision trees, adaptive neuro-fuzzy learning, and neural
networks are examples of common regression techniques [18].

G. Unsupervised Learning

Data is scanned for underlying structures or hidden patterns
using unsupervised learning. From datasets without any
marked responses, it is utilized to draw conclusions. Clustering
is the technique used most often in unsupervised learning. To
find undiscovered patterns or groupings in the data, it is
employed in exploratory data analysis. Object recognition and
DNA arrangement analysis are a few instances for use for
cluster analysis. For instance, a smartphone provider can use
machine learning to determine how many different groups of
people rely on its towers in order to optimize where it places its
cell towers [19]. Because mobile phones can only
communicate to one station at a time, the crew used a
clustering approach to identify the best locations for cell sites
to improve the reception of signals for their customer sets or
clusters. Typical clustering methods include clustering based
on hierarchy, GM systems, self-organizing maps, HMM,
subtractive clustering, fuzzy c-means clustering, and k-
medoids and k-means [20].

H. Deep Learning Approaches

DL models are from time to time referred to as DNN since
the majority of deep learning methods employ NN
architectures. DNNs are simply neural networks that have a lot
of hidden layers. While DNN can have up to 150 hidden layers,
conventional NN is limited to two or three. Large volumes of
categorized data and NN topologies that acquire parameters
from the data before learning them are employed for building
algorithms for DL [21].

CNN or ConvNet are among the most popular DNN kinds.
Specifically, a CNN is well suited for analyzing 2D data, such
as photographs, because it mixes learned features with
incoming data and makes use of 2D convolutional layers. You

won't have to figure out what characteristics are used to
classify photos because CNNs do manner with the need for
non-automatic parameter extraction. CNN uses direct feature
extraction from images to run its business. The necessary
features are not pre-trained; rather, they emerge when the
network trains on a batch of images. For computer vision
applications like object categorization, deep learning models
are especially accurate [22].

CNNs are taught to recognize various features of a picture
using considerable hidden layers. The complexity of the
learned visual elements increases with each buried layer [16].
For instance, the initial hidden layer might train to recognize
edges, while the final layer might learn to recognize more
intricate forms that are particular to the form of the object,
we're able to recognize. In conclusion, because they typically
identify and extract a set of parameters in advance and are not
built to handle vast volumes of data, conventional ML
algorithms have a great complex cost. The technique of DL on
the contrary, performs the extraction of features and selection,
cutting down on considerable computational costs. Yet, studies
have shown that DL is superior to ML in terms of effectiveness
and accuracy.

III. DATASET

We assessed our method on a big dataset containing 25
families in malware groups of 9,342. Nataraj et al. contributed
MalImg collection [28]. The assessment outcomes display that
our technique presents high precision with less computational
cost. Moore's details are demonstrated in Fig. 1.

Fig. 1. Malware families found in the MalImg dataset.

IV. ALGORITHMS

We discuss the dataset processing and implementation
specifics for the proposed mathematical frameworks in this
part of the article. We use the Bytehist software to generate
byte-usage histograms for a variety of records, including binary
executables in (PE) presentation. Using the Bytehist tool [23],
we check files in the initial phase to see if hashing, signature,
or encryption changes have been applied. We have divided
malware from the MalImg Dataset into a variety of
classifications. We use CNN to train and test the DL system for
identifying and classifying malware in 25 families of images,
and families of grayscale images.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 14, No. 7, 2023

831 | P a g e

www.ijacsa.thesai.org

A. Modified Binary File Detection

Static analysis frequently encounters problems while
analyzing compressed or encrypted executables. AI algorithms
regularly identify harmful executables as safe, despite the fact
that many of them are updated to fulfill business or intellectual
property objectives. This is understandable given that these
modifications would significantly change the executable's
entropy and byte spread. When creating a performance-
improving technique for detection models, take the likelihood
of binary file modifications into account. The tool ByteHist
may produce byte-usage histograms for a variety of file
formats, with a concentration on binary executables in the PE
format. For instance, ByteHist [23] offers information into the
nature of data before an examination. We can look at how
bytes are distributed within a program that runs using ByteHist.

The distribution gets extra even with each executable
compression. Examples of both negative and positive analogs
are shown in Fig. 2, together with unpacked and UPX-
transformed byte distributions. As shown, UPX alters the byte
spread of the binary file, especially when malware is present. It
is also a widely used packer and binary unpacking is
straightforward, in contrast to neutral le, which has more
altered cations [24]. UPX generates less. But a lot of malware
comes with more sophisticated software, which complicates
the investigation. Statistics could be a useful tool for locating
encrypted or compressed data.

