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Abstract—Smart homes are smart spaces that contain devices
that are connected to each other, collecting information and facil-
itating users’ comfortable living, safety, and energy management
features. To improve the quality of individuals’ life, smart device
companies and service providers are collecting data about user
activities, user needs, power consumption, etc.; these data need to
be shared with companies with privacy-preserving practices. In
this paper, an effective approach of securing data transmission to
the service provider is based on local differential privacy (LDP),
which enables residents of smart homes to provide statistics on
their power usage as disturbances bloom filters. Randomized
Aggregatable Privacy-Preserving Ordinal (RAPPOR) is a privacy
technique that allows sharing of data and statistics while pre-
serving the privacy of individual users. The proposed approach
applies two randomized responses: permanent random response
(PRR) and instantaneous random response (IRR), then applies
machine learning algorithms for decoding the perturbation bloom
filters on the service provider side. The simulation results show
that the proposed approach achieves good performance in terms
of privacy-preserving, accuracy, recall, and f-measure metrics.
The results indicate that, the proposed LDP for smart homes
achieved good utility privacy when the value of LDP ϵ = 0.95.
The classification accuracy is between 95.4% and 98% for the
utilized classification techniques.
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I. INTRODUCTION

As more people seek to automate their homes and improve
their quality of life, the popularity of smart homes increases.
A smart home is a residence that contains remote-controllable
devices, such as smart thermostats, security systems, light-
ing, and entertainment systems. These devices are internet-
connected, allowing homeowners to control them remotely
using smartphones or other internet-connected devices [1].
Convenience is the main advantage of a smart home it enables
users to control the temperature, lighting, and security of
your smart home from anywhere in the world. The ability
to turn off lights, adjust the temperature, and view security
cameras from your smartphone makes it simple to keep your
home comfortable and secure. Smart homes can also reduce
your energy costs, smart thermostats can automatically adjust
your home’s temperature based on your preferences and your
presence, saving you money on heating and cooling expenses.
Similarly, intelligent lighting systems can turn off lights auto-
matically when no one is in a room, thereby reducing energy
consumption [2].

A smart home also provides better protection; with intelli-
gent security systems, you can monitor your house from any-
where and receive warnings if suspicious behavior is detected
[3]. You can also lock and unlock doors remotely, allowing
you to let guests or service personnel in without being present.
Smart homes can also improve your entertainment experience.
You can control your television, music, and other entertainment
systems from anywhere in your smart home. Even your smart
home can be integrated with your voice assistant, making it
simple to control your entertainment with voice commands.

Data gathered from smart homes can be used in a variety
of ways to improve services across a range of industries. These
services such as smart home activity prediction [4], smart
healthcare for patient treatment [5], disorder assessment, and
smart city pedestrian monitoring [6], energy management. In
this context, businesses have discovered the potential of using
the data gathered from smart homes to improve their products
and services.

However, data collectors must consider the confidentiality
of these data. If data is not correctly managed, it could cause
significant issues. So, to address these concerns, a new system
that maintains both privacy and utility has been proposed.
Remote health systems necessitate the collection, disclosure,
and utilization of personal health information, which raises
grave privacy concerns. For many individuals, the household
is their most private environment. A glucometer measuring
the blood sugar level, a spirometer tracking the air entering
and exiting the lungs, and a sleep monitoring sensor recording
the sleep conditions can potentially reveal whether a resident
has diabetes, seasonal allergy-induced asthma, or a depressive
disorder. Patients are inclined to restrict access to these data to
a small group, such as their personal physicians, out of concern
for their privacy.

Differential Privacy [7] is a privacy preservation mecha-
nism that has gained popularity. The main idea behind dif-
ferential privacy is that a user is given plausible deniabil-
ity by adding random values to their input. This approach
provides strong privacy guarantees for users, protecting their
data against adversary entities, such as service providers and
outsiders. In the centralized differential privacy setting, noise
is added to the database and apply a differential privacy
aggregation algorithm. RAPPOR [8] is a privacy preservation
technology that allows for the sharing of statistics while
preserving the privacy of individual users. By using random-
ized response, RAPPOR ensures that no individual’s data is
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disclosed to the data collector. This approach has shown great
promise, as it allows for the sharing of valuable data while
protecting users’ privacy.

