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Abstract—Lung cancer is a significant health issue affecting 

millions of people worldwide annually. However, current manual 

detection methods used by physicians and radiologists to identify 

lung nodules are inefficient because of the diverse shapes and 

locations of the nodules in the lungs. New methods are needed to 

improve the accuracy and speed of detecting lung nodules. This is 

important because early detection of nodules can increase the 

likelihood of successful treatment and recovery. This paper 

introduces a new LLC-QE model that combines ensemble 

learning and reinforcement learning to classify lung cancer. 

Initially, the model undergoes pre-training through the 

utilization of the Artificial Bee Colony (ABC) algorithm. This 

approach aims to decrease the probability of the model getting 

stuck in a local optimum. Subsequently, a set of convolutional 

neural networks (CNNs) is used to simultaneously derive feature 

vectors from input images, which are subsequently combined for 

classification in downstream processes. The LIDC-IDRI dataset, 

predominantly composed of cases without cancer, was employed 

to train and evaluate the model. To mitigate the dataset 

imbalance, the training procedure using reinforcement learning 

is formulated as a series of interconnected decisions. During this 

process, the images are regarded as states; the network acts as 

the agent, and the agent is given a greater reward/punishment 

for accurately/incorrectly classifying the underrepresented class 

compared to the overrepresented class. The LLC-QE model 

achieves excellent results (F measure 89.8%; geometric mean 

92.7%), outperforming other deep models. Identifying the 

optimal values for the reward function and determining the ideal 

number of CNN feature extractors in the ensemble are achieved 

through experiments conducted on the study dataset. Ablation 

studies that exclude ABC pre-training and reinforcement 

learning from the model confirm these components’ independent 

positive incremental impact on the model’s performance. 

Keywords—Lung cancer; ensemble learning; reinforcement 

learning; artificial bee colony; convolutional neural network 

I. INTRODUCTION 

In recent years, the global mortality rate for lung cancer has 
risen significantly. This indicates that lung cancer has emerged 
as among the deadliest forms of cancer in recent decades [1]. 
However, over 50% of lung cancers can be treated successfully 
if detected early [2, 3]. Automatic cancer detection can 
significantly reduce the time required for diagnosis, leading to 
timely treatment. Sufficient forms of lung cancer are not visible 
to the naked eye, making automated diagnosis a valuable tool 
in reducing human error [4]. The computer-aided diagnosis 
(CAD) system can assist radiologists in rapidly and precisely 
detecting and diagnosing abnormalities. This can aid in 

identifying and diagnosing lung cancer at an earlier stage, 
resulting in more effective treatment options [5]. 

Computed tomography (CT) is a widely used method for 
detecting lung cancer, leading to an increase in CT images and 
putting pressure on radiologists [6]. To ease this burden, 
Computer-Aided Diagnosis (CAD) systems have been 
developed to aid in nodule detection [7, 8]. Detecting nodules 
is a complex task given their various sizes, shapes, and 
positions. Deep learning, particularly in CAD, has shown 
potential to enhance nodule detection. Examples include ZNET 
[9] using the U-Net architecture [10], Resnet utilizing a 3D 
CNN, and JianPeiCAD [11], which employs a multi-scale rule-
based approach followed by a broad-channeled 3D CNN. 
While 3D CNNs capture CT scans' details, they come with 
longer training times and higher storage needs. The varying 
slice thickness in CT scans complicates 3D imaging, making 
2D imaging more suitable in terms of training duration and 
resource use, making it a preferred method for nodule 
identification. 

Imbalanced class distribution is a pressing issue in deep 
learning, especially in lung cancer classification, where the 
uneven spread between positive and negative cases hampers 
model accuracy [12]. To address this, data-level methods like 
over-sampling and under-sampling are employed. Over-
sampling, such as Synthetic Minority Oversampling Technique 
(SMOTE)  [13], creates synthetic examples for the minority 
class, while under-sampling techniques like NearMiss [14] 
reduce majority class instances. However, these can lead to 
overfitting or loss of vital data. Algorithm-level solutions 
amplify the minority class's influence using ensemble learning, 
cost-sensitive methods, and decision threshold adjustments. 
Cost-sensitive techniques assign different misclassification 
costs, ensemble methods utilize multiple classifiers, and 
threshold adjustments modify the classification threshold 
during tests. Some deep learning strategies focus on learning 
distinct features in unbalanced data or ensure balanced mini-
batch training in convolutional networks. These approaches 
aim to improve classification precision in the face of 
imbalanced data [15]. 

