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Abstract—This study directly and thoroughly investigates the
practicalities of utilizing sentence embeddings, derived from the
foundations of deep learning, for textual entailment recogni-
tion, with a specific emphasis on the robust BERT model. As
a cornerstone of our research, we incorporated the Stanford
Natural Language Inference (SNLI) dataset. Our study em-
phasizes a meticulous analysis of BERT’s variable layers to
ascertain the optimal layer for generating sentence embeddings
that can effectively identify entailment. Our approach deviates
from traditional methodologies, as we base our evaluation of
entailment on the direct and simple comparison of sentence
norms, subsequently highlighting the geometrical attributes of
the embeddings. Experimental results revealed that the L2 norm
of sentence embeddings, drawn specifically from BERT’s 7th
layer, emerged superior in entailment detection compared to other
setups.
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I. INTRODUCTION

Textual entailment (TE), an essential notion within natural
language processing (NLP), is expressed as a binary correlation
between two segments of text [1]. Text T is stated to entail
another text H if the comprehension gathered from T would
compel a reader to deduce that H is most probable [2].
For example, the sentence “The dog is playing in the park”
entails that “There is a dog at the park”. This unfolds as a
unidirectional correlation, where TE serves as a fundamental
pillar within NLP, supporting numerous applications in various
disciplines.

TE’s multifaceted applications extend across diverse tasks,
including question answering (QA) [3], where the precise
extraction of responses from intricate texts hinges significantly
on the correct discernment of entailment. It also impacts the
effectiveness of information retrieval (IR) [4] tasks and the
success of information extraction processes. TE is also an
essential ingredient in the creation of text summarization [5, 6]
mechanisms. The vast reach of these applications accentuates
the crucial nature of textual entailment and the importance of
its accurate identification.

Nonetheless, TE introduces a notable challenge, especially
in terms of understanding the semantic relationships between
sentences [7, 8, 9]. To tackle this, sentence embeddings have
garnered significant attention lately. At their core, sentence em-
beddings are condensed vector depictions of sentences created
to encode their semantic meanings within a fixed-dimensional
vector [10]. The deployment of sentence embeddings enables
swift and effective comparison and assessment of different

sentences, acting as an important instrument in a range of NLP
tasks, including TE.

In the domain of sentence embeddings generation, deep
learning has led the advancements. The hierarchical learning
aptitudes of deep learning models enable them to produce
semantically rich sentence embeddings, encompassing the in-
tricate syntactic and semantic attributes of sentences. Notably,
these models have demonstrated remarkable proficiency in
discerning nuanced relationships, like entailment, among sen-
tences [11, 12].

In recent advancements of deep learning for NLP,
Transformer-based models, with particular emphasis on
BERT (Bidirectional Encoder Representations from Trans-
formers) [13], have signified noteworthy progress. The abil-
ity of BERT to consider the complete context of a sen-
tence bi-directionally (left and right) permits the creation of
superior-quality sentence embeddings. This unique capability
has earned BERT widespread recognition and usage in the NLP
community, particularly for tasks such as TE [14, 15, 16].

The assessment of various methods and models in TE
rests on numerous specific datasets. The Stanford Natural
Language Inference (SNLI) [1] dataset is one such resource,
offering a large collection of sentence pairs annotated for
entailment, contradiction, and neutrality. Resources like SNLI
enable consistent and comparable evaluation of different TE
techniques, encouraging advancement in the field.

Despite the remarkable progress in TE, current methods,
especially those founded on deep learning, still exhibit short-
comings. These include an intense dependence on complex
architectural designs and extensive computational resources.
In addition, a majority of these models primarily concentrate
on the syntactic features of sentences, frequently neglecting
the geometric attributes of sentence embeddings.

To address these issues, our study delves into the detailed
examination of the use of sentence embeddings for TE. Utiliz-
ing, directly, the strength of the BERT model, we scrutinize the
effects of employing varying layers for the extraction of sen-
tence embeddings. Our study departs from traditional methods
by assessing entailment through the comparison of sentence
norms, thereby focusing on the geometric characteristics of the
embeddings, a less explored yet potentially beneficial aspect.

Our hands-on findings underline the good performance
of the L2 norm of sentence embeddings, specifically those
extracted from the 7th layer of BERT. These findings offer a
fresh perspective on the TE. Our results particularly emphasise
the importance of layer selection in the extraction of sentence
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embeddings as well as the consideration of the geometric
properties of sentence embeddings in addressing TE.