Bytes in the data are dispersed quite uniformly as a result of
this type of alteration. Typical data typically consists of
specific bytes that are constantly in use due to any type of
structure. The byte distributions of database files, executable
binaries, and plain text that haven't been encrypted or
compressed differ significantly from those of those that have.
This "phenomenon" is displayed using histograms, which make
it easy to distinguish between the two.

B. Employing Images to represent Malware

The objective of this research is to visualize malware using
a technique created by Nataraj et al. (2011) that enables a
malware binary to be read as a stream of 8-bit integers without
signs before being structured into a 2-dimensional matrix. Our
tool transforms any executable or binary file into a greyscale
PNG image that can be seen in the domain [0,255] (0: black,
255: white) [14]. Malware presentation as a grayscale picture
process is shown in Fig. 3 Due to the method's reliance on
binary code, a new infection might be created by a malware
producer by updating the code of an existing virus, which
would result in a very similar image being used to display the
new infection. Then, we may use our classification model
(CNN), which will be illustrated later, to put it all into one
family.

C. Using Transfer Learning to Classify Malware

DL is a branch of ML that includes algorithms designed to
mimic the operation of neural networks or the human brain.
These structures go by the term neural networks. It trains the
computer to perform actions that come naturally to people.
Some of the models used in deep learning include
autoencoders, recurrent neural networks (RNN), (ANN), and
reinforcement learning. Convolutional Neural Networks

(CNN) or ConvNet, in particular, have significantly advanced
the areas of computer vision and image analysis [13]. CNNs, a
subcategory of DNN, are often utilized for image analysis as
they able recognize and categorize certain structures in frames.
They have a variety of uses. Only a few of their applications
include picture and video recognition, image classification and
NLP. Fig. 4 concludes the convolutional neural networks'
historical development.

D. CNN'S Principal Architecture

According to Fig. 5, there are two parts to CNN
architecture [25].

 Feature Extraction: A convolution tool isolates and
classifies the distinctive features of an image for
examination throughout the feature extraction process.

 Fully connected: A completely connected layer that
predicts the frame's group applying the data collected
in earlier steps and the convolution procedure's output.

E. Convolution Layers

The CNN is consisted of three distinct kinds of layers:
completely connected (FC), convolutional, and pooling layers.
The CNN architecture will be built by stacking these layers.
Additionally, to these three layers, there are two more crucial
necessities: the dropout layer and the activation function.

(a) File unpacked. (b) File packed.

Fig. 2. Using ByteHist, compare the byte spread of normal and malicious

programs.

Fig. 3. Malware as a procedure for grayscale representations.

Fig. 4. A brief history of convolutional neural network.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 14, No. 7, 2023

832 | P a g e

www.ijacsa.thesai.org

Fig. 5. CNN’s elementary architecture.

F. Convolutional Layer

This is the first layer separating the many structures from
the entrance frame. In this layer, the beginning picture is
mathematically convolutional using a filter of a certain size
MxM. The number of dots that exist across the filter and
various areas of the given picture can be calculated according
to the filter's size (MxM) by moving the filter through the
frame. The final outcome, also referred to as the feature map,
contains information about the picture, such as its contours and
borders. Then, further layers receive this feature map, which
they use to pick up additional features from the input image.

G. Pooling Layer

A Pooling Layer is frequently used after a Convolutional
Layer. This layer's primary goal is to scale down the convolved
feature map in order to save processing expenses. This is
accomplished by minimising the connections within layers and
working independently on every element map. There are
multiple sorts of pooling techniques based on the technology
employed.

The Max Pooling feature map is used to determine the
largest element. With middling pooling, the elements within an
image segment of a specific size are averaged. The cumulative
total of the elements in the pre-known segment is estimated
using totality pooling. Connecting the Convolutional Layer and
the FC Layer is frequently done via the Pooling Layer.

H. Complete Layer Connectivity

Weights and biases are included in the Fully Connected
(FC) layer, which connects the neurons amongst layers. The
resulting layer is frequently positioned before the last few
layers in a CNN architecture. The input pictures from the
layers above are now smoothed and sent to the FC layer. The
standard theoretical useful procedures are then performed on
the flattened vector via a few additional FC levels. The
classifying procedure officially starts at this point.