In the past several years, deep reinforcement learning 
(DRL) [16] demonstrated successful applications in various 
areas, including computer games, robot control, and 
recommendation systems. DRL helps in removing noisy data 
and enhancing features, which ultimately boosts the 
performance of the classification system [17]. The 
classification process is a sequential decision-making task that 
requires the acquisition of an optimized policy. However, the 
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computational time required for the process is amplified due to 
the elaborate simulations conducted between agents and 
environments. Some researchers have utilized deep 
reinforcement learning to learn valuable data features and 
enhance the useful features of the classifier [18-21]. An 
ensemble pruning approach has also been developed, which 
selects the best sub-classifiers with the help of RL, which is 
effective for small data [22]. However, there has been a 
minimal investigation into using DPL in imbalanced 
classification, particularly in medical images. DPL is suitable 
for imbalanced classification as it rewards or penalizes the 
minority class more to attract more attention. 

ABC [23] is utilized for optimization, inspired by the 
manner in which honeybees hunt for food. The algorithm 
imitates the way bees search for food sources by using three 
components: employed bees, onlooker bees, and scout bees. 
Bees in the workforce have the duty of finding food sources 
and communicating their whereabouts to other bees by 
performing a waggle dance. Onlooker bees then choose the 
most promising food sources based on the information they 
received from the employed bees. Scout bees search for new 
food sources when the current ones are depleted. ABC has 
proven effective in tackling multiple optimization problems 
[24], one of which is the initialization of neural network 
weights [12]. It has shown promising results in improving the 
performance of deep neural networks and reducing the effect of 
suboptimal solutions caused by parameter initialization [25]. In 
addition, the ABC algorithm is a straightforward approach that 
causes tuning only a few parameters and is simple to 
implement. As a result, it can be considered a dependable and 
effective substitute for backpropagation in the training of 
neural networks. 

This paper presents a model called LLC-QE based on deep 
Q-learning and ensemble learning, combined with the ABC 
algorithm for weight initialization. Classification is considered 
a guessing game using a Markov decision process within an 
RL framework. The state of the environment is represented by 
a CT image of the patient, and the agent is a deep neural 
network comprising several parallel convolutional feature 
extractors. To start the game, the investigation revolves around 
employing the ABC algorithm in LLC-QE. This algorithm 
targets the discovery of weight initializations for CNNs and 
feed-forward networks within the backpropagation algorithm. 
The agent then decides whether the patient is healthy or ill, and 
the decision is rewarded with correct decisions receiving 
positive rewards and incorrect ones receiving negative rewards. 
In order to address the dataset imbalance, a greater absolute 
value of the reward is given to the minority class. The aim of 
the agent is to maximize its cumulative rewards throughout the 
sequential decision-making process, which involves classifying 
the samples with the highest possible accuracy. The 
performance of the LLC-QE model is evaluated on the widely 
used LIDC-IDRI dataset, and the results show its superiority 
over other approaches that rely on random weight initialization. 

The article is structured in this manner: Section II gives a 
broad summary of various techniques employed in examining 
lung nodules. Section III delves deep into the methodology we 
suggest. Section IV outlines the dataset used for the research 
and showcases the experimental outcomes. Lastly, Section V 

wraps up the discussion and proposes potential avenues for 
further study. 

II. RELATED WORK 

CAD is a popular technique for detecting pulmonary 
nodules in medical images [26]. Conventional methods usually 
require manually creating features, such as setting pixel 
thresholds, grouping voxels, and using morphological 
characteristics. However, these methods are often limited by 
their ability to detect nodules accurately and to distinguish 
them from false positives [27]. Tan et al. [28] created a CAD 
system based on CNN that uses a nodule segmentation 
technique to detect nodule clusters' central positions in the 
detection phase. The method integrates computed divergence 
features with nodule and vessel enhancement filters. In the 
classification stage, distinctive features that are invariant and 
defined on a gauge coordinate system are employed to 
distinguish genuine nodules from certain types of blood vessels 
that can result in inaccurate positive identifications. Another 
approach to CAD system development is to merge two or more 
existing CAD sub-systems to improve accuracy. Traverso and 
colleagues [29] developed a CAD system that operates through 
the web and cloud by merging two separate CAD sub-systems: 
the Channeler Ant Model and the Voxel-Based Neural 
Approach (VBNA). Both algorithms share a starting point, 
which involves utilizing a three-dimensional (3D) region-
growing segmentation method to obtain the parenchymal 
volume while simultaneously eliminating the trachea and 
dividing the two lungs. The Channeler Ant Model utilizes an 
ant-colony optimization algorithm to identify nodule 
candidates, while the VBNA uses a multi-layer perceptron 
neural network to classify them. 