This paper aims to present an approach for securely trans-
mitting household data to the aggregator, while accounting
for the presence of malicious aggregator nodes. To address
this concern, we apply LDP to the real-time data collected
from residences. Prior to transmission, the data is subjected
to a process of privacy preservation. The proposed model
utilizes the RAPPOR algorithm to encrypt the data, thereby
ensuring that the aggregator cannot ascertain the identity of
the householder, thereby preserving anonymity. To achieve
the goal of secure data transmission, we propose a three-step
approach. Firstly, bloom Filter mechanism is applied to the raw
data collected from the residences. Next, the data is privatized
using the RAPPOR algorithm to ensure that the identity of the
householder remains unknown. Finally, the aggregator employs
machine learning algorithms to decode the data into a form that
is acceptable and useful.

The proposed model has several advantages over existing
approaches. By employing RAPPOR, we are able to ensure
that the data is secure and anonymous, thereby preventing
malicious aggregator nodes from accessing sensitive informa-
tion. Moreover, the use of machine learning algorithms by the
aggregator allows for efficient decoding of the data, making it
more accessible and user-friendly. The remainder of this paper
is organized as follows. Section II surveys existing privacy
preservation techniques used in smart homes and highlighting
their deficiencies. Section III gives the useful background
about Local Differential Privacy and RAPPOR. Then our
approach is described in Sections IV and introduces the system
model. In section V, the performance of the scheme is analyzed
from two aspects of security and efficiency.

II. RELATED WORK

In recent years, LDP has emerged as a promising technique
for privacy-preserving data analysis in various domains. This
section provides an overview of some well-known LDP use
cases and privacy-preserving systems that have used LDP.
In [8] Google proposed RAPPOR as an LDP-based system
for collecting aggregate statistics from users without compro-
mising their individual privacy. It randomizes user responses
to a question with a bloom filter and randomized response,
allowing the server to compute meaningful statistics about
the aggregate responses while ensuring individual privacy.
The authors in [9] proposed an approach called a differential
privacy-based system to guarantee thorough security for data
produced by smart houses. At the aggregator level, they used
the Hidden Markov Model (HMM) technique and applied
differential privacy to the personal information obtained from
smart homes.

In healthcare field the authors in [10] proposed an improved
approach based on k-anonymity and differential privacy to
enhance privacy protection by mitigating re-identification risks
through generalization and suppression techniques. This study
[11] concentrates primarily on identifying the security issues
that can arise from the use of a large number of Internet
of Things (IoT) devices connected to provide a smart home
facility in Saudi Arabia. [12] proposed an approach called

LATENT, suggests an intermediate layer in deep learning
models that satisfies LDP. LATENT allows a data owner to
perturb the data on their device before it reaches an untrusted
machine learning service, thereby protecting the privacy of
the owner’s data. By adding noise to the data in a controlled
manner, LATENT ensures that the machine learning model
can still provide useful insights while preserving the privacy of
the individual data points. In Microsoft, LDP is used to collect
data about the time users spend in different applications, which
enables the identification of their favorite ones and improves
their user experience [13]. This approach still preserves user
privacy while providing valuable insights for application de-
velopers. LDP has also been used to reduce potential privacy
leakage in deep learning models.

Differential privacy is a privacy-preserving technique that
has been extensively researched for various applications in
computer science. One of the most popular applications is in
recommendation systems, where differential privacy is used
to protect the privacy of user preferences and behavior while
still allowing the system to make accurate recommendations
[14], [15]. Data mining is another field that benefits from
differential privacy, as it allows for the analysis of sensitive
data without revealing individual records [16]. Differential
privacy is also used in crowd-sourcing [17]. In network mea-
surements, differential privacy is used to ensure that the privacy
of individuals’ network traffic data is protected while still
allowing for useful aggregate network measurements to be
obtained [18]. In intelligent transportation systems, differential
privacy is used to protect the privacy of users and their data
[19].

These approaches have a few disadvantages or limitations
compared to our approach, they uses a trusted third party to
collect data from users, applies some algorithms, and takes
some privacy-preserving data analysis by adding “noise”. This
lead to a reduction in the accuracy of data analysis and
inference. The noise introduced to protect privacy may make it
challenging to obtain precise information or draw accurate con-
clusions from the collected data. Our solution uses differential
privacy at the data source, thereby providing greater privacy.
In addition to the use of LDP, researchers have also put forth
schemes that employ data masking techniques [20–24]. These
approaches involve masking the data submitted by users with
a specific masking value, ensuring that other entities cannot
access the actual value unless they possess knowledge of the
masking value. By incorporating data masking alongside LDP,
these schemes offer an extra layer of privacy protection and
enhance the security of sensitive information in the context
of data sharing and analysis. In each of these applications,
differential privacy should provide a way to perform valuable
computations on sensitive data while ensuring that the privacy
of individual users is protected. By adding controlled noise
to the data, differential privacy makes it difficult for attackers
to identify any specific individual in the dataset, while still
allowing for meaningful analysis and insights to be drawn from
the data.