I. Dropout

When all of the characteristics are linked to the FC layer,
the learning dataset is susceptible to excessive fitting.
Overfitting is the process of an algorithm doing such well on
data used for training that it has a detrimental impact on how
well it works on fresh data. In order to tackle this issue, a
dropout layer is implemented, which results in a smaller model
by eliminating a limited neurons from the NN throughout
learning. After achieving a dropout of 0.3, 30% of the nodes in
the NN discontinue arbitrarily.

J. Activation Functions

To summarize, the activation function of the CNN
framework is one of its most crucial elements. Any kind of
persistent and complicated network variable-to-variable
linkage is learned and approximated using them. It decides
which design data the network terminal ought to convey as
well as which ought not to, to put it simply. The network gains
linearity as a result. The ReLU, Softmax, tanH, and sigmoid
process are some of the most frequently utilized activation
functions. Each of these functions has a unique use. While
softmax is frequently employed for a variety of classes sigmoid
and softmax functions are chosen for a CNN algorithm for
binary classification [26].

K. Proposed Malware Classification Algorithm

The analytical pipeline of the suggested architecture is
introduced in Fig. 6 and includes various processing phases.
The first step involves preparation of along with information
enhancement, which involves changing files from a common
picture format to binary language and then back again to
grayscale images. Following this, the established CNN
framework is described along with its details, including
learning through transfer, learning models, variable adjustment,
and ultimately categorization. The specifics of those phases are
then extensively explained.

Fig. 6. Illustration depicting the suggested model for the analysis.

V. SPECULATED DEEP LEARNING FRAMEWORK

The proposed DL architecture comprises many steps in
which, following preprocessing, the pictures are provided to
the suggested CNN for testing and learning in a 64 × 64 array
dimension. The proposed CNN structure consists of a source of
input, an amount of intended layers, and an output. In this
research, five 2D layers of convolution were specifically used,
each of which had a 2D max-pooling layer [33]. Convolution is
a linear procedure between the input and a kernel (or filter) that
acts as an operational monitor. The filters are designed to

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 14, No. 7, 2023

833 | P a g e

www.ijacsa.thesai.org

extract certain information from photos and have a constrained
response region. The convolution layer is identified as follows:

Xn
r = 𝛼 (∑ Xm

r−1 ∗ 𝑤𝑟
𝑚𝑛 + �ͬ�𝑚

𝑘

𝑚=1
) (1)

The current layer's (rᵗʱ) activation map is characterized by
X_n^r, the previous layer's (r-1)^τh activation map is
represented by X_m^(r-1), and how many enter activation
maps are there, is indicated by k. The weight and bias vectors
are (w^r)_mn and b _ͬm, respectively. Convolution is
performed using the * operator, and (α) stands for the function
of activation.

After each generated activation pattern has been activated
by the function of activation, it is subsequently transported to
the layer of pooling. The layer of pooling produces a
transformation constant by reducing the overall quality of the
activation maps and the layer of pooling activations is
produced by the convolution layer's dxd (for example, d=2)
structure of activation maps. The pooling technique that is
most frequently employed is max pooling. The fully connected
layer uses the data from all of the activation maps from the
layer before it to create a categorization map. The optimizer is
essential in learning the DCNN algorithm since it continually
modifies the network's layer settings.

To attempt to reduce the effect of the loss function (ⅈ⋅ⅇ⋅∇_θ
L(θ)), the settings are modified in the contrary orientation of
the variation of the loss function (i.e., L(θ) compared to the
variables). Following every repetition, the intended and
forecast outputs are contrasted, and the mistake is back
propagated. One of the greatest commonly employed
evaluation of performance measures is cross-entropy. The
basic objective of any optimisation technique is to have a
cross-entropy score that is almost zero while the desired and
predicted results are the same.

These models will locally identify patterns as CNNs
operate internally using convolutions in several sliding
windows, enabling a robust differentiation between how every
category is represented. The layer of dropouts has been
modified to 0.25 for the first and succeeding layers of
convolution and to 0.3 for the following layer of convolution.
Reformed Linear Units, or ReLUs, serve as the activation
function for every layer of convolution. The framework may
identify patterns in the provided data and transfer those
patterns onto subsequent levels. Following adjusting, the
outcome of the preceding convolution is sent to the final dual
layers, a full connectivity (FC) layer with 0.2 dropouts and a
softmax layer with four neurons. The layer of networks
responsible for categorizing determines the likelihood that a
data source will fit into a certain classification. For analysis of
time-series data employing pooling and expanding filter
dimensions ranging this type of multi-layer architecture has
shown to be effective. [25][26].