In recent times, the field of computer vision has undergone 
a revolution with the emergence of deep learning, especially 
CNNs. CNNs have demonstrated remarkable performance in 
extracting pertinent features from images that can be employed 
for tasks, such as object detection and classification [30, 31]. 
This has led to significant advances in fields ranging from 
medical imaging to autonomous driving. One of the key 
advantages of CNNs is their ability to learn features in an end-
to-end method with no hand-crafted features or feature 
engineering. This means that CNNs can learn to recognize 
complex patterns and features in images, such as edges, 
corners, and textures, by processing the raw pixel values 
directly. This has led to significant improvements in image 
classification accuracy on benchmark datasets, such as 
ImageNet, where CNNs have achieved human-level 
performance. Another important advantage of CNNs is their 
ability to generalize to new tasks and datasets. Transfer 
learning refers to a methodology that enables pre-trained CNNs 
to apply to new datasets or tasks. This can be done by fine-
tuning the model on the new data or by employing the network 
as a fixed feature extractor. This has been effective for a wide 
range of tasks, from medical image analysis to natural 
language processing. There are several well-known 
frameworks for object detection that utilize CNNs, such as 
Faster R-CNN [32], SSD [33], and R-FCN [34]. These 
frameworks use a combination of CNNs and additional 
modules to generate candidate bounding boxes for objects in an 
image, which can then be classified and refined to produce the 
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final object detection output. One of the key advantages of 
these frameworks is that they can produce highly accurate 
object detections in a one-stage manner with no complex post-
processing or refinement steps. 

With the increasing prevalence of deep learning, a growing 
number of researchers in the field of medical imaging are 
currently focusing on integrating deep learning into their 
investigations [35]. For example, many recently proposed CAD 
systems for identifying pulmonary nodules utilize CNNs to 
achieve fast and accurate diagnoses. A survey discussed in [36] 
reveals that multiple CAD systems have emerged to detect 
nodules comprehensively. ZNET leverages CNNs for detecting 
candidates and reducing false positives. The input slices are 
cropped to dimensions of 512 × 512, and a U-Net model 
applies to each axial slice to create a probability map, which is 
utilized for identifying candidates. Subsequently, a threshold is 
used to obtain potential nodule regions, which is established 
with the objective of identifying the maximum possible 
number of nodules, based on the validation subset. Afterward, 
a 4-neighborhood kernel is applied for morphological erosion, 
which aids in eliminating the partial volume effects. A 
connected component analysis is utilized to group the 
candidates together, and the coordinates of the candidates are 
determined based on the centroid of the components. To 
decrease the occurrence of false positives, ZNET uses wide 
residual networks [37] and captures 64 * 64 image sections 
from the axial, sagittal, and coronal perspectives for each 
candidate, which are subsequently fed into the networks for 
independent processing. JianPeiCAD uses a rule-based 
screening at multiple scales to obtain potential nodules. To 
decrease false-positive results, a 3D CNN is employed with 
broad channels and is trained using data augmentation 
techniques. MOT_M5Lv1 [38] utilizes a technique called 3D 
region growing to obtain the lung volume, along with specific 
steps for excluding the trachea and separating the lungs. The 

algorithm for detecting candidates is derived from the approach 
presented by Messay et al. [39], which uses morphological 
processing and multiple gray-level thresholding to segment 
nodules. The elimination of false positives is carried out 
through the calculation of 15 features, which include 
geometrical and intensity features, and then classification is 
accomplished by utilizing feedforward neural networks. Resnet 
[40] suggests a framework for nodule detection using a 3D 
CNN. This framework screens candidates with a fully 
convolutional network and selects locations with high 
probabilities as candidates. To decrease the number of false 
positives, the recommendation is to incorporate multi-level 
contextual details surrounding pulmonary nodules by merging 
a collection of 3D CNNs with distinct receptive field sizes. 
This approach enables better differentiation of nodules from 
their challenging imitators. M5LCAD [41] uses ant colonies to 
segment the lung structures and performs a repetitive process 
of applying threshold values on the pheromone maps to obtain 
a set of possible candidates. To reduce the number of false 
positives, candidates are classified using a feedforward neural 
network based on a collection of 13 features, which encompass 
attributes related to spatial positioning, intensity values, and 
shape characteristics. 

III. PROPOSED METHOD 

A deep learning framework is being used for binary 
classification, as shown in Fig. 1. The CT image is taken as 
input and processed by three CNN feature extractors 
simultaneously. These extractors individually create a feature 
vector from the image, and the resulting vectors are merged 
and passed through fully connected layers, with the last being a 
Softmax layer that makes the final decision. Using an ensemble 
of extractors enables the model to generate multi-scale 
features, which enhance its capabilities and yield better 
outcomes than a single deep network.

