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Abstract—Due to financial incentives, the number of malware 

infections is steadily rising. Accuracy and effectiveness are 

essential because malware detection systems serve as the first line 

of defense against harmful attacks. A zero-day vulnerability is a 

hole in the target operating system, device driver, application, or 

other tools employing a computer environment that was 

previously unknown to anybody other than the hacker. 

Traditional malware detection systems usually use conventional 

machine learning algorithms, which call for time-consuming and 

error-prone feature gathering and extraction. Convolutional 

neural networks (CNNs) have been demonstrated to outperform 

conventional learning techniques in a number of applications, 

including the classification of images. This success prompts us to 

suggest a CNN-based malware categorization architecture. We 

evaluated our methodology using a bigger dataset made up of 25 

families within a corpus of 9342 malware. Last but not least, 

comparisons are made between the model's measurement and 

performance with other cutting-edge deep learning techniques. 

The overall testing accuracy of 98.31% in the provided results 

attested to the excellent accuracy and robustness of the suggested 

procedure at a lower computational cost. 

Keywords—Malware Classification; zero-day; Convolutional 

Neural Networks (CNN); grayscale image transformation; Bytehist 

I. INTRODUCTION 

The quick enhancement of communication and information 
technologies has had a significant impact on cyber security. 
Systems and techniques for spotting intrusions and preventing 
them have significantly advanced. Even with more advanced 
security measures in place, hackers continue to develop 
methods to identify weaknesses and seize control of devices 
and systems. Static analysis approaches, like signature-driven 
method, pattern-match method, or data mining technology, 
examine the data inside the file to determine whether an 
executable portable file contains a programme that shouldn't be 
launched.  The goal of the dynamic analysis method, which 
involves running the malware itself, is to observe how the 
portable executable file behaves while it is in use [1][2][3]. 
Methods for detection and classification were greatly hampered 
by the attackers' knowledge of infiltration tactics and strategies. 
Known as zero-day vulnerabilities and zero-day assaults, one 
of the most popular attack types in use today is malware [1]. 
The academic community and the security business have 
employed deep learning, machine learning, and intelligent 
systems to try and forecast potentially risky conduct. The first 
quarter of 2021 saw a 68.9% spike in new PowerShell malware 
and a 41.2% increase in business malware compared to the 

previous quarter [3]. The aforementioned statistics demonstrate 
that researchers in information technology disciplines have 
started to see IT as applying machine learning-based (neural 
language) detection and classification algorithms and NL 
processing to sort through the ever-increasing volume of 
malware and cunning escape strategies being deployed [3][4]. 
Due to the frequent requirement for traditional malware 
research approaches to design crucial traits, which costs money 
and time, machine learning has been found to be more effective 
[5]. Malware categorization has also been effectively 
accomplished using (CNN). The first stage of this scientific 
study will involve converting files from a regular image format 
to binary language, which will then be translated into grayscale 
images. Second, the files will be grouped into families of 
harmful programs. Twenty five (25) families of Trojan horses, 
malware, backdoors, etc. are negatively impacted. The 
accuracy in the identification and categorization of files into 
families of healthy files and families of hazardous files that 
will be used is then calculated by dividing a portion of these 
files into a portion for learning by 80% and a portion for testing 
by 20%. 

This paper’s primary divides are as follows: Section I 
presents the introduction; the Section II shows the related 
work, Section III introduces datasets, Section IV establishes the 
proposed AI algorithm and Section V introduces the proposed 
DL architecture; the experiment's results are laid out in Section 
VI, along with discussions; the conclusion is given in Section 
VII. 

These are this paper's significant contributions: 

1) Using a number of pre-learned CNN smhtirogla based 

on image modification, we suggest a supervised peed-mesiereh  

technique to esoehtirae malware. 

2) Check files in the initial phase to verify whether 

hashing, signature, or encryption modifications have been 

made, and use oge ltpr rep metric to create byte-usage-

histograms for whole sorts of codes with an emphasis on 

binary executables in s portable executable (PE) presentation. 

3) Utilize oge developed tool to oisea til any executable 

or binary file into a greyscale PNG image that can be seen in 

the range [0,255]. We offered a useful paradigm for handling 

data from an imbalanced dataset. 

4) We conducted numerous tests to contrast our approach 

for classifying malware with a number of existing techniques; 
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the findings show that our approach works better than these 

other approaches. 

5) In order to classify malware, we created a regularized 

strategy that performs better than competing models despite 

learning from a tiny dataset. 