The remainder of this paper unfolds as follows. We will
first dive into the related work in Section II, where we
discuss the key literature on textual entailment and sentence
embeddings. In Section III we will share our proposed method
which utilizes the BERT model. Next, in Section IV, we will
discuss SNLI dataset that we used for our experiments. We
then move to the experiments and results in Section V, where
we lay out the outcomes of the experiments and interpret our
results and speak on any limitations we have come across. And
lastly, in the conclusion, Section VI, we will bring everything
together by summarizing our findings, reaffirming what our
study brings to the field, and pondering over potential areas
for future research.

II. BACKGROUND AND RELATED WORK

Textual Entailment (TE), also known as Natural Language
Inference (NLI), entails determining the relationship between
two sentences, specifically, if one sentence (the hypothesis)
implies, contradicts, or remains neutral to the other (the
premise) [17]. This is a demanding task as it necessitates
understanding the essence of both sentences and their interplay.

One method to accomplish TE employs sentence em-
beddings, which are vector representations encapsulating the
semantic significance of sentences [18]. These embeddings can
be used to train a model to anticipate the relationship dynamics
between a pair of sentences.

There exists a plethora of techniques to generate sentence
embeddings. A prevalent approach involves deploying a word
embedding model to create word embeddings [19, 20, 11],
which are then amalgamated to craft a sentence embedding. An
alternative strategy employs a deep learning model specifically
trained for generating sentence embeddings [21, 22].

BERT [13] has gained popularity as a deep learning model
for sentence embeddings. As a transformer-based model,
BERT is pre-trained on an extensive corpus of text, enabling it
to effectively learn and represent word and sentence meanings.
This capability is useful for a wide spectrum of NLP tasks,
including TE. There has been a growing body of research on
using BERT for TE. In fact, when Devlin et al. introduced
BERT itself, it was trained using next-word prediction and
missing-word prediction, allowing it to acquire meaningful
word and sentence representations and has proven useful for
several NLP tasks, including TE.

Moreover, Lin and Su [15] examine BERT’s proficiency
in handling TE tasks, particularly its capability to bypass any
latent biases in the dataset. To simplify the investigation, they
design a straightforward entailment judgment scenario using
only binary predicates in clear English. The results suggest
that BERT’s learning curve is somewhat slower than expected.
However, they found that incorporating task-specific features
significantly improved the learning efficiency, leading to a data
reduction by a factor of 1,500. This key discovery highlights
the importance of domain knowledge in effectively utilizing
neural networks for TE tasks.

Similarly, Gajbhiye et al. [23] introduce a new model for
TE, dubbed External Knowledge Enhanced BERT (ExBERT).

It improves BERT’s language understanding and reasoning
capabilities by integrating commonsense knowledge from ex-
ternal sources into the existing contextual representation. The
model uses BERT-derived contextual word representations to
pull and encode relevant knowledge from knowledge graphs.
It’s designed to seamlessly blend this external knowledge into
the reasoning process.

Pang et al. [24] have developed a method for integrat-
ing syntax into TE models. Their approach uses contextual
token-level vector representations derived from a pre-trained
dependency parser. This technique, similar to other contextual
embedders, can be applied to a wide range of neural models.
They tested this method with some established TE models,
such as BERT. The findings showed an increase in accuracy
across the benchmark datasets.

Cabezudo et al. [25] investigate various methods to enhance
inference recognition in the ASSIN [26] dataset, a dataset
specifically designed for entailment recognition in Portuguese.
They also study the effects of adding external data, such
as multilingual data or an automatically translated corpus,
to improve model training. They use the multilingual pre-
trained BERT model in their experiment and their results show
an improvement in the ASSIN. Interestingly, their findings
suggest that using external data does not significantly improve
the performance of the model.

Wehnert et al. [27] have introduced three distinct meth-
ods for the classification of entailment. The first approach
harmonizes Sentence-BERT embeddings with a graph neural
network, while the second strategy leans on the specific
LEGAL-BERT model, which undergoes additional training on
the competition’s retrieval task and is fine-tuned specifically
for entailment classification. Their third method ingeniously
employs the KERMIT encoder to embed syntactic parse trees
and integrates this with a BERT model. Their study delves into
the potential of this third tactic and provides insights into why
the LEGAL-BERT submissions, among all entries, might have
managed to edge out the graph-based method in performance.

Shajalal et al. [28] develop a new method for identifying
the textual entailment relationship between a text and its
hypothesis. They introduce a new semantic feature that uses
empirical threshold-based semantic text representation. This
approach makes use of an element-wise Manhattan distance
vector-based feature, designed to understand the semantic en-
tailment relationship within a text-hypothesis pair. They tested
their method using several experiments on the benchmark
entailment classification dataset, SICK-RTE [29], with a va-
riety of machine learning algorithms. Their empirical sentence
representation technique improved the semantic understanding
of the texts and hypotheses.