III. PRELIMINARIES

This section provides background information on LDP and
the randomized response approach. It also discusses RAPPOR,
which is a method for implementing the randomized response
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strategy. In addition to this, it investigates the machine learning
methods that have been implemented, such as K-nearest neigh-
bours (KNN), Support vector machines (SVMs) and XGBoost.
In the final part of this discussion, we will examine the
performance and assessment measures that are utilized in this
paper to evaluate the performance of the proposed scheme.

A. Local Differential Privacy (LDP)

LDP is a privacy-preserving technique that aims to protect
the privacy of individual data contributors while enabling
statistical analysis and inference on the aggregated data. Unlike
other privacy-preserving methods that rely on centralizing and
anonymizing data, LDP allows data contributors to locally
perturb their data before sharing it.

Definition: A randomized algorithm T satisfies the ϵ-local
differential privacy where ϵ > 0 if for all pairs of the client ’s
values a and b and for all S ⊆ range(T ) :

Pr[T (a) ∈ S] ≤ eϵPr[T (b) ∈ S]. (1)

The definition introduces ϵ, called the privacy budget. It
quantifies the level of privacy protection provided. By satis-
fying ϵ-Differential Privacy, a mechanism provides a strong
privacy guarantee, indicating that an adversary cannot signif-
icantly differentiate between the presence or absence of an
individual’s data based on the mechanism’s output, thereby
safeguarding individual privacy during data analysis or release.

B. Randomized Response

The Randomized Response (RR) method, introduced by H.
Warner et al. in 1965 [7]. With RR, when an end user is asked
a binary question (e.g., “yes” or “no”), a coin is flipped with
a probability of p for heads. To maintain the user’s privacy,
RR allows the user to provide the opposite response when
heads are shown. Consequently, the data aggregator is unable
to confidently ascertain the true response for a specific user,
ensuring their privacy is preserved.

Definition: The RR mechanism is a mapping with X = Y
that satisfies the following equality:

Q(x|y)

{
eϵ

|Y |−1+eϵ , if x = y
1

|Y |−1+eϵ , if x ̸= y
(2)

Here, Q(x|y) is the conditional probability, Y is the true
dataset, X is the privatized dataset, y ∈ Y, x ∈ X , |Y | is the
size of set Y , and ϵ is the privacy parameter.

C. RAPPOR

Privacy-Preserving Aggregatable Randomized Response is
a real world application of LDP has been made by Google
for collecting statistics from the end user, and client side
software, in a way that provides robust privacy protection
using randomize response techniques [8]. RAPPOR’s applies
randomized response to bloom filters [25] with strong ϵ-
differential privacy guarantees. Bloom filter is a simple space-
efficient randomized data structure for representing a set in
order to support membership queries.

The RAPPOR algorithm takes in the client’s true value v
and parameters of execution k, h, f, p, q and is executed locally
on the client’s machine performing the following steps:

1) Signal: Hash client’s value v onto the bloom filter B
of size k using h hash functions.

2) Permanent randomized response: For each client’s
value v and bit i, 0 ≤ i < k in B, create a binary
reporting value B,

i which equals to

B,
i =


1, with probability 1

2f

0, with probability 1
2f

Bi, with probability 1− f

(3)

where f is a user-tunable parameter controlling the
level of longitudinal privacy guarantee. Subsequently,
this B, is memoized and reused as the basis for all
future reports on this distinct value v.

3) Instantaneous randomized response: Allocate a bit
array S of size k and initialize to 0. Set each bit
i in S with probabilities

P (Si = 1) =

{
q, if B,

i = 1.

p, if B,
i = 0.

(4)

D. Machine Learning Techniques

The K-nearest neighbors (KNN) classifier is one of the
most basic yet essential classification algorithms in Machine
Learning. It belongs to the supervised learning domain and
finds intense application in pattern recognition, data mining,
and intrusion detection [26]. KNN algorithm helps us identify
the nearest points or the groups for a query point. But to
determine the closest groups or the nearest points for a query
point we need some metric. For this purpose, we use below
distance metrics:

d (x, y) =

(
n∑

i=1

(xi − yi)
p

) 1
p

(5)

Support vector machines: the support vector machines, is a
powerful supervised learning algorithm used for classification
tasks. It works by finding an optimal hyperplane in a high-
dimensional feature space that separates different classes of
data points. The hyperplane is chosen in such a way that
it maximizes the margin, which is the distance between the
hyperplane and the closest data points of each class [27]. This
helps to achieve better generalization and robustness of the
model.