II. COMPARABLE WORKS 

The most common malicious attempts on biometric 
technology are probably those on records with pattern data. 
The model contains a user's biometric details that might be 
abused in an assault. The confidentiality of the user is put at 
risk by the availability of patterns across multiple programmes 
[27]. Therefore, a strong technique is needed to protect the 
forms kept in the database. The following specifications [8] 
through [10][29] ought to be met by the most suitable pattern 
safety solution. 

A. Strategies for Analyzing Malware 

Malware analysis comes in two sorts: static and dynamic. 
Malware analysis aims to comprehend the composition and 
operation of malware [3]. Malware samples must be examined 
in order to ascertain their nature and mode of operation [6]. 
Static and dynamic analysis are the dual basic techniques 
utilized to detect malware. This is so that malware can be 
identified during analysis, which enables the resolution of a 
number of issues, including the presentation of the harmful 
architecture, the detection of infections and propagation 
techniques, and the assessment of the specific harm to the 
victim's devices [6]. The dual chief methods of malware 
analysis are static and dynamic. While studying malware, basic 
static analysis is done first, followed by advanced dynamic 
analysis [7]. 

B. Static Analysis 

In order to do static analysis on Windows portable 
executable (PE) records, either the binary file or the malware 
program that has been disassembled must be used. The most 
popular programs for opening PE files are IDA Pro and Radar. 
This kind of reverse engineering can be applied to them. 

Without running the malware code, static analysis can 
reveal the structure of a malware sample [8]. The two parts are 
fundamental static analysis and enhanced static analysis. 
Without going deeper, elementary static analysis inspects the 
programs, assessing file content, header information, and 
functions [6]. Among the tools that be able to utilize to abstract 
that information are PEiD, Bin Text, MD5deep, and PE view 
[7]. The first step in malware analysis is basic static analysis; 
advanced static analysis should be carried out to learn more 
about malware. The advanced static analysis does a complete 
study of the program directives. 

To accomplish this, assembly codes are generated from 
machine codes using a disassembler [6] [9]. For thorough static 
analysis, researchers typically utilize the IDA Pro packet 
splitter and the supplemental Hex-Rays de-compiler. The 
investigation is thoroughly scrutinized to look for signs of 
malice in the procedures for assembling. With the use of 
sophisticated static analysis and inverse compilation, specific 
malware functionality may be retrieved. The advanced static 
analysis offers an in-depth understanding of the functionality 

and intent of malware. However, a thorough understanding of 
operating system principles and assembly code instructions is 
required for this subject [6][11]. 

C. Dynamic Analysis 

Allows us to monitor its behavior and gather all of the 
virus's traces as we perform the dynamic analysis. This study is 
often utilized as a secondary analysis to have additional 
parameters or if we were unable to gather significant 
information by Employing static analysis, the malware 
infection developer's considerable obfuscation. This scan 
should be carried out in a totally isolated setting to prevent 
damaging our system. There are several habitats to pick from, 
with Cuckoo Sandbox being the most well-known. They 
provide an overview of both the methods used for each type of 
study and the data that was extracted [1]. 

Due to the dynamic analysis’ use of program execution, 
malware behavior analysis was done. To prevent infection of 
the devices, the analysis is done in enclosed environments like 
sandboxes or virtual PCs. Examining the execution of 
functions, arguments, data transfers, modifications to the file 
database, and network usage are all part of the process. When 
describing the actual operation of malware, static analysis is 
less accurate than dynamic analysis. There are two different 
kinds of dynamic analysis: basic and advanced. Basic dynamic 
analysis is used to examine the behavior of malware [10]. 
Utilizing Sandboxes, Regshot, ApateDNS, Procedure Explorer, 
API observe, and Procedure Monitor. The extensive dynamic 
analysis employs tools for debugging like WinDbg and 
OllyDbg. Experts who study malware can use debuggers to 
examine and modify the outcomes of individual commands. 

D. Analysis of Statistics and Dynamics 

The static analysis makes it simple and quick to evaluate 
earlier detected malware and gain a quick summary of the 
software [35]. Unfortunately, it is incredibly difficult to 
analyze malware that employs obfuscation, packing, 
polymorphism, and other techniques. Because dynamic 
analysis involves computer programs, malicious software may 
be employed. Obfuscation techniques used by malicious 
software can be recognized. Certain malware variants, 
however, might be aware that they are being tested in 
sandboxes and virtual environments, which would conceal 
their genuine behavior. Dynamic analysis is more efficient 
when dealing with unknown malware, despite the fact that 
static analysis is quicker and more precise when dealing with 
already identified malware [12]. 

E. Machine Learning Techniques 

The two methods utilized in ML are unsupervised learning, 
which involves identifying hidden patterns or internal 
frameworks in incoming data, and supervised learning. To be 
able to forecast future outcomes, supervised learning requires 
training an algorithm utilizing available data for both input and 
output. 