 

Fig. 1. The LLC-QE model. 
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The study utilized a CNN network architecture comprised 
of five convolution layers in two dimensions. The number of 
filters used in these layers was 128, 64, 32, 16, and 8. Each 
convolution layer has a kernel size of 2, stride of 3, and 
padding of 4 for both dimensions. The max-pooling layer has 
dimensions of 2 × 2, and there are three fully connected layers 
with hidden layer sizes of 128, 64, and 32. In order to avoid 
overfitting, early stopping and dropouts with a probability of 
0.4 are utilized. The batch size for all experiments is 64, and 
the images in the dataset are gray scale, with light intensities 
mapped to the range [0,1]. 

A. Training 

The training phase consists of two distinct and sequential 
steps: ABC pre-training is performed, and deep Q-network 
training is carried out. The ABC pre-trained weights are used 
to initialize the deep Q-network training. 

1) ABC pre-training: The process helps established the 

network’s initial values, increasing the probability of quicker 

convergence and reducing the chances of getting stuck in local 

optima. Initially, the weights of the CNN and feedforward 

layers are transformed into one unified vector, illustrated in 

Fig. 2. After that, the parameters of each convolutional layer 

and feedforward layer are compressed and combined into a 

single vector. Each potential solution for the flattened and 

concatenated vector is considered a food source in the ABC 

algorithm. The quality of a solution is evaluated by: 

𝐹𝑖𝑡𝑛𝑒𝑠𝑠 =
1

∑ (𝑦𝑖−�̃�𝑖)2𝑁
𝑖=1

 (1) 

The formula evaluates the performance of the algorithm 
using 𝑁 training images in the dataset. It considers the actual 
label 𝑦𝑖  and the predicted label �̃�𝑖 of the 𝑖-th data. 

2) Deep Q-network training: Every CT image in the 

training set represents an environmental condition, while the 

system acts as the operative that performs a series of 

identifications across all CT pictures. When the operative 

determines the category tag of the CT picture, it is enacting a 

step: the picture observed at the 𝑡-th instance is the condition 

𝑠𝑡 , and the identification made is 𝑎𝑡 . Consequently, the 

environment grants a benefit, 𝑟𝑡 , to direct the operative. 

Reward figures are allocated in a manner where identifying an 

example from the dominant category earns a lesser absolute 

figure compared to the less common category. The reward 

function is: 

𝑟𝑡(𝑠𝑡 , 𝑎𝑡 , 𝑦𝑡) = {

+1 , 𝑎𝑡 = 𝑦𝑡  𝑎𝑛𝑑 𝑠𝑡 ∈ 𝐷𝑆

 −1 , 𝑎𝑡 ≠ 𝑦𝑡  𝑎𝑛𝑑 𝑠𝑡 ∈ 𝐷𝑆

 𝜆 , 𝑎𝑡 = 𝑦𝑡  𝑎𝑛𝑑 𝑠𝑡 ∈ 𝐷𝐻

 −𝜆 , 𝑎𝑡 ≠ 𝑦𝑡  𝑎𝑛𝑑 𝑠𝑡 ∈ 𝐷𝐻

 (2) 

where 𝐷𝑆  and 𝐷𝐻  denote the less frequent and more 
prevalent classes, respectively. Properly or improperly 
categorizing an instance from the dominant class results in a 
reward of +λ or -λ, with 0 < λ < 1. 

 

Fig. 2. The weights and biases of the neural network, starting from the initial convolutional layer up to the fully connected layers, are arranged and represented as 

individual elements in a large vector. 
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IV. EMPIRICAL EVALUATION 

A. Dataset 

The Lung Image Database Consortium picture archive 
(LIDC-IDRI) [42] was established by the Foundation for the 
National Institutes of Health (FNIH) in collaboration with the 
Food and Drug Administration (FDA). This collection features 
a chest CT scan paired with an XML file, which records the 
annotations made by four radiologists, across 1,018 CT scans 
from 1,010 listed patients. The marking process comprises two 
phases aiming to pinpoint every nodule in the CT scans with 
the utmost precision. During the initial phase, termed the 
blinded-read phase, each radiologist individually reviewed the 
scans and identified lesions, noting them as “nodule <3 mm” or 
“non-nodule ≥3 mm”. In the subsequent unblinded-read phase, 
each radiologist went over their annotations individually, while 
being conscious of the undisclosed annotations made by their 
peers. Within the collection, 7,371 lesions were identified as 
nodules by at least one radiologist. Out of these, 2,669 lesions 
were labeled as “nodule 3 mm” by at least one out of the four 
radiologists, with 928 being agreed upon by all. The 2,669 
identified lesions were also provided with detailed nodule 
characteristics and defined outlines. 

B. Experimental Results 

Under prior experiments, k-fold cross-validation was 
employed throughout the study. In pursuit of this aim, the 
dataset is partitioned into k segments, assigning one for testing 
while employing the remaining for training. This process is 
reiterated k times, ensuring each datum is used once for testing 
and once for training. The resulting cross-validation statistical 

outcomes encompass metrics such as minimum, median, 
maximum mean, and standard deviation. However, mean 
values are used for comparative analysis. 