Hyperplane Equation: The SVMs algorithm seeks to find a
hyperplane in the feature space that separates the data points.
The hyperplane equation can be written as:

w.x+ b = 0 (6)

where:

w is a weight vector orthogonal to the hyperplane. x is the
feature vector of a given data point. b is the offset or distance
of the hyperplane from the origin along the normal vector w.
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Classification:

f(x) = sign(w.x+ b) (7)

where

sign(.) is the sign function that returns -1 or 1 depending
on the sign of its argument. If f(x) < 0, the point is classified
as one class, and if f(x) > 0, it is classified as the other class.

XGBoost is an implementation of gradient boosted decision
trees. XGBoost models majorly dominate in many Kaggle
Competitions. In this algorithm, decision trees are created in
sequential form. Weights play an important role in XGBoost
[28]. XGBoost objective function:

Obj(t) =

n∑
i=1

L
(
yi, ŷ

(t−1)
i

)
+

T∑
j=1

Ω (fj) (8)

where

Obj(t) is the objective function at the tth iteration. n is
the total number of training examples. yi is the true label of
the ith training example. ŷ(t−1)

i is the predicted value of the
ith example at the t − 1th iteration. T is the total number of
trees in the ensemble. fj is the jth tree in the ensemble. Ω (fj)
is the regularization term that penalizes the complexity of the
tree.

E. Performance Evaluation Measurements

In this paper, the classifiers performance has been analyzed
by using Precision, Recall and F-measure, which are obtained
from the confusion matrix as shown in Table I. These metrics
are described as follows.

TABLE I. CONFUSION MATRIX

P‘(Predicted) N‘(Predicted)
P (Actual) TP FN
N (Actual) FP TN

• Precision: measures the relevant actions found against
all actions found i.e. the percentage of selected ac-
tions that are correct and is defined by the following
equation.

Precision =
TP

(TP + FP )
(9)

• Recall: measures the relevant actions found against all
relevant actions i.e. the percentage of correct actions
that are selected and is defined by the following
equation.

Recall =
TP

(TP + FN)
(10)

• F-measure: is weighted harmonic mean between pre-
cision and recall and is defined by the following
equation.

F −measure =
2 ∗ Precision ∗Recall

(Precision+Recall)
(11)

Fig. 1. Encoding algorithm maps Ci devices into bits in a bloom filter.

IV. THE PROPOSED PRIVACY-PRESERVING MODEL IN
SMART HOMES

This section introduces and describe the proposed model
and methodology. It outlines the key concepts and principles
that underpin our approach, as well as explain the data collec-
tion process, preprocessing techniques used, and any specific
algorithms or techniques used within the model.

A. Assumptions

Assume that there is a smart home which contains a set of
devices and each device has its own sensor to measure power
consumption, and there is a set of classes Ci, i ∈ {1, . . . , l}
where l denotes the maximum number of supported classes,
these classes represent the priority of each device, each class
is composed of groups of devices Dij(i.e. j ∈ {1. . . g})
where g represents the maximum number of groups of in-
terests for class i, devices like (lights, TVs, laptops, sound
system, alert systems, air condition systems, laundry devices,
camera systems, garden lights, garage lights/motors, fans).
RAPPOR is used to send power consumption statistics to
service providers/electricity products companies.

B. System Model and Overview

Based on the basic idea of bloom filter and RAPPOR, the
proposed approach consists of two phases: data perturbation
phase and decoding phase. These two phases are described as
follows:

1) Smart home data perturbation: In this phase, the pro-
posed approach determines the set of devices and each device
has its own sensor to measure power consumption, and there
is a set of classes Ci, i ∈ {1, . . . , l} where l denotes the
maximum number of supported classes, classes represent the
priority of each device, each class is composed of groups of
devices Dij(i.e.j ∈ {1. . . g}) where g represents the maximum
number of devices of interests for class i. The proposed
approach uses the following steps.

1) Encoding is the first step of the data perturbation
process, the encoding algorithm maps Ci devices into
bits in a bloom filter. Fig. 1 illustrates the bloom filter
implementation using 2 hash functions, h1 and h2, on
the TV class.
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Fig. 2. Bloom filter B is initialized with all “0” values and size m = 10.