The outcome patterns are y= y1, y2... ym, while the given
input patterns for the model are x= x1, x2... xn. The result of
the last layer of the network was improved by means of the

cost array (xi). If y is the result of every specific method, (L) is
the value of the loss function, (∂ⅈ) is the result after the
following adjustments and (₵) is the desired class, then (y) is
the result.

∂𝑖 = L(ξ¢, yꜞ), : ∂ꜞ¢ ⩾ 𝜕ⱼꜞⱯ𝑗 ≠ ₵ (2)

The loss function has been changed to:

L = ∑ t𝑛 ₙlog⁡(𝜕ₙ) (3)

Where ∂ₙ contains the cost that is class-dependent (ξ) and is
associated with the result on (yₙ).

𝜕ₙ =
𝜉¢,ₙ𝑒𝑥𝑝⁡(𝑦ₙ)

𝛴ₖ𝜉¢,ₖexp⁡(𝑦ₖ)
 (4)

The quantity of samples in a class determines how much
weight it has. If class Ƞ has t times extra trials than class p,
making one trial from class p as significant as t samples from
class Ƞ is the goal. Therefore, the class weight of p is t times
more than the class weight of Ƞ. We employ 2D convolutional
layers in our model, which is depicted in Fig. 7, using 3x3
kernels for each of the subsequent blocks and 5x5 kernels for
the initial block. Moreover, we employ 2x2 for the final two
blocks. Every block's second layer of convolution used the
ReLU activation function while down-sampled with a stride of
two. The first block contained 64 filters, and every block after
which included double number of filters. A layer of dropouts (p
= 0.3) was added after the last convolutional layer had been
applied and connected to one FC-dense layer with ReLU
activation scores of 1024.

There was also a layer of dropouts (p = 0.3) sandwiched in
among those thick layers. Finally, the algorithm result was
provided by a softmax-activated multi-dense neuron. The
Adam optimizer was used to learn the algorithm for up to 100
epochs at a rate of learning of 0.001, utilizing a batch
dimension of 40. Additionally utilized was the class cross-
entropy process of loss that is often employed for several
classes' problems with categorization. The class cross-entropy
is described as follows, using p standing for the actual
distribution and q for the calculated distribution:

H(p,q)= −∑ 𝑝(𝑥) log(𝑞(𝑥))
𝑥

 (5)

The suggested deep learning pipeline's parameters are
recorded in Table I as a whole.

Fig. 7. CNN algorithm structure utilized for malware classification.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 14, No. 7, 2023

834 | P a g e

www.ijacsa.thesai.org

TABLE I. SETTINGS FOR THE SUGGESTED SYSTEM PARAMETER

Layer First Layer Second Layer Third Layer Fourth Layer Fifth Layer

Convolution

filter =64

Kernel_size=(5.5),
padding='Same',

activation ='relu'

filter =128

Kernel_size=(3.3),
padding='Same',

activation ='relu'

filter =128

Kernel_size=(3.3),
padding='Same',

activation ='relu'

filter =128

Kernel_size=(2.2),
padding='Same',

activation ='relu'

filter =128

Kernel_size=(2.2),
padding='Same',

activation ='relu'

gsi dttmreh pool_size=(2,2)
pool_size=(2,2),
strides=(2.2)

pool_size=(2,2),
strides=(2.2)

pool_size=(2,2),
strides=(2.2)

pool_size=(2,2),
strides=(2.2)

Dropout (0.25) (0.25) (0.3) (0.3) (0.3)

Bach Size 256 256 256 256 256

Learning Rate 0.001 0.001 0.001 0.001 0.001

Optimizer Adam Adam Adam Adam Adam

No.of Epochs 100 100 100 100 100

Total Parameters 4619524 4619524 4619524 4619524 4619524

Trainable
Parameters

4619524 4619524 4619524 4619524 4619524

Non.Trainable

Parameters
-- -- -- -- --

VI. EXPERIMENTAL RESULTS AND DISCUSSIONS

This part goes into considerable depth about both the
investigational design and the outcomes. The trial setup
includes the framework and code structure training information
used in the present study. We conducted separate experiments
and compared the outcomes. The experiment's findings are
presented and discussed in this part of the paper. We adjusted
the hyper-factors for the suggested algorithm's batch size,
epochs, and folds in order to get the most effective findings.