The proposed approach is compared with ten state-of-the-
art systems, including 3D-CNNs [43], ESB-ALL [44], Ali et al. 
[45], MGI-CNN [46], ODNN  [47], Xie et al. [8], 
WOA_APSO [48], MEMCAP [4], LungNet-DL [49], and 
MetaCNN-LC [50]. In addition, comparing the proposed 
model with three primary methods unveils the impact of the 
ABC and RL components on the model’s performance. The 
CNN + random weight method is a model that employs only 
the CNN network without the ABC algorithm and 
Reinforcement learning, while the CNN + ABC and CNN + 
RL models apply ABC and RL, respectively. The model 
performance on the LIDC dataset with the previously specified 
criteria is given in Table I and II. Achieving an Accuracy of 
92.90%, a Recall of 92.00%, a Precision of 87.70%, an F-
measure of 89.80%, a Specificity of 93.40%, and a G-means of 
92.70%, the model shows notable distinctions from other deep 
models. LungNet-DL and MetaCNN-LC are the top two 
models after the algorithm, with 30% and 40% errors 
compared to LLC-QE + ABC, respectively. The proposed 
model reduces the error by over 60% compared with other 
deep algorithms. Comparing the LLC-QE + ABC model with 
the LLC + ABC and LLC + ABC models suggests that ABC 
and RL gimmicks have effectively reduced error by over 52% 
and 47%, respectively. The worst base model, LLC-QE + 
random weight, has been improved by approximately 67% by 
the proposed model.

TABLE I.  THE RESULTS OF ACCURACY, RECALL, AND PRECISION FOR THE PROPOSED MODEL AND OTHER ALGORITHMS 

Precision Recall Accuracy 
Method 

std.dev. mean max median min std.dev. mean max median min std.dev. mean max median min 

0.037 0.672 0.723 0.669 0.621 0.052 0.751 0.804 0.748 0.673 0.029 0.793 0.830 0.789 0.752 3D-CNNs [43] 

0.048 0.671 0.752 0.651 0.628 0.059 0.736 0.822 0.729 0.664 0.035 0.789 0.849 0.774 0.767 ESB-ALL [44] 

0.035 0.705 0.752 0.707 0.655 0.031 0.744 0.766 0.757 0.692 0.022 0.809 0.836 0.814 0.774 Ali et al. [45] 

0.033 0.709 0.754 0.711 0.669 0.048 0.787 0.86 0.776 0.738 0.026 0.819 0.858 0.814 0.789 MGI-CNN [46] 

0.029 0.714 0.752 0.718 0.672 0.058 0.781 0.879 0.766 0.729 0.027 0.821 0.862 0.821 0.789 ODNN  [47] 

0.059 0.723 0.817 0.719 0.672 0.029 0.785 0.822 0.794 0.748 0.032 0.825 0.871 0.821 0.792 Xie et al. [8] 

0.032 0.785 0.814 0.802 0.746 0.044 0.835 0.897 0.832 0.794 0.023 0.867 0.896 0.865 0.840 
WOA_APSO 

[48] 

0.042 0.809 0.870 0.804 0.754 0.044 0.869 0.935 0.860 0.822 0.028 0.887 0.931 0.877 0.858 MEMCAP [4] 

0.123 0.824 0.876 0.816 0.776 0.012 0.869 0.923 0.862 0.842 0.036 0.892 0.930 0.886 0.871 
LungNet-DL 

[49] 

0.031 0.840 0.887 0.834 0.792 0.026 0.882 0.931 0.875 0.863 0.016 0.902 0.925 0.905 0.885 
MetaCNN-LC 

[50] 

0.029 0.641 0.669 0.654 0.603 0.03 0.809 0.841 0.813 0.766 0.023 0.783 0.805 0.792 0.755 
LLC-QE + 

random weight 

0.026 0.743 0.78 0.744 0.706 0.044 0.843 0.897 0.850 0.785 0.023 0.849 0.881 0.849 0.818 LLC + ABC 

0.045 0.77 0.847 0.762 0.73 0.044 0.854 0.897 0.869 0.785 0.027 0.865 0.906 0.865 0.83 LLC-QE 

0.015 0.877 0.894 0.883 0.860 0.022 0.920 0.944 0.916 0.888 0.011 0.929 0.943 0.931 0.915 
LLC-QE + 

ABC 
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TABLE II.  THE RESULTS OF F-MEASURE, SPECIFICITY, AND G-MEANS FOR THE PROPOSED MODEL AND OTHER ALGORITHMS 