F. Supervised Learning 

An algorithm that generates forecasts using data in the 
presence of unpredictability is created through supervised ML. 
A technique for supervised learning employs a set of 



(IJACSA) International Journal of Advanced Computer Science and Applications, 

Vol. 14, No. 7, 2023 

830 | P a g e  

www.ijacsa.thesai.org 

predetermined input data to predict results. A supervised 
learning approach teaches the model to produce accurate 
forecasts in response to new data using a well-known 
collection of input data and identified reactions to data (output 
data). If the outcomes you are attempting to forecast have 
known data, use supervised learning. To build ML frameworks, 
supervised learning uses regression and classification 
techniques. Classification techniques predict specific 
outcomes, such as if an email is real or spam, or if a tumor is 
malignant or not. The given data are categorized by Common 
uses including speech recognition, credit scoring, and medical 
visualization. When you can tag, classify, or divide your data 
into distinct groups or classes, use classification. For instance, 
categorization is used by a handwriting recognition program to 
identify letters and digits [14][15]. Unsupervised pattern 
recognition algorithms are used in image processing for object 
recognition and image segmentation. Some commonly popular 
classification techniques include (SVMs), KNN, nave bays, 
differential analysis, logistic regression, and NN [17]. 
Techniques for regression forecast continuous responses like 
variations in electricity consumption and temperature. 
Forecasting electricity load and algorithm trading are examples 
of common applications. Nonlinear models, linear models, 
progressive organization, regression, reinforced and packed 
decision trees, adaptive neuro-fuzzy learning, and neural 
networks are examples of common regression techniques [18]. 

G. Unsupervised Learning 

Data is scanned for underlying structures or hidden patterns 
using unsupervised learning. From datasets without any 
marked responses, it is utilized to draw conclusions. Clustering 
is the technique used most often in unsupervised learning. To 
find undiscovered patterns or groupings in the data, it is 
employed in exploratory data analysis. Object recognition and 
DNA arrangement analysis are a few instances for use for 
cluster analysis. For instance, a smartphone provider can use 
machine learning to determine how many different groups of 
people rely on its towers in order to optimize where it places its 
cell towers [19]. Because mobile phones can only 
communicate to one station at a time, the crew used a 
clustering approach to identify the best locations for cell sites 
to improve the reception of signals for their customer sets or 
clusters. Typical clustering methods include clustering based 
on hierarchy, GM systems, self-organizing maps, HMM, 
subtractive clustering, fuzzy c-means clustering, and k-
medoids and k-means [20]. 

H. Deep Learning Approaches 

DL models are from time to time referred to as DNN since 
the majority of deep learning methods employ NN 
architectures. DNNs are simply neural networks that have a lot 
of hidden layers. While DNN can have up to 150 hidden layers, 
conventional NN is limited to two or three. Large volumes of 
categorized data and NN topologies that acquire parameters 
from the data before learning them are employed for building 
algorithms for DL [21]. 

CNN or ConvNet are among the most popular DNN kinds. 
Specifically, a CNN is well suited for analyzing 2D data, such 
as photographs, because it mixes learned features with 
incoming data and makes use of 2D convolutional layers. You 

won't have to figure out what characteristics are used to 
classify photos because CNNs do manner with the need for 
non-automatic parameter extraction. CNN uses direct feature 
extraction from images to run its business. The necessary 
features are not pre-trained; rather, they emerge when the 
network trains on a batch of images. For computer vision 
applications like object categorization, deep learning models 
are especially accurate [22]. 

CNNs are taught to recognize various features of a picture 
using considerable hidden layers. The complexity of the 
learned visual elements increases with each buried layer [16]. 
For instance, the initial hidden layer might train to recognize 
edges, while the final layer might learn to recognize more 
intricate forms that are particular to the form of the object, 
we're able to recognize. In conclusion, because they typically 
identify and extract a set of parameters in advance and are not 
built to handle vast volumes of data, conventional ML 
algorithms have a great complex cost. The technique of DL on 
the contrary, performs the extraction of features and selection, 
cutting down on considerable computational costs. Yet, studies 
have shown that DL is superior to ML in terms of effectiveness 
and accuracy. 

III. DATASET 

We assessed our method on a big dataset containing 25 
families in malware groups of 9,342. Nataraj et al. contributed 
MalImg collection [28]. The assessment outcomes display that 
our technique presents high precision with less computational 
cost. Moore's details are demonstrated in Fig. 1. 

 
Fig. 1. Malware families found in the MalImg dataset. 