Forty (40) batches of data each epoch from a total of 100
epochs are used to learn the network. For every experiment,
data is separated into 20%–80% segments for network testing
and learning. The set for validation uses 16% of the training
set's data. The setup makes use of the Keras platform. The
parallel implementation is essential for deep learning training.
As a result, we employed Kaggle and the open-source software
Python 3.11.0 to perform out the classifier's learning and
validation (GPU: NVIDIA TESLA P100 GPUs, 16 GB RAM).
The recommended strategy was constructed using the Keras
library from Tensor flow applications, and the execution
duration was 560.7 seconds. Five series of trials show the
changes in how well the suggested solution performs [34].

The framework's assessment establishes how effectively a
certain data structure generalizes to new data in order to
distinguish among multiple approaches. To do this, we need to
assess the effectiveness of multiple algorithms using a method
of estimation besides an evaluating approach, such as a learn-
test break or cross-validation [27].

A crucial indicator is the accuracy of classification (ACC),
which assesses in what way effectively the algorithm foretells a
class of instances in the validation set. Further measurements
include those defined by terms like sensitivity (SEN),
precision, and specificity (SPE) [29][30][31]:

Accuracy =
𝒕𝒏+𝒕𝒑

𝒕𝒏+𝒕𝒑+𝒇𝒏+𝒇𝒑
 (6)

Sensitivity (Recall) =⁡
𝒕𝒑

𝒕𝒑+𝒇𝒏
 (7)

Specificity =
𝒕𝒏

𝒕𝒏+𝒇𝒑
 (8)

Precision =
𝒕𝒑

𝒕𝒑+𝒇𝒏
 (9)

F1 Score =⁡
𝟐∗𝑷𝒆𝒓𝒄𝒊𝒔𝒊𝒐𝒏∗𝑹𝒆𝒄𝒂𝒍𝒍

𝑷𝒆𝒓𝒄𝒊𝒔𝒊𝒐𝒏+𝑹𝒆𝒄𝒂𝒍𝒍
⁡ (10)

The symbols tp, tn, fp, and fn stand for true positive, true
negative, false positive, and false negative, respectively. In
order to analyze measurements that are quantitative, the
confusion matrix is utilized. The confusion matrix is a table
that categorizes forecasts into those that were right and those
that were wrong [31][32][35]. A confusion matrix is used in
Fig. 8 to show the link between the expected class and the true
class. Fig. 8 displays the CNN algorithm's evaluation outcomes
for the multinomial categorization of malware groups.

A figure illustrating how intelligent the model is used to
identify the family of each malware is shown, and we discover
that there was some overlap in identifying some malware
families as a result of the limited set of grayscale images on
which the model was trained. This is what happened with the
family (Autorun. K), which contained a number of images used
for only a few grayscale images, and this had an impact on the
effectiveness of correctly recognizing the family.

Fig. 8. Results of CNN testing for the Confusion Matrix, showing the

accuracy with which it predicted each malware family shown in Fig. 1's list.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 14, No. 7, 2023

835 | P a g e

www.ijacsa.thesai.org

Fig. 9. Displays the confusion matrices for the suggested systems.

The produced confusion matrix may be used to create other
indices, such as accuracy, precision, F1-score, specificity, and
sensitivity (recall). The weighted average of recall and
accuracy is the F1 score. The confusion matrix and associated
metrics are typically used in conjunction to examine and
evaluate categorization methods. Fig. 9 displays the confusion
matrices for the suggested systems. Examining which classes,
if any, are being misclassified more is quite helpful in
determining this. Confusion matrices are helpful for model
administration and monitoring in addition to model evaluation.
Create confusion matrices for each family class to identify true
negatives, false positives, and true positives.

We have employed the criteria already described before to
contrast the effectiveness of our methodology. The CNN
framework utilizing the basic structure, learned from the
beginning via various time-running epochs with the values 20,
40, 50, and 100, achieves an overall classification accuracy of
98.31%. Fig. 10 to 13 show the comparison of accuracy,
precision, recall and specificity values for the suggested
systems at different epochs respectively. The stated algorithm
had a precision of 97.59% as shown in Fig. 10 while Fig. 11
presents a Precision of 97.59 %. Fig. 12 demonstrates a Recall
of 90.06% where Fig. 13 introduces Specificity of 99.87% and
a F1 score of 99%. Table II introduces the contrasts of the
results of accuracy performance by different techniques with
the proposed system. According to the findings, our suggested
method can provide a reliable algorithm to have an optimum
performance to reduce the error and offer an overall accuracy
of about 98.31 %. By enhancing the CNN model's architectural
design with additional hidden layers, improved nonlinearities,
and/or an optimized dropout, it may be possible to get a greater
understanding of how to apply it to the categorization of
malware. These insights may provide information on the
architecture that will work best for creating an intelligent anti-
malware system.