Jiang and de Marneffe [30] have taken on the task of
addressing an issue prevalent in TE datasets. They have come
up with a strategy, redefining the use of the CommitmentBank
for TE. Their idea is to adjust the emphasis on how committed
a speaker is to the complements of clause-embedding verbs in
a range of contexts that cancel entailment. This move leads
to the creation of hypotheses that are free from artefacts and
naturally intertwined with the premises. Even though their
fresh approach lets a BERT-based model hit a good result with
BERT, they stated that the model is not yet fully grasping
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Fig. 1. Extraction of sentence embeddings from BERT with a max pooling strategy from the token-level embeddings [13].

the nuances of pragmatic reasoning and certain linguistic
generalizations.

While the above-mentioned approaches significantly ad-
vanced TE, its reliance on intricate designs and significant
computational power is notable. To rectify this, our research
investigates the application of sentence embeddings in TE.
We simply and directly utilize the BERT model’s potential,
exploring the effects of various layers for sentence embeddings
extraction. In contrast to conventional approaches, we utilize
a simple and straightforward approach to evaluate entailment
by comparing sentence norms, spotlighting the geometric
aspects of embeddings, a relatively uncharted but potentially
advantageous area.

III. PROPOSED APPROACH

Our approach to TE revolves around using BERT to extract
sentence embeddings. While loading pre-trained BERT and
tokenizer, we set configurations for sub-token pooling, which
determines the token piece embeddings used in constructing
the token embedding. Options include using the first subtoken,
the last subtoken, both the first and last, or an average overall
(mean). Additionally, we specify the layer (layers 1 to 12)
from which the embeddings should be extracted. Specifically,
as shown in Fig. 1, we generate sentence embeddings for each
pair of sentences in the dataset. We will feed the premise and
hypothesis into BERT and extract the output of the [CLS]
special token, which is a fixed-length representation of the

entire input sequence. This will provide us with a pair of
sentence embeddings that capture the semantic and syntactic
information of the premise and hypothesis.

Given a pair of sentences (x, y) with x = w1, ..., wn and
y = w1, ..., wm forming a tuple, we use the loaded pre-trained
BERT model to encode each sentence individually. We em-
ployed two possible strategies: default document embeddings
and token-based document embeddings.

In default document embeddings, we derive one vector
representing the entire sentence as ESi

= TN(i), where
i ∈ x, y and TN denotes a Transformer-based network, BERT.
Basically, it extracts one feature as the sentence embedding
using a default pooling strategy that simply selects the first to-
ken feature [CLS]from the standard word-piece tokenzation as
proposed in BERT. On the other side, in the token-based doc-
ument embeddings (Fig. 1), we extract a vector corresponding
to each token in a sentence, for example, Sx = (E1, ..., En),
where Ei = TN(wi) ∈ RD (D is the embedding size). To
generate a sentence vector, we then compute either a min, max
or mean pool across all these token vectors.

ESx =
1

n

n∑
i

Ei (1)

When using the mean, we calculate an average across all
vectors to derive a sentence vector. The sentence embedding
of x, ESx

, is calculated using (1), and ESy
for y is computed
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similarly. Besides the mean, we also test with other pooling
strategies like min and max. Min involves sorting the token
vectors based on their norm magnitude and using the vector
with the least magnitude as the sentence vector. Conversely,
max employs the vector with the largest norm magnitude
as the sentence vector. We will use the max pooling in our
experiments which empirically gives the best performance as
we will detail in Section V.

Lastly, we predict entailment by comparing the norms of
the pair of sentences in our input tuple. If the norm of x
is greater than or equal to the norm of y, we consider it as
entailment; otherwise, it is not (as shown in (2) and (3)). This
approach provides a direct and effective way to determine TE.

V = ||ESx ||2⩾ ||ESy ||2 (2)

Entailment =

{
True if V (x, y),
False otherwise.

(3)

IV. DATA

As a main dataset, we have leveraged the Stanford Natural
Language Inference (SNLI) [1] dataset, a comprehensive col-
lection of sentence pairs instrumental in training TE models.
The SNLI is a robust dataset of approximately 570,000 human-
authored English sentence pairs, each meticulously annotated
to ensure balanced classification across three categories: en-
tailment, contradiction, and neutral. Its wide acceptance and
usage for training and testing models in TE have earned it
the reputation of a standard benchmark within the field. It is
worth noting that the creation of this dataset involved a crowd-
sourcing approach. Meaning human contributors generated the
sentence pairs and assigned the entailment categories. This
human involvement ensures the quality and reliability of the
data.