G-means Specificity F-measure 
Method 

std.dev. mean max median min std.dev. mean max median min std.dev. mean max median min 

0.035 0.782 0.824 0.776 0.730 0.019 0.814 0.844 0.815 0.791 0.043 0.709 0.761 0.702 0.646 3D-CNNs [43] 

0.040 0.775 0.842 0.765 0.738 0.032 0.816 0.863 0.820 0.773 0.049 0.701 0.785 0.686 0.657 ESB-ALL [44] 

0.025 0.791 0.817 0.799 0.751 0.020 0.842 0.872 0.839 0.815 0.032 0.724 0.759 0.733 0.673 Ali et al. [45] 

0.032 0.811 0.859 0.799 0.776 0.018 0.836 0.858 0.844 0.815 0.039 0.746 0.804 0.733 0.702 
MGI-CNN 

[46] 

0.034 0.811 0.866 0.806 0.773 0.013 0.842 0.853 0.844 0.820 0.041 0.746 0.811 0.742 0.699 ODNN  [47] 

0.028 0.814 0.850 0.806 0.781 0.041 0.845 0.910 0.848 0.806 0.038 0.752 0.805 0.742 0.708 Xie et al. [8] 

0.028 0.859 0.896 0.847 0.828 0.019 0.884 0.900 0.896 0.863 0.034 0.809 0.853 0.798 0.769 
WOA_APSO 

[48] 

0.031 0.882 0.932 0.868 0.858 0.025 0.896 0.929 0.896 0.858 0.040 0.838 0.901 0.822 0.804 MEMCAP [4] 

0.014 0.892 0.905 0.885 0.862 0.035 0.913 0.923 0.905 0.862 0.022 0.864 0.894 0.841 0.825 
LungNet-DL 
[49] 

0.009 0.906 0.914 0.896 0.872 0.032 0.926 0.935 0.914 0.876 0.026 0.896 0.906 0.863 0.842 
MetaCNN-LC 
[50] 

0.024 0.789 0.811 0.797 0.762 0.023 0.770 0.791 0.782 0.735 0.029 0.715 0.742 0.725 0.683 
LLC-QE + 

random weight 

0.028 0.847 0.884 0.849 0.809 0.014 0.852 0.872 0.848 0.834 0.033 0.789 0.834 0.791 0.743 LLC + ABC 

0.030 0.862 0.899 0.866 0.818 0.028 0.870 0.919 0.863 0.848 0.038 0.810 0.863 0.812 0.757 LLC-QE  

0.014 0.927 0.943 0.927 0.908 0.008 0.934 0.943 0.938 0.924 0.017 0.898 0.918 0.899 0.876 
LLC-QE + 

ABC 

The aim is to carry out an additional experiment to assess 
the influence of employing distinct algorithms for initializing 
the model parameters. To achieve this aim, in order to maintain 
a fair assessment, all components of the model will remain 
unchanged–encompassing reinforcement learning and the CNN 
structure–with alterations limited solely to the initialization 

algorithm. Substitution of the algorithmic instructor will 
involve five established conventional algorithms, including 
GDM [51], GDA [52], GDMA [53], OSS [54], and BR [55], 
and four metaheuristic algorithms, including GWO [56], BA 
[57], COA  [58] and WOA [59]. The ABC algorithm used in 
the model outperforms all other meta-heuristic algorithms 
(Table III and IV). 

TABLE III.  THE RESULTS OF ACCURACY, RECALL, AND PRECISION FOR THE CONVENTIONAL AND METAHEURISTIC ALGORITHMS 

Precision Recall Accuracy 
Method 

std.dev. mean max median min std.dev. mean max median min std.dev. mean max median min 

0.058 0.793 0.841 0.802 0.696 0.059 0.806 0.888 0.794 0.748 0.039 0.864 0.906 0.865 0.805 

LLC-

QE + 

GDM 

0.046 0.793 0.832 0.800 0.718 0.035 0.841 0.879 0.841 0.785 0.029 0.872 0.899 0.881 0.824 
LLC-
QE + 

GDA 

0.023 0.763 0.79 0.764 0.728 0.028 0.798 0.841 0.785 0.776 0.014 0.848 0.865 0.849 0.827 
LLC-
QE + 

GDMA 

0.011 0.801 0.813 0.806 0.788 0.056 0.806 0.869 0.813 0.748 0.015 0.867 0.884 0.871 0.849 

LLC-

QE + 
OSS 

0.013 0.791 0.802 0.789 0.771 0.050 0.806 0.869 0.804 0.757 0.016 0.863 0.884 0.862 0.843 

 LLC-

QE + 
BR 

0.025 0.805 0.849 0.798 0.786 0.027 0.807 0.841 0.813 0.776 0.016 0.869 0.896 0.865 0.858 