IV. ALGORITHMS 

We discuss the dataset processing and implementation 
specifics for the proposed mathematical frameworks in this 
part of the article. We use the Bytehist software to generate 
byte-usage histograms for a variety of records, including binary 
executables in (PE) presentation.  Using the Bytehist tool [23], 
we check files in the initial phase to see if hashing, signature, 
or encryption changes have been applied. We have divided 
malware from the MalImg Dataset into a variety of 
classifications. We use CNN to train and test the DL system for 
identifying and classifying malware in 25 families of images, 
and families of grayscale images. 
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A. Modified Binary File Detection 

Static analysis frequently encounters problems while 
analyzing compressed or encrypted executables. AI algorithms 
regularly identify harmful executables as safe, despite the fact 
that many of them are updated to fulfill business or intellectual 
property objectives. This is understandable given that these 
modifications would significantly change the executable's 
entropy and byte spread. When creating a performance-
improving technique for detection models, take the likelihood 
of binary file modifications into account. The tool ByteHist 
may produce byte-usage histograms for a variety of file 
formats, with a concentration on binary executables in the PE 
format. For instance, ByteHist [23] offers information into the 
nature of data before an examination. We can look at how 
bytes are distributed within a program that runs using ByteHist. 

The distribution gets extra even with each executable 
compression. Examples of both negative and positive analogs 
are shown in Fig. 2, together with unpacked and UPX-
transformed byte distributions. As shown, UPX alters the byte 
spread of the binary file, especially when malware is present. It 
is also a widely used packer and binary unpacking is 
straightforward, in contrast to neutral le, which has more 
altered cations [24]. UPX generates less. But a lot of malware 
comes with more sophisticated software, which complicates 
the investigation. Statistics could be a useful tool for locating 
encrypted or compressed data. 

Bytes in the data are dispersed quite uniformly as a result of 
this type of alteration. Typical data typically consists of 
specific bytes that are constantly in use due to any type of 
structure. The byte distributions of database files, executable 
binaries, and plain text that haven't been encrypted or 
compressed differ significantly from those of those that have. 
This "phenomenon" is displayed using histograms, which make 
it easy to distinguish between the two. 

B. Employing Images to represent Malware 

The objective of this research is to visualize malware using 
a technique created by Nataraj et al. (2011) that enables a 
malware binary to be read as a stream of 8-bit integers without 
signs before being structured into a 2-dimensional matrix. Our 
tool transforms any executable or binary file into a greyscale 
PNG image that can be seen in the domain [0,255] (0: black, 
255: white) [14]. Malware presentation as a grayscale picture 
process is shown in Fig. 3 Due to the method's reliance on 
binary code, a new infection might be created by a malware 
producer by updating the code of an existing virus, which 
would result in a very similar image being used to display the 
new infection. Then, we may use our classification model 
(CNN), which will be illustrated later, to put it all into one 
family. 

C. Using Transfer Learning to Classify Malware 

DL is a branch of ML that includes algorithms designed to 
mimic the operation of neural networks or the human brain. 
These structures go by the term neural networks. It trains the 
computer to perform actions that come naturally to people. 
Some of the models used in deep learning include 
autoencoders, recurrent neural networks (RNN), (ANN), and 
reinforcement learning. Convolutional Neural Networks 

(CNN) or ConvNet, in particular, have significantly advanced 
the areas of computer vision and image analysis [13]. CNNs, a 
subcategory of DNN, are often utilized for image analysis as 
they able recognize and categorize certain structures in frames. 
They have a variety of uses. Only a few of their applications 
include picture and video recognition, image classification and 
NLP. Fig. 4 concludes the convolutional neural networks' 
historical development. 

D. CNN'S Principal Architecture 

According to Fig. 5, there are two parts to CNN 
architecture [25]. 

 Feature Extraction: A convolution tool isolates and 
classifies the distinctive features of an image for 
examination throughout the feature extraction process. 

 Fully connected: A completely connected layer that 
predicts the frame's group applying the data collected 
in earlier steps and the convolution procedure's output. 

E. Convolution Layers 

The CNN is consisted of three distinct kinds of layers: 
completely connected (FC), convolutional, and pooling layers. 
The CNN architecture will be built by stacking these layers. 
Additionally, to these three layers, there are two more crucial 
necessities: the dropout layer and the activation function. 

     
(a) File unpacked.                       (b) File packed. 

Fig. 2. Using ByteHist, compare the byte spread of normal and malicious 

programs. 

 

Fig. 3. Malware as a procedure for grayscale representations. 

 
Fig. 4. A brief history of convolutional neural network. 
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Fig. 5. CNN’s elementary architecture. 