SNLI dataset has been a pivotal element in the evolution
of many contemporary NLP models, including transformative
models like BERT and their subsequent iterations.

Table I features select examples from the SNLI dataset
used in our approach. For ease of comprehension, we’ve
adopted a color-coding scheme: instances of entailment are
presented in green-shaded rows, neutral examples have been
uncolored, while contradiction cases appear in rows shaded
red. This approach to color differentiation offers an intuitive
visualization of the varied sentence pairs that the SNLI dataset
encompasses.

V. EXPERIMENTS AND RESULTS

A. Experimental Settings

In this section, we provide an outline of the steps we have
followed to execute our experiments, covering the specific
details of loading data, data preprocessing, and the application
of pre-trained models and tokenizers.

Our experimental framework incorporates the use of the
Hugging Face API1 for the purpose of loading BERT pre-
trained model and tokenizers. As part of our configuration

1https://huggingface.co/models

parameters, we have included a setting for sub-token pooling.
This setting dictates the manner in which token piece embed-
dings are utilized to form the final token embedding.

The data loading process involves drawing sentences from
one of two file formats: Excel (.xlsx) or JavaScript Object
Notation (.json). Furthermore, we have prepared an alternate
method to load data, using the Hugging Face dataset loader
object as a substitute for traditional content loading from text
or json files.

In the data preprocessing step, we apply a series of oper-
ations to refine and structure the data. Initially, we clean each
sentence pair in the dataset by eliminating superfluous spaces
found at the sentence boundaries. Following this, we organize
the cleaned pairs of sentences into tuples, i.e., a sentence
pair (sentence1, sentence2), culminating in a list of such
tuples. This process ensures that our data is well-organized
and conducive to subsequent tasks.

With the aid of the Hugging Face API, we have streamlined
the process of loading BERT pre-trained weights for a variety
of PyTorch2 and TensorFlow3 models. This step is critical in
harnessing the capabilities of BERT pre-trained model, which
has already acquired useful representations from extensive text
corpora, to kickstart our task-specific model.

Subsequent to extracting a vector that corresponds to each
token in a sentence, we carry out additional processing on
these token vectors to derive a unified sentence vector. As
highlighted in Section III, this is achieved by implementing
one of the multiple pooling strategies, min, max or mean across
all token vectors.

Our initial experimentation revealed that the max pooling
strategy surpassed the performance offered by the min and
mean strategies. Hence, we chose to incorporate the max
pooling strategy in all subsequent experiments for generating
sentence vectors from token vectors. This choice proved piv-
otal in boosting the effectiveness of our entailment detection
procedure.

Alongside our selected pooling strategy, we also examined
the effect of different layers within the BERT model on our
results. We extracted embeddings from a range of layers within
BERT, extending from layer 1 to layer 12, and studied their
influence on the task of TE. This experiment offers insight
into the role each layer has in shaping the quality of sentence
embeddings. This expansive exploration across all layers of the
BERT model enables us to pinpoint the optimal layer for our
specific task, a factor in boosting the efficacy of our entailment
detection procedure.

In an extension to our experimental setup, we investigated
the impact of various norms, L1, L2, and L-inf on the
entailment detection. As norms play a vital role in comparing
sentence embeddings in our methodology, experimenting with
different norms helped us identify which norm leads to the
most precise and reliable entailment predictions. The outcomes
of these investigations are reported in our study, shedding light
on the influence of each norm on the performance of our
entailment detection approach.

2https://pytorch.org/
3https://www.tensorflow.org/
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TABLE I. RANDOMLY CHOSEN SAMPLES FROM THE SNLI DATASET USED IN THE PROPOSED APPROACH, COLOR-CODED BY ENTAILMENT CATEGORY

Text Judgments Hypothesis
A middle-aged man in a gray t-shirt
and brown pants sitting on his bed
reading a flyer-like paper.

entailment
E E E E E

A man is sitting on his
bed reading.

A young boy and girl playing
baseball in a grassy field.

entailment
N E E E E Kids play baseball.

Numerous people sitting in a dim lit
room talking, drinking coffee
and using computers.

entailment
E E E E E

People are in a dimly
lit room drinking coffee.

A white race dog wearing the
number eight runs on the track.

entailment
E E E E E A dog is running.

A woman reaching for candy
bars that are on a shelf.

neutral
N N E N C

The candy bars are above
the womans head.

The boy wearing the blue hooded
top is holding a baby goat
in his arms.

neutral
N C N N N

The goat jumped into the
boys arms.

A little girl is sitting
on a bench in a park.

neutral
N N N N N The little girl is having fun.

A small child playing in
a dusty square.

neutral
E N N N N

A child is playing
with a doll.