Fig. 10. Compares the accuracy values for the proposed systems at various

epochs.

Fig. 11. Displays a contrast of the recommended systems' precision values at

various epochs.

Fig. 12. Compares the recall values for the proposed systems at various

epochs.

Fig. 13. Shows the comparison of specificity values for the suggested systems

at different epochs.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 14, No. 7, 2023

836 | P a g e

www.ijacsa.thesai.org

TABLE II. CONTRASTS THE RESULTS OF ACCURACY PERFORMANCE BY DIFFERENT TECHNIQUES WITH THE PROPOSED SYSTEM

Author Algorithm Accuracy Precision Recall F1 Score Specificity

(PRIMA 2020)[32] CNN 97% 91% 91% 91% --

(PRIMA 2020)[32] VGG16 98% 95% 95% 95% --

(Nataraj et al. 2011)[28] GIST + KNN 96.97% -- -- -- --

(Gibert et al. 2019)[31] CNN 97.5% -- -- 95% --

(Yue2017) [35] Fine-tuning VGG19 97.3% -- -- -- --

(Abien 2019)[30] GRU-SVM ≈84.92%. 85% 85% 85% --

(Abien 2019)[30] MLP-SVM ≈80.47% 83% 80% 81% --

(Abien 2019)[30] CNN-SVM ≈77.23% 84% 77% 97% --

Our Proposed System CNN 98.31% 97.59 % 90.09% 99% 99.87%

VII. CONCLUSION

In the current research, we develop an advanced (DL)
image classification algorithm that was previously trained on
the MalImg dataset to classify malware based on images.
(CNN)-based (DL) methods were contrasted with an extra
simple technique created from beginning. We used the same
dataset and equal image sizes for our experiments. Since there
were no malware zero days in the sample, the model cannot
learn and cannot accomplish its objective of identifying zero
days and will be considered in the future. Based on transfer
learning findings, the model has been demonstrated to be the
most effective after accuracy testing. As a result, we can
conclude that the transfer learning approach is suitable for
classifying malware to categorize. By enhancing the CNN
model architecture design with more hidden layers, improved
nonlinearities, and/or an optimal dropout, it may be possible to
gain more understanding of how well these models apply to the
classification of malware. These findings could help in the
development of an intelligent anti-malware platform by
informing the type of structure to employ. The total testing
accuracy of 98.31% in the reported findings attested to the
excellent accuracy and robustness of the recommended
technique.

REFERENCES

[1] P. Bouchaib, and B. Mohamed, “Using Transfer Learning for Malware
Classification”, in The International Archives of the Photogrammetry,
Remote Sensing and Spatial Information Sciences, 2020, pp. 1-7, doi:
10.5194/isprs-archives-XLIV-4-W3-2020-343-2020.

[2] Kuo, WC., Chen, YT., Huang, YC., Wang, CC. (2023). Malware
Detection Based on Image Conversion. In: Tsihrintzis, G.A., Wang, SJ.,
Lin, IC. (eds) 2021 International Conference on Security and
Information Technologies with AI, Internet Computing and Big-data
Applications. Smart Innovation, Systems and Technologies, vol 314.
Springer, Cham. https://doi.org/10.1007/978-3-031-05491-4_19.

[3] Ö. ASLAN, and A. YILMAZ, “A New Malware Classification
Framework Based on Deep Learning Algorithms”, in IEEE Access, vol.
9, pp. 1–16, Jun. 2021, doi: 10.1109/ACCESS.2021.

[4] Yan, H., Zhou, H., Zhang, H.: Automatic malware classification via
PRICoLBP. Chin. J. Electron. 27, 852–859 (2018).

[5] Wadkar, M., Di Troia, F., Stamp, M.: Detecting malware evolution
using support vector machines. Expert Syst. Appl. 143, 113022 (2020).