F. Convolutional Layer 

This is the first layer separating the many structures from 
the entrance frame. In this layer, the beginning picture is 
mathematically convolutional using a filter of a certain size 
MxM. The number of dots that exist across the filter and 
various areas of the given picture can be calculated according 
to the filter's size (MxM) by moving the filter through the 
frame. The final outcome, also referred to as the feature map, 
contains information about the picture, such as its contours and 
borders. Then, further layers receive this feature map, which 
they use to pick up additional features from the input image. 

G. Pooling Layer 

A Pooling Layer is frequently used after a Convolutional 
Layer. This layer's primary goal is to scale down the convolved 
feature map in order to save processing expenses. This is 
accomplished by minimising the connections within layers and 
working independently on every element map. There are 
multiple sorts of pooling techniques based on the technology 
employed. 

The Max Pooling feature map is used to determine the 
largest element. With middling pooling, the elements within an 
image segment of a specific size are averaged. The cumulative 
total of the elements in the pre-known segment is estimated 
using totality pooling. Connecting the Convolutional Layer and 
the FC Layer is frequently done via the Pooling Layer. 

H. Complete Layer Connectivity 

Weights and biases are included in the Fully Connected 
(FC) layer, which connects the neurons amongst layers. The 
resulting layer is frequently positioned before the last few 
layers in a CNN architecture. The input pictures from the 
layers above are now smoothed and sent to the FC layer. The 
standard theoretical useful procedures are then performed on 
the flattened vector via a few additional FC levels. The 
classifying procedure officially starts at this point. 

I. Dropout 

When all of the characteristics are linked to the FC layer, 
the learning dataset is susceptible to excessive fitting. 
Overfitting is the process of an algorithm doing such well on 
data used for training that it has a detrimental impact on how 
well it works on fresh data. In order to tackle this issue, a 
dropout layer is implemented, which results in a smaller model 
by eliminating a limited neurons from the NN throughout 
learning. After achieving a dropout of 0.3, 30% of the nodes in 
the NN discontinue arbitrarily. 

J. Activation Functions 

To summarize, the activation function of the CNN 
framework is one of its most crucial elements. Any kind of 
persistent and complicated network variable-to-variable 
linkage is learned and approximated using them. It decides 
which design data the network terminal ought to convey as 
well as which ought not to, to put it simply. The network gains 
linearity as a result. The ReLU, Softmax, tanH, and sigmoid 
process are some of the most frequently utilized activation 
functions. Each of these functions has a unique use. While 
softmax is frequently employed for a variety of classes sigmoid 
and softmax functions are chosen for a CNN algorithm for 
binary classification [26]. 

K. Proposed Malware Classification Algorithm 

The analytical pipeline of the suggested architecture is 
introduced in Fig. 6 and includes various processing phases. 
The first step involves preparation of along with information 
enhancement, which involves changing files from a common 
picture format to binary language and then back again to 
grayscale images. Following this, the established CNN 
framework is described along with its details, including 
learning through transfer, learning models, variable adjustment, 
and ultimately categorization. The specifics of those phases are 
then extensively explained. 

 
Fig. 6. Illustration depicting the suggested model for the analysis. 

V. SPECULATED DEEP LEARNING FRAMEWORK 

The proposed DL architecture comprises many steps in 
which, following preprocessing, the pictures are provided to 
the suggested CNN for testing and learning in a 64 × 64 array 
dimension. The proposed CNN structure consists of a source of 
input, an amount of intended layers, and an output. In this 
research, five 2D layers of convolution were specifically used, 
each of which had a 2D max-pooling layer [33]. Convolution is 
a linear procedure between the input and a kernel (or filter) that 
acts as an operational monitor. The filters are designed to 



(IJACSA) International Journal of Advanced Computer Science and Applications, 

Vol. 14, No. 7, 2023 

833 | P a g e  

www.ijacsa.thesai.org 

extract certain information from photos and have a constrained 
response region. The convolution layer is identified as follows: 

Xn
r = 𝛼 (∑ Xm

r−1 ∗ 𝑤𝑟
𝑚𝑛 + �ͬ�𝑚

𝑘

𝑚=1
) (1) 

The current layer's (rᵗʱ) activation map is characterized by 
X_n^r, the previous layer's (r-1)^τh  activation map is 
represented by X_m^(r-1), and how many enter activation 
maps are there, is indicated by k. The weight and bias vectors 
are (w^r)_mn  and b _ͬm, respectively. Convolution is 
performed using the * operator, and (α) stands for the function 
of activation. 