To compute the optimal bloom filter size m, given the
maximum number of devices encoded into the bloom
filter (i.e. n = l ∗ g if each class includes the same
number of groups), and a fixed false positive rate fp,
according to Eq. 12:

m = −n× ln(fp)

(ln 2)2
(12)

Then, the optimal number of hash functions is com-
puted as given by Eq. 13

k =
m

n
× ln 2 (13)

After selection of m and k appropriate values, the
bloom filter B is initialized with all “0” values,
as given in Fig. 2. For feeding B with the set of
devices values v, C first applies the k hash functions
to v, and feeds B with the hash output providing
indices. Example: let us consider a bloom filter of size
m = 10 bits, with k = 2 hash functions (h1, h2), and
two devices {TV, Reception lights} to be included
into the bloom filter. As given in Fig. 1, C first
computes the two hashes of the TV device, and gets
the results h1(TV ) = 4 and h2(TV ) = 7, thus
leading to positioning the 4th and the 7th bits of
the bloom filter to value 1. The same applies for
the reception lights as depicted in Fig. 2 where h1

(Reception lights) = 2 and h2 (Reception lights) = 8.
2) Permanent randomized response (PRR): This first

level perturbation applies over the bloom filter B
obtained through the encoding phase. This step is
executed once over a set of devices v. A noisy bit
is derived from each bit of B thus resulting in a
perturbed bloom filter vector B′. The derivation is
compliant with the RAPPOR works and considers the
following probabilistic processing:

B′[i] =


1 with probability 1

2f

0 with probability 1
2f

B[i] with probability 1− f

(14)

3) Instantaneous randomized response (IRR): To guar-
antee stronger privacy, this second level perturbation
is executed for each request done by P Providers.
After getting B′, the user initializes a bit vector
S with all zeros and then applies the following
probabilistic processing Eq. 15:

P (S[i] = 1)

{
q if B′[i] = 1

p if B′[i] = 0
(15)

Where p denotes the probability of flipping a bit that
equals to 0 into 1 whereas q represents the probability

of keeping bits equal to 1. This second level perturba-
tion IRR algorithm is ϵ− differential privacy with
the following quantified ϵ2 privacy budget Eq. 16:

ϵ2 = k ln

(
q′(1− p′)

p′(1− q′)

)
(16)

Where p′, resp. q′ is the probability of observing 1
given that the same bloom filter bit was set to 0, resp.
1, as defined in the following Eq. 17 and 18.

p′ =
1

2
fq + (1− 1

2
f)p (17)

q′ = (1− 1

2
f)(1− q) +

1

2
f(1− p) (18)

4) Algorithm 1, shows the steps of this recognition
phase:
Parameters:

• hash functions k: This is the number of hash
functions used in the bloom filter. The specific
value is determined by Eq. 13.

• bloom filter size m: This is the size of the
bloom filter, which is determined by Eq. 12.

• privacy budget ϵ: This is a parameter related
to the privacy level. Its specific value is de-
termined by the user or the privacy configu-
ration.

Input:
• x: This is a single row of data from a smart

home, representing a specific event or mea-
surement.

• f : This represents the privacy level configured
by the homeowner. Its specific value is not
mentioned in the code.

Output:
• Perturbed bloom filter vector S: This is the

resulting vector after applying perturbations
to the bloom filter, calculated using Eq. 15.

Steps:
• Set x ∈ U this indicates that the smart home

data, represented by x, belongs to the set U ,
which includes all available data in the smart
home.

• Convert x to bloom filter vector B of size
m: This step involves converting the smart
home data, x, into a bloom filter vector B,
of a specified size m.

• Apply permanent randomized response on B
and get vector B′ of size m.

• Apply instantaneous randomized response on
B′ and return vector S of size m.

C. Decoding Phase

In this phase, three machine learning algorithms KNN,
SVMs and XGBoost were selected for their ability to work
on perturbed data. Those algorithms are calibrated to fit
the specification the following datasets, thus resulting into 3
configurations as detailed below:
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Algorithm 1: Data perturbation
Parameter: hash functions k given by Eq. 13, bloom

filter size m given by Eq. 12, privacey
budget ϵ

Input: Row of smart home data x, f is the privacy
level configured by home owner.