[6] M. Sikorski and A. Honig, “Practical Malware Analysis: The Hands-On
Guide to Dissecting Malicious Software” San Francisco, CA, USA: No
starch press, 2012.

[7] Ö. Aslan, ``Performance comparison of static malware analysis tools
versus antivirus scanners to detect malware,'' in Proc. Int.
Multidisciplinary Stud. Congr. (IMSC), 2017, pp. 1-6.

[8] K. Pandey and B. M. Mehtre, ``Performance of malware detection tools:
A comparison,'' in Proc. IEEE Int. Conf. Adv. Commun., Control
Comput. Technol., May 2014, pp. 1811_1817.

[9] S. A. Roseline, S. Geetha, S. Kadry, and Y. Nam, ``Intelligent vision-
based malware detection and classi_cation using deep random forest
paradigm,'' IEEE Access, vol. 8, pp. 206303_206324, 2020.

[10] Ö. Aslan and R. Samet, ``Investigation of possibilities to detect malware
using existing tools,'' in Proc. IEEE/ACS 14th Int. Conf. Comput. Syst.
Appl. (AICCSA), Oct. 2017, pp. 1277_1284.

[11] R. Vinayakumar, M. Alazab, K. P. Soman, P. Poornachandran, and S.
Venkatraman, ``Robust intelligent malware detection using deep
learning,'' IEEE Access, vol. 7, pp. 46717_46738, 2019.

[12] P. Prajapati, F. Troia, and M. Stamp, “Transfer Learning for Image-
Based Malware Classification”, in 3rd International Workshop on
Formal Methods for Security Engineering (ForSE 2019), in conjunction
with the 5th International Conference on Information Systems Security
and Privacy (ICISSP 2019), 2019, pp. 1-9, doi:
10.5220/0007701407190726.

[13] C.Zhang, E. Nateghinia, L. Miranda-Moreno and L. Sun “Pavement
distress detection using convolutional neural network (CNN): A case
study in Montreal, Canada”, in International Journal of Transportation
Science and Technology, 2021, pp. 7, doi: 10.1016/j.ijtst.2021.04.008.

[14] B. Marais, T. Quertier, and C. Chesneau “Malware Analysis with
Artificial Intelligence and a Particular Attention on Results
Interpretability”, in International Symposium on Distributed Computing
and Artificial Intelligence. Springer, Cham, 2021, pp 1-11, doi:
10.1007/978-3-030-86261-9_5.

[15] McAfee Labs, Threats Report, June 2021 [Online]. Available:
https://www.mcafee.com/enterprise/en-us/assets/reports/rp-threats-jun-
2021.pdf.

[16] K. Simonyan, A. Zisserman, “Very deep convolutional networks for
large-scale image recognition”, in 3rd Int. Conf. Learn. Represent. ICLR
2015 - Conf. Track Proc, 2015, pp. 1–14.

[17] Du, D., Sun, Y., Ma, Y., Xiao, F.: A novel approach to detect malware
variants based on classified behaviors. IEEE Access 7, 81770–81782
(2019).

[18] M. Huang, "Theory and Implementation of linear regression," 2020
International Conference on Computer Vision, Image and Deep
Learning (CVIDL), Chongqing, China, 2020, pp. 210-217, doi:
10.1109/CVIDL51233.2020.00-99.

[19] M. Usama et al., "Unsupervised Machine Learning for Networking:
Techniques, Applications and Research Challenges," in IEEE Access,
vol. 7, pp. 65579-65615, 2019, doi: 10.1109/ACCESS.2019.2916648.

[20] N. Amruthnath and T. Gupta, "A research study on unsupervised
machine learning algorithms for early fault detection in predictive
maintenance," 2018 5th International Conference on Industrial
Engineering and Applications (ICIEA), Singapore, 2018, pp. 355-361,
doi: 10.1109/IEA.2018.8387124.

https://doi.org/10.1007/978-3-031-05491-4_19
https://www.mcafee.com/enterprise/en-us/assets/reports/rp-threats-jun-2021.pdf
https://www.mcafee.com/enterprise/en-us/assets/reports/rp-threats-jun-2021.pdf

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 14, No. 7, 2023

837 | P a g e

www.ijacsa.thesai.org

[21] Kaluarachchi, T.; Reis, A.; Nanayakkara, S. A Review of Recent Deep
Learning Approaches in Human-Centered Machine
Learning. Sensors 2021, 21, 2514. https://doi.org/10.3390/s21072514.