After each generated activation pattern has been activated 
by the function of activation, it is subsequently transported to 
the layer of pooling. The layer of pooling produces a 
transformation constant by reducing the overall quality of the 
activation maps and the layer of pooling activations is 
produced by the convolution layer's dxd (for example, d=2) 
structure of activation maps. The pooling technique that is 
most frequently employed is max pooling. The fully connected 
layer uses the data from all of the activation maps from the 
layer before it to create a categorization map. The optimizer is 
essential in learning the DCNN algorithm since it continually 
modifies the network's layer settings. 

To attempt to reduce the effect of the loss function (ⅈ⋅ⅇ⋅∇_θ 
L(θ)), the settings are modified in the contrary orientation of 
the variation of the loss function (i.e., L(θ) compared to the 
variables). Following every repetition, the intended and 
forecast outputs are contrasted, and the mistake is back 
propagated. One of the greatest commonly employed 
evaluation of performance measures is cross-entropy. The 
basic objective of any optimisation technique is to have a 
cross-entropy score that is almost zero while the desired and 
predicted results are the same. 

These models will locally identify patterns as CNNs 
operate internally using convolutions in several sliding 
windows, enabling a robust differentiation between how every 
category is represented. The layer of dropouts has been 
modified to 0.25 for the first and succeeding layers of 
convolution and to 0.3 for the following layer of convolution. 
Reformed Linear Units, or ReLUs, serve as the activation 
function for every layer of convolution. The framework may 
identify patterns in the provided data and transfer those 
patterns onto subsequent levels. Following adjusting, the 
outcome of the preceding convolution is sent to the final dual 
layers, a full connectivity (FC) layer with 0.2 dropouts and a 
softmax layer with four neurons. The layer of networks 
responsible for categorizing determines the likelihood that a 
data source will fit into a certain classification. For analysis of 
time-series data employing pooling and expanding filter 
dimensions ranging this type of multi-layer architecture has 
shown to be effective. [25][26]. 

The outcome patterns are y= y1, y2... ym, while the given 
input patterns for the model are x= x1, x2... xn. The result of 
the last layer of the network was improved by means of the 

cost array (xi). If y is the result of every specific method, (L) is 
the value of the loss function, (∂ⅈ) is the result after the 
following adjustments and (₵) is the desired class, then (y) is 
the result. 

∂𝑖 = L(ξ¢, yꜞ), : ∂ꜞ¢ ⩾ 𝜕ⱼꜞⱯ𝑗 ≠ ₵       (2) 

The loss function has been changed to: 

L = ∑ t𝑛 ₙlog⁡(𝜕ₙ)  (3) 

Where ∂ₙ contains the cost that is class-dependent (ξ) and is 
associated with the result on (yₙ). 

𝜕ₙ =
𝜉¢,ₙ𝑒𝑥𝑝⁡(𝑦ₙ)

𝛴ₖ𝜉¢,ₖexp⁡(𝑦ₖ)
   (4) 

The quantity of samples in a class determines how much 
weight it has. If class Ƞ has t times extra trials than class p, 
making one trial from class p as significant as t samples from 
class Ƞ is the goal. Therefore, the class weight of p is t times 
more than the class weight of Ƞ.  We employ 2D convolutional 
layers in our model, which is depicted in Fig. 7, using 3x3 
kernels for each of the subsequent blocks and 5x5 kernels for 
the initial block. Moreover, we employ 2x2 for the final two 
blocks. Every block's second layer of convolution used the 
ReLU activation function while down-sampled with a stride of 
two. The first block contained 64 filters, and every block after 
which included double number of filters. A layer of dropouts (p 
= 0.3) was added after the last convolutional layer had been 
applied and connected to one FC-dense layer with ReLU 
activation scores of 1024. 

There was also a layer of dropouts (p = 0.3) sandwiched in 
among those thick layers. Finally, the algorithm result was 
provided by a softmax-activated multi-dense neuron. The 
Adam optimizer was used to learn the algorithm for up to 100 
epochs at a rate of learning of 0.001, utilizing a batch 
dimension of 40. Additionally utilized was the class cross-
entropy process of loss that is often employed for several 
classes' problems with categorization. The class cross-entropy 
is described as follows, using p standing for the actual 
distribution and q for the calculated distribution: 

H(p,q)= −∑ 𝑝(𝑥) log(𝑞(𝑥))
𝑥

  (5) 

The suggested deep learning pipeline's parameters are 
recorded in Table I as a whole. 