LLC-

QE + 
GWO 

0.019 0.804 0.828 0.804 0.778 0.031 0.794 0.832 0.785 0.766 0.010 0.865 0.877 0.868 0.852 

LLC-

QE + 

BAT 

0.034 0.79 0.811 0.804 0.731 0.044 0.811 0.841 0.832 0.738 0.025 0.864 0.881 0.877 0.821 

LLC-

QE + 

COA 

0.049 0.792 0.832 0.811 0.714 0.017 0.852 0.879 0.841 0.841 0.026 0.874 0.899 0.881 0.833 
LLC-
QE + 

WOA 

https://blog.floydhub.com/naive-bayes-for-machine-learning/
https://blog.floydhub.com/naive-bayes-for-machine-learning/
https://blog.floydhub.com/naive-bayes-for-machine-learning/
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TABLE IV.  THE RESULTS OF F-MEASURE, SPECIFICITY, AND G-MEANS FOR THE CONVENTIONAL AND METAHEURISTIC ALGORITHMS 

G-means Specificity F-measure 
Method 

std.dev. mean max median min std.dev. mean max median min std.dev. mean max median min 

0.043 0.848 0.901 0.845 0.79 0.034 0.893 0.915 0.900 0.834 0.056 0.799 0.864 0.798 0.721 

LLC-

QE + 
GDM 

0.03 0.864 0.894 0.875 0.814 0.027 0.888 0.910 0.891 0.844 0.040 0.816 0.855 0.829 0.750 

LLC-

QE + 
GDA 

0.016 0.835 0.859 0.834 0.814 0.016 0.874 0.896 0.877 0.853 0.020 0.780 0.807 0.783 0.751 

LLC-

QE + 
GDMA 

0.026 0.85 0.875 0.855 0.82 0.010 0.898 0.910 0.900 0.882 0.028 0.803 0.831 0.809 0.769 

LLC-

QE + 

OSS 

0.025 0.847 0.88 0.846 0.819 0.008 0.892 0.905 0.891 0.886 0.028 0.797 0.834 0.796 0.764 

 LLC-

QE + 

BR 

0.018 0.853 0.882 0.853 0.836 0.014 0.900 0.924 0.896 0.886 0.024 0.806 0.845 0.804 0.787 
LLC-
QE + 

GWO 

0.015 0.846 0.863 0.839 0.833 0.013 0.901 0.919 0.905 0.886 0.016 0.799 0.818 0.796 0.781 
LLC-
QE + 

BAT 

0.03 0.85 0.87 0.865 0.798 0.016 0.891 0.900 0.896 0.863 0.038 0.800 0.826 0.820 0.734 

LLC-

QE + 
COA 

0.023 0.869 0.894 0.87 0.835 0.034 0.885 0.910 0.900 0.829 0.033 0.821 0.855 0.826 0.772 

LLC-

QE + 
WOA 

1) Impact of the reward function: The rewards for 

accurate and erroneous categorizations are given to the 

predominant and less frequent classes as ±1 and ±λ, 

respectively. The λ value is influenced by the ratio of 

dominant to fewer common examples, and it is expected that 

as this ratio rises, the ideal λ value will drop. To explore the 

influence of λ, we evaluated the suggested model’s 

effectiveness across various λ values, which spanned from 0 to 

1, at 0.1 intervals, while keeping the rewards for the dominant 

class unaltered. These outcomes are depicted in Fig. 3. When 

λ is zero, the dominant class’s influence is minimal, and at λ = 

1, both classes have equivalent influences. Fig. 3 reveals that 

the model’s optimal performance is achieved when λ is 0.4, 

across all evaluated metrics. This suggests that the best λ 

value is neither zero nor one, but falls somewhere between 

these extremes. It is crucial to highlight that, while it is 

essential to reduce the dominant class’s influence by tweaking 

λ, setting it excessively low might degrade the model’s overall 

effectiveness. The findings indicate that selecting an 

appropriate λ value profoundly affects the LLC-QE model’s 

efficiency. The best λ value is influenced by the respective 

quantities of dominant and less frequent examples, making it 

crucial to determine it prudently for optimal outcomes.

 

Fig. 3. LLC-QE model performance metrics plotted against the value of 𝜆 in the reward function. 

https://blog.floydhub.com/naive-bayes-for-machine-learning/
https://blog.floydhub.com/naive-bayes-for-machine-learning/
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2) Impact of the number of CNNs: The LLC-QE model 

uses a group of CNNs to derive feature vectors from input 

images simultaneously. The number of CNN feature extractors 

can significantly impact the model’s overall performance. 