Multiple people starting to
pack their parachutes after
a successful skydive.

contradiction
C C C C C cat chased by tiger.

A swimming dog with a
small branch in its mouth.

contradiction
C C C C N A dog is ice skating.

A man with a mustache is
playing ice hockey with
snow in the background.

contradiction
C C C C C

People are swimming
in the lake.

A busy street full of
shops and people holding
hands and walking.

contradiction
C C C C C People sitting in a restaurant.

In Section III, we laid out our strategy for evaluating
the proposed method, which, despite its apparent simplicity,
yields potent results. The heart of our approach to entailment
prediction lies in comparing the norms of the sentence pairs
that make up our input tuple. If the norm of x equals or
surpasses that of y, we mark it as an entailment instance.
In contrast, if it fails to meet this criterion, we label it as
non-entailment (refer to Equations (2) and (3) for further
clarity). When it comes to gauging performance, we turn to the
accuracy metric. This indicator gives us the ratio of successful
classifications. By resorting to this measure, we can quantify
how adept our model is at correctly categorizing sentence pairs
in alignment with their actual entailment status. This simple
yet effective measure offers a clear insight into our proposed
approach’s efficiency in entailment prediction.

B. Results and Discussion

The results reflected in Table II offer a thorough perspective
of the outcomes generated through our proposed approach. We
have incorporated accuracy percentages that depict the reper-

cussions of diversifying two primary parameters: the BERT
model’s layers (from 1 to 12) and the types of norms (L1, L2,
and L-inf). Regardless of these alterations, the max pooling
strategy remained a constant, thereby offering a consistent
benchmark for comparison.

Our findings lead us to two insights. The first is related to
the choice of norm type; the L2 norm systematically outpaced
both L1 and L-inf norms regardless of the layer, and L1 come
second. Whereas, L-inf performs poorly across the layers.

Our second insight arises from the analysis of BERT
model’s layers. As per the empirical findings, it appears that the
7th layer offers an optimal environment for the extraction of
embeddings with as high accuracy as %91. This is important
as it aids us in pinpointing the most suitable layer, thereby
optimizing the sentence embedding generation process.

To simplify the understanding of the results and make them
visually discernible, we have plotted the model’s performance.
For this, in Fig. 2, we considered the L2 norm (proven
to offer superior results) and plotted its influence on the
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TABLE II. PERFORMANCE ACCURACY OF THE PROPOSED APPROACH WITH BERT LAYER VARIATION AND NORM TYPES WITH MAX POOLING
STRATEGY. BOLD INDICATES THE BEST PERFORMANCE FOR EACH NORM

Norm Layers
1 2 3 4 5 6 7 8 9 10 11 12

L2 0.75 0.83 0.83 0.84 0.82 0.83 0.91 0.87 0.77 0.77 0.76 0.83
L1 0.73 0.81 0.81 0.81 0.77 0.74 0.80 0.83 0.65 0.60 0.57 0.59
L-inf 0.26 0.22 0.17 0.16 0.19 0.24 0.33 0.22 0.47 0.41 0.32 0.49

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

1 2 3 4 5 6 7 8 9 10 11 12
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ua
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Fig. 2. Proposed approach performance with L2 norm and various layers.

varying layers, with the latter serving as the x-axis. Despite
the changes in layers, we ensured the max pooling strategy
remained unchanged, facilitating a focused study on the layers’
influence. The resulting graph offers a straightforward visual
comparison of the performance impact due to different layers.

VI. CONCLUSION

In this study, we have delved TE, using the expansive
SNLI dataset as our sandbox. Our approach lies in leveraging
the strength of pre-existing models, with an emphasis on the
BERT model. Our methodology consists of extracting token
embeddings and transforming them into sentence vectors. In
our quest to streamline these vectors, we experimented with

several pooling strategies, min, max, and mean. Our observa-
tions consistently pointed towards the max pooling strategy
as the most effective. We focused on the implications of
various layers within the BERT model on the task of entailment
detection. Our experiments revealed that the seventh layer of
the model stood out as the most impactful for generating potent
embeddings for this task.

Norms, too, were given considerable attention in our exper-
imental setup. We tested different norms, namely L1, L2, and
L-inf. Our findings tipped the scales in favor of the L2 norm,
emphasizing the influential role norms play in determining the
quality of entailment detection.
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To sum it up, our research presents a direct and simple
approach for effective entailment detection by utilizing BERT.
It underscores the importance of which layers to select for
extracting embeddings, the pooling strategies to implement,
and the norms to use. Future exploration could include testing
our approach on other pre-trained models and entailment
datasets to enhance its generalizability.
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