 
Fig. 7. CNN algorithm structure utilized for malware classification. 
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TABLE I.  SETTINGS FOR THE SUGGESTED SYSTEM PARAMETER 

Layer First Layer Second Layer Third Layer Fourth Layer Fifth Layer 

Convolution 

filter =64 

Kernel_size=(5.5), 
padding='Same', 

activation ='relu' 

filter =128 

Kernel_size=(3.3), 
padding='Same', 

activation ='relu' 

filter =128 

Kernel_size=(3.3), 
padding='Same', 

activation ='relu' 

filter =128 

Kernel_size=(2.2), 
padding='Same', 

activation ='relu' 

filter =128 

Kernel_size=(2.2), 
padding='Same', 

activation ='relu' 

gsi dttmreh pool_size=(2,2) 
pool_size=(2,2), 
strides=(2.2) 

pool_size=(2,2), 
strides=(2.2) 

pool_size=(2,2), 
strides=(2.2) 

pool_size=(2,2), 
strides=(2.2) 

Dropout (0.25) (0.25) (0.3) (0.3) (0.3) 

Bach Size 256 256 256 256 256 

Learning Rate 0.001 0.001 0.001 0.001 0.001 

Optimizer Adam Adam Adam Adam Adam 

No.of Epochs 100 100 100 100 100 

Total Parameters 4619524 4619524 4619524 4619524 4619524 

Trainable 
Parameters 

4619524 4619524 4619524 4619524 4619524 

Non.Trainable 

Parameters 
-- -- -- -- -- 

VI. EXPERIMENTAL RESULTS AND DISCUSSIONS 

This part goes into considerable depth about both the 
investigational design and the outcomes. The trial setup 
includes the framework and code structure training information 
used in the present study. We conducted separate experiments 
and compared the outcomes. The experiment's findings are 
presented and discussed in this part of the paper. We adjusted 
the hyper-factors for the suggested algorithm's batch size, 
epochs, and folds in order to get the most effective findings. 

Forty (40) batches of data each epoch from a total of 100 
epochs are used to learn the network. For every experiment, 
data is separated into 20%–80% segments for network testing 
and learning. The set for validation uses 16% of the training 
set's data. The setup makes use of the Keras platform. The 
parallel implementation is essential for deep learning training. 
As a result, we employed Kaggle and the open-source software 
Python 3.11.0 to perform out the classifier's learning and 
validation (GPU: NVIDIA TESLA P100 GPUs, 16 GB RAM). 
The recommended strategy was constructed using the Keras 
library from Tensor flow applications, and the execution 
duration was 560.7 seconds. Five series of trials show the 
changes in how well the suggested solution performs [34]. 

The framework's assessment establishes how effectively a 
certain data structure generalizes to new data in order to 
distinguish among multiple approaches. To do this, we need to 
assess the effectiveness of multiple algorithms using a method 
of estimation besides an evaluating approach, such as a learn-
test break or cross-validation [27]. 

A crucial indicator is the accuracy of classification (ACC), 
which assesses in what way effectively the algorithm foretells a 
class of instances in the validation set. Further measurements 
include those defined by terms like sensitivity (SEN), 
precision, and specificity (SPE) [29][30][31]: 

Accuracy =
𝒕𝒏+𝒕𝒑

𝒕𝒏+𝒕𝒑+𝒇𝒏+𝒇𝒑
  (6) 

Sensitivity (Recall) =⁡
𝒕𝒑

𝒕𝒑+𝒇𝒏
  (7) 

Specificity =
𝒕𝒏

𝒕𝒏+𝒇𝒑
   (8) 

Precision =
𝒕𝒑

𝒕𝒑+𝒇𝒏
   (9) 

F1 Score =⁡
𝟐∗𝑷𝒆𝒓𝒄𝒊𝒔𝒊𝒐𝒏∗𝑹𝒆𝒄𝒂𝒍𝒍

𝑷𝒆𝒓𝒄𝒊𝒔𝒊𝒐𝒏+𝑹𝒆𝒄𝒂𝒍𝒍
⁡ (10) 

The symbols tp, tn, fp, and fn stand for true positive, true 
negative, false positive, and false negative, respectively. In 
order to analyze measurements that are quantitative, the 
confusion matrix is utilized. The confusion matrix is a table 
that categorizes forecasts into those that were right and those 
that were wrong [31][32][35]. A confusion matrix is used in 
Fig. 8 to show the link between the expected class and the true 
class. Fig. 8 displays the CNN algorithm's evaluation outcomes 
for the multinomial categorization of malware groups. 

A figure illustrating how intelligent the model is used to 
identify the family of each malware is shown, and we discover 
that there was some overlap in identifying some malware 
families as a result of the limited set of grayscale images on 
which the model was trained. This is what happened with the 
family (Autorun. K), which contained a number of images used 
for only a few grayscale images, and this had an impact on the 
effectiveness of correctly recognizing the family. 