Output: Perturbed bloom filter vector S given by Eq.
15

Data: set x ∈ U : U is the set of all avilable data in
smart home

/* Encoding */
1 Convert x to bloom filter vector B of size m
/* PRR function */

2 Initialize an empty vector B′ of size m and set all
bits = 0

3 for i = 0 to BloomFilterSize do
4 B′[i] = 1 with probability 1

2f
5 B′[i] = 0 with probability 1

2f
6 B′[i] = B[i] with probability 1− f

/* IRR function */
7 Initialize an empty vector S of size m and set all

bits = 0
8 for j = 1 to NumberOfhashfunctions do
9 for i = 1 to BloomFilterSize do

10 if B′[i] = 1 then
11 S[i] = 1 with probability e

ϵ
2k

e
ε
2k +1

12 else
13 S[i] = 1 with probability 1

e
ϵ
2k +1

14 Return vector S:

1) The K-nearest neighbors (KNN) classifier: is a ver-
satile algorithm that classifies data based on the
majority class of its K nearest neighbors in a training
set, making it suitable for both classification and
regression tasks.

2) Support vector machines: The Support vector ma-
chines works by finding an optimal hyperplane in a
high-dimensional feature space that separates differ-
ent classes of data points. The hyperplane is chosen
in such a way that it maximizes the margin, which is
the distance between the hyperplane and the closest
data points of each class. This helps to achieve better
generalization and robustness of the model.

3) XGBoost configuration: XGBoost is a gradient boost-
ing algorithm. Table III gives the parameters cal-
ibrated for each dataset to optimize the model’s
performances. As can be shown, the configuration is
slightly the same, except for parameter Subsample.

V. EXPERIMENTAL AND ANALYSIS

To evaluate the proposed approach, a real dataset The
MHEALTH [29] is used. It is a data file consisting of ap-
proximately 1 million records. The data primarily consists of
numerical values. Specifically, it is referred to as the “Mobile
HEALTH” dataset, which captures body motion and vital signs
recordings. The dataset encompasses measurements from ten

volunteers with diverse profiles while engaging in various
physical activities. Also colab notebook is used. Colab [30] is
a research initiative for prototyping machine learning models
on powerful hardware such as GPUs and TPU. Tables II and
III provide the SVMs and XGBoost parameters, as well as
the KNN with K = 3. These machine learning algorithms are
used in the proposed method to test shred data in smart home
environments.

TABLE II. SVMS CONFIGURATION

Parameter Value

SVM Type rbf

C 1000

Gamma 0.4

TABLE III. XGBOOST CONFIGURATION

Parameter Value

N estimators 55

Max depth 6

Min child weight 7

num rounds 10

Gamma 0.4

A. Classification Evaluation

This subsection analyses the influence of different pa-
rameters on the classification results, including the privacy
budget value ϵ, the bloom filter size M and the number of
hash functions k. Knowing that the accuracy for the dataset
without applying LDP were KNN: 97.8%, SVMs: 98.5% and
XGBoost: 98%.
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Fig. 3. Bloom filter size for ϵ =0.95 and k = 5].

Fig. 3 demonstrate the relationship between the accuracy of
various classification methods and the size of the bloom filter.
The bloom filter size ranges from 8 to 256, and it achieves
accuracy within the following ranges: KNN (95.4%-95.7%),
SVMs (96.8%-97.15%) and XGBoost (96.6%-97.0%). When
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comparing these results with the accuracy obtained without
applying LDP using the same machine learning algorithms
(97.8%, 98.5%, and 98% respectively), there is an error margin
of approximately 2%. However, this level of error does not
significantly impact the overall accuracy.
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Fig. 4. Number of hash functions for ϵ =0.95 and M = 128].

Fig. 4 shows the relationship between the accuracy of var-
ious classification methods and the number of hash functions.
The number of hash functions ranges from 3 to 19, and it
achieves accuracy within the following ranges: KNN (95.2%-
95.8%), SVMs (96.65%-97.13%) and XGBoost (96.55%-
96.9%). Also, the error margin is approximately (1%-2%)
between the proposed LDP approach and without applying
LDP using the same machine learning algorithms

Our experiment considers a minimum value of hash func-
tions of 5, which corresponds to the optimal number of
hash functions for M = 128, according to the Eq. 13. As
depicted in the Fig. 4, the classification accuracy decreases
when the number of hash function increases. This stems from
an increasing number of hash collisions.
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Fig. 5. Privacy budget for M =128 and K = 5].

The relation between the accuracy of different classification
algorithms and the Privacy budget is depicted in Fig. 5. The
privacy budget varies from 0.1 to 1, and it achieves accuracy
within the following ranges: KNN (67.2%-97.4%), SVMs

(81.65%-99.13%) and XGBoost (46.42%-97.3%). When com-
paring these results with the accuracy obtained without apply-
ing LDP using the same machine learning algorithms (97.8%,
98.5%, and 98% respectively).