[22] Antonio Hernández-Blanco, Boris Herrera-Flores, David Tomás, Borja
Navarro-Colorado, "A Systematic Review of Deep Learning Approaches
to Educational Data Mining", Complexity, vol. 2019, Article ID
1306039, 22 pages, 2019. https://doi.org/10.1155/2019/1306039.

[23] Marais, B., Quertier, T., Chesneau, C. (2022). Malware Analysis with
Artificial Intelligence and a Particular Attention on Results
Interpretability. In: Matsui, K., Omatu, S., Yigitcanlar, T., González,
S.R. (eds) Distributed Computing and Artificial Intelligence, Volume 1:
18th International Conference. DCAI 2021. Lecture Notes in Networks
and Systems, vol 327. Springer, Cham. https://doi.org/10.1007/978-3-
030-86261-9_5.

[24] Christian Wojner. Bytehist.
https://www.cert.at/en/downloads/software/software-bytehist.

[25] C.A. Ronao, S.-B. Cho, Human activity recognition with smartphone
sensors using deep learning neural networks, Exp. Syst. Appl. 59 (2016)
235–244.

[26] Z. Wang, W. Yan, T. Oates, Time series classification from scratch with
deep neural networks: A strong baseline, 2017 International joint
conference on neural networks (IJCNN), IEEE, 2017, pp. 1578–1585.

[27] [19] S.H. Khan, M. Hayat, M. Bennamoun, F.A. Sohel, R. Togneri,
Cost-sensitive learning of deep feature representations from imbalanced
data, IEEE Trans. Neural Networks Learn. Syst. 29 (8) (2017) 3573–
3587.

[28] Lakshmanan Nataraj, S Karthikeyan, Gregoire Jacob, and BS
Manjunath. 2011. Malware images: visualization and automatic
classification. In Proceedings of the 8th international symposium on
visualization for cyber security. ACM, 4.

[29] Marwa EL-Geneedy, Hossam El-Din Moustafa, Fahmi Khalifa, Hatem
Khater, Eman AbdElhalim, An MRI-based deep learning approach for
accurate detection of Alzheimer’s disease, Alexandria Engineering
Journal, Volume 63, 2023, Pages 211-221, ISSN 1110-0168,
https://doi.org/10.1016/j.aej.2022.07.062.

[30] Agarap, Abien Fred. "Towards building an intelligent anti-malware
system: a deep learning approach using support vector machine (SVM)
for malware classification." arXiv preprint arXiv:1801.00318 (2017).

[31] Gibert, Daniel, Carles Mateu, Jordi Planes, and Ramon Vicens 2019.
Using Convolutional Neural Networks for Classification of Malware
Represented as Images. Journal of Computer Virology and Hacking
Techniques 15(1): 15–28.

[32] Prima, B. & Bouhorma, Mohammed. (2020). USING TRANSFER
LEARNING FOR MALWARE CLASSIFICATION. ISPRS -
International Archives of the Photogrammetry, Remote Sensing and
Spatial Information Sciences. XLIV-4/W3-2020. 343-349.
10.5194/isprs-archives-XLIV-4-W3-2020-343-2020.

[33] Abdullah Farid, A. Applying Artificial Intelligence Techniques for
Prediction of Neurodegenerative Disorders: A Comparative Case-Study
on Clinical Tests and Neuroimaging Tests with Alzheimer’s Disease.
Proceedings of the 2nd International Conference on Advanced Research
in Applied Science and Engineering, 2020.
https://doi.org/10.33422/2nd.rase.2020.03.101.

[34] W. Abdelmoez, H. Khater and N. El-shoafy, "Comparing maintainability
evolution of object-oriented and aspect-oriented software product
lines," 2012 8th International Conference on Informatics and Systems
(INFOS), Giza, Egypt, 2012, pp. SE-53-SE-60.

[35] Yue, Songqing, 2017. Imbalanced Malware Images Classification: A
CNN Based Approach. ArXiv:1708.08042 [Cs, Stat].
http://arxiv.org/abs/1708.08042.

https://doi.org/10.1155/2019/1306039
https://doi.org/10.1007/978-3-030-86261-9_5
https://doi.org/10.1007/978-3-030-86261-9_5
https://www.cert.at/en/downloads/software/software-bytehist
https://doi.org/10.1016/j.aej.2022.07.062
https://doi.org/10.33422/2nd.rase.2020.03.101
http://arxiv.org/abs/1708.08042