 
Fig. 8. Results of CNN testing for the Confusion Matrix, showing the 

accuracy with which it predicted each malware family shown in Fig. 1's list. 
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Fig. 9. Displays the confusion matrices for the suggested systems. 

The produced confusion matrix may be used to create other 
indices, such as accuracy, precision, F1-score, specificity, and 
sensitivity (recall). The weighted average of recall and 
accuracy is the F1 score. The confusion matrix and associated 
metrics are typically used in conjunction to examine and 
evaluate categorization methods. Fig. 9 displays the confusion 
matrices for the suggested systems. Examining which classes, 
if any, are being misclassified more is quite helpful in 
determining this. Confusion matrices are helpful for model 
administration and monitoring in addition to model evaluation. 
Create confusion matrices for each family class to identify true 
negatives, false positives, and true positives. 

We have employed the criteria already described before to 
contrast the effectiveness of our methodology. The CNN 
framework utilizing the basic structure, learned from the 
beginning via various time-running epochs with the values 20, 
40, 50, and 100, achieves an overall classification accuracy of 
98.31%. Fig. 10 to 13 show the comparison of accuracy, 
precision, recall and specificity values for the suggested 
systems at different epochs respectively. The stated algorithm 
had a precision of 97.59% as shown in Fig. 10 while Fig. 11 
presents a Precision of 97.59 %. Fig. 12 demonstrates a Recall 
of 90.06% where Fig. 13 introduces Specificity of 99.87% and 
a F1 score of 99%.  Table II introduces the contrasts of the 
results of accuracy performance by different techniques with 
the proposed system. According to the findings, our suggested 
method can provide a reliable algorithm to have an optimum 
performance to reduce the error and offer an overall accuracy 
of about 98.31 %. By enhancing the CNN model's architectural 
design with additional hidden layers, improved nonlinearities, 
and/or an optimized dropout, it may be possible to get a greater 
understanding of how to apply it to the categorization of 
malware. These insights may provide information on the 
architecture that will work best for creating an intelligent anti-
malware system. 

 
Fig. 10. Compares the accuracy values for the proposed systems at various 

epochs. 

 
Fig. 11. Displays a contrast of the recommended systems' precision values at 

various epochs. 

 
Fig. 12. Compares the recall values for the proposed systems at various 

epochs. 

 
Fig. 13. Shows the comparison of specificity values for the suggested systems 

at different epochs. 
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TABLE II.  CONTRASTS THE RESULTS OF ACCURACY PERFORMANCE BY DIFFERENT TECHNIQUES WITH THE PROPOSED SYSTEM 

Author Algorithm Accuracy Precision Recall F1 Score Specificity 

(PRIMA 2020)[32] CNN 97% 91% 91% 91% -- 

(PRIMA 2020)[32] VGG16 98% 95% 95% 95% -- 

(Nataraj et al. 2011)[28] GIST + KNN 96.97% -- -- -- -- 

(Gibert et al. 2019)[31] CNN 97.5% -- -- 95% -- 

(Yue2017) [35] Fine-tuning VGG19 97.3% -- -- -- -- 

(Abien 2019)[30] GRU-SVM ≈84.92%. 85% 85% 85% -- 

(Abien 2019)[30] MLP-SVM ≈80.47% 83% 80% 81% -- 

(Abien 2019)[30] CNN-SVM ≈77.23% 84% 77% 97% -- 

Our Proposed System CNN 98.31% 97.59 % 90.09% 99% 99.87% 

VII. CONCLUSION 

In the current research, we develop an advanced (DL) 
image classification algorithm that was previously trained on 
the MalImg dataset to classify malware based on images. 
(CNN)-based (DL) methods were contrasted with an extra 
simple technique created from beginning. We used the same 
dataset and equal image sizes for our experiments. Since there 
were no malware zero days in the sample, the model cannot 
learn and cannot accomplish its objective of identifying zero 
days and will be considered in the future. Based on transfer 
learning findings, the model has been demonstrated to be the 
most effective after accuracy testing. As a result, we can 
conclude that the transfer learning approach is suitable for 
classifying malware to categorize. By enhancing the CNN 
model architecture design with more hidden layers, improved 
nonlinearities, and/or an optimal dropout, it may be possible to 
gain more understanding of how well these models apply to the 
classification of malware. These findings could help in the 
development of an intelligent anti-malware platform by 
informing the type of structure to employ. The total testing 
accuracy of 98.31% in the reported findings attested to the 
excellent accuracy and robustness of the recommended 
technique. 
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