As expected in Fig. 5, the classification accuracy is an
increasing function of the privacy budget. Indeed, the higher
the privacy budget, the lower the perturbation level, and the
higher the accuracy. The preference dataset achieves better
classification results.

B. Decoding Algorithms Evaluation

Table IV shows the accuracy of various classification
methods on perturbed dataset using bloom filter size M = 128,
privacy budget ϵ = 0.95 and number of hash functions
k = 5. Table V shows the accuracy of the same classification
methods on the main dataset. As shown in both tables, an
analysis of accuracy comparisons for main and perturbed
data utilizing KNN, SVMs and XGBoost algorithms. This
study evaluates the accuracy performance of KNN, SVMs and
XGBoost algorithms when applied to a dataset consisting of
24,000 records and encompassing 12 distinct activities. The
comparison focuses on the accuracy of predictions made using
both the original dataset and a perturbed version.

Table VI illustrates the error margin between the accuracy
of various classification methods on perturbed data and main
dataset. The findings of this analysis indicate that the applica-
tion of LDP techniques on the dataset did not introduce any
significant impact on the decision-making process. The accu-
racy levels observed for the main dataset and the perturbed data
remained consistent across the evaluated algorithms, namely
KNN, SVMs, and XGBoost.

C. Security Analysis

In this part, we undertake security analysis using the funda-
mental adversary model. This model assumes that the attacker
has access to the altered data disclosed by different individuals
through the Local Differential Privacy (LDP) method. The
primary objective is to ensure that despite the adversary’s
access to the perturbed data and some knowledge of the
noise introduced during the LDP procedure, inferring sensi-
tive information about any individual remains computationally
infeasible or statistically improbable. The success rate of basic
adversary can directly be obtained from the probability of Eq.
19 [31]

Pr(B′[i] = 1)

 e
ϵ
2k

e
ε
2k +1

if B[i] = 1
1

e
ϵ
2k +1

if B[i] = 0
(19)

Fig. 6 illustrates the relation between the success rate of
basic adversary and ϵ and k values. The privacy budget ranges
from 0.1 to 4, and the number of hash functions are (k =
2, k = 7, k = 12). This figure indicates that as the privacy
budget increases, the probability that the adversary will win
in the game also increases. However, as the number of hash
functions increases, more wrong guesses occur. As expected,
the probability of winning the game decreases when ϵ and k
increase.
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TABLE IV. ACCURACY FOR PERTURBED DATA USING BLOOM FILTER SIZE M = 128, PRIVACY BUDGET ϵ = 0.95 AND NUMBER OF HASH FUNCTIONS
k = 5, KNN, SVMS AND XGBOOST, 24,000 RECORDS AND 12 ACTIVITIES

Precision Recall F1-score Support

KNN XGBoost SVMs KNN XGBoost SVMs KNN XGBoost SVMs KNN XGBoost SVMs

Standing still (1 min) 1 1 1 1 1 1 1 1 1 1121 1121 1121

Sitting and relaxing (1 min) 1 1 1 1 1 1 1 1 1 542 542 542

Lying down (1 min) 1 1 1 1 0.99 1 1 1 1 544 544 544

Walking (1 min) 0.97 0.93 0.97 0.94 0.99 0.94 0.96 0.96 0.96 567 567 567

Climbing stairs (1 min) 0.97 0.97 0.97 0.95 0.89 0.95 0.96 0.93 0.96 610 610 610

Waist bends forward (20x) 0.99 0.99 0.99 0.98 1 0.98 0.98 0.99 0.98 567 567 567

Frontal elevation of arms (20x) 0.98 0.96 0.98 0.98 0.99 0.98 0.98 0.98 0.98 543 543 543

Knees bending (crouching) (20x) 0.97 0.95 0.97 0.98 0.96 0.98 0.98 0.96 0.98 569 569 569

Cycling (1 min) 1 1 1 1 1 1 1 1 1 581 581 581

Jogging (1 min) 0.92 0.83 0.92 0.92 0.92 0.92 0.92 0.87 0.92 576 576 576

Running (1 min) 0.96 0.93 0.96 0.94 0.88 0.94 0.95 0.9 0.95 596 596 596

Jump front & back (20x) 0.9 0.91 0.9 0.94 0.84 0.94 0.92 0.87 0.92 594 594 594

Weighted Avg 0.972 0.956 0.972 0.969 0.955 0.969 0.971 0.955 0.971 7410 7410 7410