Using too few CNNs could cause insufficient feature 

extraction, while using too many CNNs could lead to 

overfitting or redundant information extraction, both of which 

may negatively impact the model’s performance. The 

performance of the LLC-QE model was assessed by altering 

the count of CNN feature extractors across the range of one to 

seven. This variation is aimed at identifying the optimal 

number of extractors. The findings indicated optimal 

performance was achieved when three CNNs were used, as 

shown in Fig. 4. The model’s performance decreased as the 

number of CNNs increased, with performing six and seven 

CNNs being worse than that of a single CNN. The optimal 

number of CNNs was determined based on performance 

metrics. 

3) Impact of the loss function: Classification problems 

caused by imbalanced datasets can also address using 

conventional methods, such as altering the loss function and 

using data augmentation. However, their effectiveness 

depends highly on the specific problem being addressed. 

Meanwhile, the loss function plays a more significant role, as 

it can give more prominence to the minority class. To study 

the inefficiency of the loss functions on the training ANN, the 

selection encompassed five functions, including Weighted 

Cross-Entropy (WCE) [60], Balanced Cross-Entropy (BCE) 

[61], Dice Loss (DL) [62], Tversky Loss (TL) [63], and Focal 

Loss (FL) [64]. WCE and BCE both assign weights to positive 

and negative samples. FL, suited for imbalanced data, 

outperforms the other loss function (Table V) but is still 

inferior to the RL used in the model. 

4) Impact of pre-trained models: Comparing the 

performance of the CNN ensemble model with that of 

alternative pre-trained feature extraction models involved 

replacing the model with transfer learning counterparts, such 

as  AlexNet [65], GoogleNet [66], ResNet [67], DenseNet 

[68], and MobileNet [69]. Limiting the training solely to the 

feedforward network, superior performance is exhibited by the 

model's ensemble of CNNs. This ensemble, trained from the 

ground up, surpasses the performance of pre-trained networks 

(AlexNet, GoogleNet, ResNet, DenseNet, and MobileNet), as 

demonstrated in Table VI. The reason behind this is that the 

ensemble of CNNs is more capable of extracting 

discriminative features specific to cancer diagnosis.

TABLE V.  PERFORMANCE OF THE PROPOSED MODEL FOR DIFFERENT LOSS FUNCTIONS 

G-mean Specificity F-measure Precision Sensitivity Accuracy Method 

0.845 0.778 0.803 0.790 0.885 0.830 WCE 

0.822 0.824 0.745 0.783 0.821 0.822 BCE 

0.811 0.837 0.711 0.769 0.795 0.816 DL 

0.827 0.816 0.747 0.78 0.834 0.825 TL 

0.868 0.833 0.819 0.826 0.889 0.861 FL 

 

Fig. 4. The performance metrics plotted vs the number of convolutional feature extractors working in the ensemble. 
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TABLE VI.  PERFORMANCE OF THE PROPOSED MODEL FOR DIFFERENT PRE-TRAINED MODELS 

G-mean Specificity F-measure Precision Sensitivity Accuracy Method 

0.790 0.715 0.724 0.719 0.836 0.773 AlexNet 

0.784 0.811 0.676 0.737 0.768 0.789 GoogleNet 

0.772 0.736 0.683 0.709 0.794 0.764 ResNet 

0.755 0.748 0.651 0.696 0.759 0.753 DenseNet 

0.789 0.762 0.703 0.731 0.806 0.784 MobileNet 

V. CONCLUSION 

This article proposes a novel deep-learning approach that 
uses RL and evolutionary computation to classify lung cancer 
in CT images. To avoid the model getting trapped in local 
optima, the network weights are first initialized using the 
evolutionary ABC algorithm. The network architecture 
comprises an ensemble of CNNs that extract features in 
parallel and then concatenate them for downstream 
classification. The model uses RL to address the dataset 
imbalance. The proposed LLC-QE model achieves excellent 
results compared to other deep learning models and pre-trained 
transfer learning models when trained on the LIDC-IDRI 
dataset. The optimal value for the reward function and the 
optimal number of CNN feature extractors in the ensemble are 
determined through experiments on the study dataset. Separate 
ablation studies, excluding ABC pre-training and RL, confirm 
the positive incremental impact of these components on model 
performance. Notably, the ABC algorithm and RL outperform 
various meta-heuristic initialization algorithms and loss 
functions. 

Future work aims to develop deep learning segmentation 
methods that can detect not only the presence of cancer but 
also the location and extent of the disease on CT images, which 
may be useful for prognostication and therapeutic monitoring. 
One area of research that holds particular promise is the use of 
multi-modal imaging data, which can provide a more 
comprehensive view of the tumor and its surroundings. For 
example, combining CT with MRI data could allow for more 
accurate identification of the tumor boundary and help 
differentiate between different cancers. 
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