TABLE V. ACCURACY FOR MAIN DATA USING KNN, SVMS AND XGBOOST ALGORITHMS, 24,000 RECORDS AND 12 ACTIVITIES

Precision Recall F1-score Support

KNN XGBoost SVMs KNN XGBoost SVMs KNN XGBoost SVMs KNN XGBoost SVMs

Standing still (1 min) 1 1 1 1 1 1 1 1 1 922 922 922

Sitting and relaxing (1 min) 1 1 1 0.99 0.99 0.99 1 1 1 488 488 488

Lying down (1 min) 1 1 1 1 1 1 1 1 1 450 450 450

Walking (1 min) 1 1 1 1 1 1 1 1 1 449 449 449

Climbing stairs (1 min) 1 1 1 1 0.96 1 1 0.98 1 443 443 443

Waist bends forward (20x) 1 1 1 1 1 1 1 1 1 444 444 444

Frontal elevation of arms (20x) 1 0.99 1 0.99 0.99 0.99 1 0.99 1 438 438 438

Knees bending (crouching) (20x) 1 0.96 1 1 0.99 1 1 0.97 1 432 432 432

Cycling (1 min) 1 1 1 1 1 1 1 1 1 447 447 447

Jogging (1 min) 0.98 0.92 0.98 1 0.98 1 0.99 0.95 0.99 425 425 425

Running (1 min) 1 0.98 1 0.98 0.94 0.98 0.99 0.96 0.99 458 458 458

Jump front & back (20x) 1 0.97 1 1 0.96 1 1 0.96 1 454 454 454

Weighted Avg 0.998 0.985 0.998 0.997 0.984 0.997 0.998 0.984 0.998 5850 5850 5850

TABLE VI. THE ERROR MARGIN BETWEEN THE ACCURACY OF VARIOUS CLASSIFICATION ALGORITHMS KNN, SVMS AND XGBOOST ON PERTURBED
DATA AND MAIN DATASET, 24,000 RECORDS AND 12 ACTIVITIES

Precision Recall F1-score

KNN XGBoost SVMs KNN XGBoost SVMs KNN XGBoost SVMs

Standing still (1 min) 0 0 0 0 0 0 0 0 0

Sitting and relaxing (1 min) 0 0 0 0 0 0 0 0 0

Lying down (1 min) 0 0 0 0 0.01 0 0 0 0

Walking (1 min) 0.03 0.07 0.03 0.06 0.01 0.06 0.04 0.04 0.04

Climbing stairs (1 min) 0.03 0.03 0.03 0.05 0.07 0.05 0.04 0.05 0.04

Waist bends forward (20x) 0.01 0.01 0.01 0.02 0 0.02 0.02 0.01 0.02

Frontal elevation of arms (20x) 0.02 0.03 0.02 0.01 0 0.01 0.02 0.01 0.02

Knees bending (crouching) (20x) 0.03 0.01 0.03 0.02 0.03 0.02 0.02 0.01 0.02

Cycling (1 min) 0 0 0 0 0 0 0 0 0

Jogging (1 min) 0.06 0.09 0.06 0.08 0.06 0.08 0.07 0.08 0.07

Running (1 min) 0.04 0.05 0.04 0.04 0.06 0.04 0.04 0.06 0.04

Jump front & back (20x) 0.1 0.06 0.1 0.06 0.12 0.06 0.08 0.09 0.08

Weighted Avg 0.026666667 0.029166667 0.026666667 0.0275 0.029166667 0.0275 0.0275 0.029166667 0.0275
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Fig. 6. Success rate over one record of perturbed data by a Basic Adversary.

VI. CONCLUSION

In this study, we investigated the problem of sharing data
in a smart home environment while preserving user privacy.
The main contribution of this research is the development of
an efficient method for secure data sharing in smart homes
using local differential privacy and the Randomized Aggregat-
able Privacy-Preserving Ordinal technology. Individual users’
privacy is protected while data sharing with service providers
is facilitated by the proposed method. The simulation results
demonstrate that the technique performs well in terms of
privacy preservation, accuracy, recall, and f-measure metrics,
achieving utility privacy with high classification accuracy of
95.4% to 98% when the privacy budget is set to 0.95. This
research helps to improving data privacy and utility in the
context of smart homes, as well as providing a valuable
direction for privacy-preserving practices in the IoT domain.
In future research, we aim to extend the research to consider
privacy-preserving techniques for multi-modal data, such as
combining data from various sensors and devices within a
smart home environment.
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