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Abstract—Collateral circulation is an arterial anastomotic 

channel that supply nutrient perfusion to areas of the brain. It 

happens when there is an existence of disruption of regular 

sources of flow due to an ischemic stroke. The most recent 

method, Cone Beam Computed Tomography (CBCT) 

neuroimaging is able to provide specific details regarding the 

extent and adequacy of collaterals. The current approaches for 

collateral circulation classification are based on manual 

observation and lead to inter and intra-rater inconsistency. This 

paper presented a 2-class automatic classification that is recently 

growing very fast in artificial intelligence disciplines. The two 

classes will differentiate between good and poor collateral 

circulation. A pre-trained convolutional neural network (CNN), 

namely ResNet18, has been used to learn features and train using 

4368 CBCT images. Initially, the dataset is prepared, labeled and 

augmented. Then the images were transferred to be trained using 

the ResNet18 method with certain specifications. The algorithm 

performance was then evaluated using metrics in terms of 

accuracy, sensitivity, specificity, F1 score and precision on the 

CBCT images to classify collateral circulation accurately. The 

findings can automate collateral circulation classification to ease 

the limitations of standard clinical practice. It is a convincing 

method that supports neuroradiologists in assessing clinical scans 

and helps neuroradiologists in clinical decisions about stroke 

treatment. 
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I. INTRODUCTION 

Stroke disease is one of the causes that lead to short or 
long-term disability in developed countries. Stroke disease is 
also one of the top causes of mortality in the world [1]. 
Worldwide, over 5.5 million annual mortality rate has been 
reported, while 50% became disabled as a result of their 
strokes [2]. Women had poorer post-stroke outcomes and were 
more likely to experience a stroke in their lifetime [3]. In 2019, 
the low-income group had a higher age-standardized stroke-
related death rate than the high-income group [4]. Most strokes 
are often caused by the obstruction of pathways by both the 
brain and heart. The impact of stroke can be minimized by 
early detection of warning signs [5],[6]. Stroke disease is 
divided into two categories or groups: hemorrhagic stroke and 
ischemic stroke [6]. Most ischemic strokes will occur due to an 
unpredicted obstruction in the blood flow to several areas of 

the brain. Lack of oxygen and nutrients for the cells in those 
areas of the brain will cause the cells death [5] and lead to 
other serious problems such as blood vessel ruptures, also 
known as a hemorrhagic stroke when the brain tissue is 
bleeding [7]. Although thrombectomy carries inherent risks, it 
should only be performed in stroke disease patients with 
certain signs, which are a large penumbra and small infarct, 
along with collateral circulation [1,2]. 

In the case of acute brain ischemia, cerebral collateral 
circulation plays a vital role in compensatory mechanisms [8]. 
As a result of a failure of the primary arteries, the cerebral 
collateral circulatory system acts as a secondary network of 
vessels pathway that maintains cerebral blood flow [9]. Good 
collateral circulation and a lower likelihood of hemorrhagic 
transformation should improve endovascular treatment for 
acute ischemic stroke [10]. Extending the therapeutic time 
window after ischemia and boosting collateral blood flow 
perfusion are essential components of treating ischemic stroke 
[6]. It has been shown that good collateral circulation makes a 
significant difference in the functional outcome [11] and 
recurrence risk of stroke patients suffering from different 
causes and receiving medical or endovascular treatment. 
Several features have been investigated to diagnose the 
conditions of collateral circulation and compare findings with 
stroke disease patients. Assessment of ischemic stroke of 
collateral circulation is actively investigated. As collateral 
circulation is critical in the assessment of penumbra presence 
and volume, which are critical factors in the severity and time 
course of ischemic strokes, the status of collateral circulation is 
critical [11], [12]. Fig. 1 shows the collateral circulation view 
in the human brain. However, rather than measuring the actual 
anatomical connections, these approaches assess the general 
condition of collaterals. 

Imaging modality technique using Magnetic Resonance 
Imaging (MRI), Computerized Tomography (CT) [13], X-ray, 
CBCT, etc., provides precise details regarding the flow of 
blood to the various parts of the brain [14]. Then, when the 
imaging surveys have been completed, a comprehensive 
neurological examination must be undertaken [15]. These 
characteristics determine whether the underlying brain 
parenchyma survives in comparison to an arterial lesion. Cone 
Beam Computed Tomography (CBCT) is one of the most 
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popular techniques for assessing many diseases, especially the 
collateral circulation in the brain [16]. CBCT is considered an 
advanced imaging technology that provides accurate and three-
dimensional (3D) images for assessing hard tissue, soft tissue, 
and bone [17],[18]. As a result of its advantages over 
conventional CT, CBCT is increasingly used in acute strokes 
and neurovascular image-guided procedures [19], including 
strokes and nerve damage. Fig. 2 shows an example of CBCT 
images. 

 

Fig. 1. Collateral circulation in the human brain. 

 

Fig. 2. CBCT image. 

In recent years, machine learning specifically deep learning 
has become increasingly popular. Deep learning is a type of 
learning technique that employs multi-layered neural networks 
[15]. It has shown promising results in retrieving useful 
information from medical images and signals [20]. This 
research demonstrated an analysis framework to classify 
collateral circulation accurately for ischemic stroke patients 
into two classes: good and poor. The proposed method has 
been chosen to capture complex, non-homogeneous structures 
and tiny-size images. The aim is to discover the utilization of 
deep learning techniques to automate the classification of 
collateral circulation on CBCT images. 

II. RELATED WORK 

A. Collateral Circulation Scoring 

Collateral circulation is an alternative network vessels that 
carries blood to the same destination tissue [21]. It serves as an 
auxiliary vascular system and plays a crucial role in preventing 
cerebral ischemia when the primary vascular pathways are 
partially obstructed [22]. Table I presents the state-of-the-art 
evidence suggesting that the combination of neuroradiology 
expertise and artificial intelligence holds promise in facilitating 
timely and accurate disease diagnosis. 

TABLE I.  COLLATERAL CIRCULATION GRADING SYSTEMS 

Author Modality Grading System 

Kucinski et 

al. [23] 

Cerebral 

angiography 

1 (good): ≥3 MCA branches (retrograde 
filling) 

2 (poor): <3 MCA branches 

Higashida 

et al, [24] 

Cerebral 

angiography 

0: no collateral vessels filled 

1: slow collateral filling to periphery 
2: rapid collateral filling to periphery 

3: collaterals with slow but complete flow 

in 
ischaemic bed 

4: rapid and complete flow in entire 

ischaemic 
territory 

Maas et 

al, [25] 

CT 

angiography 

1: absent 

2: less than contralateral side 

3: equal to contralateral side 
4: greater than contralateral side 

5: exuberant 

Silvestrini 
et al. [26] 

Transcranial 
doppler 

Collateral supply inferred by direction of 
flow in ophthalmic artery, anterior cerebral 

artery, and posterior cerebral artery 

1: Good: ≥2 vessels insonated 
2: Poor: ≤1 vessel insonated 

Miteff 

et al. [27] 

CT 

angiography 

1 (good): entire MCA distal to occlusion 
reconstituted with contrast 

2 (moderate): some branches of MCA 

reconstituted in Sylvian fissure 
3 (poor): distal superficial branches 

reconstituted 

Tan et al. 

[28] 

CT 

angiography 

0: absent 
1: <50% collateral MCA filling 

2: >51–99% 

3: 100% 

Lee et al. 
[29] 

MRI, 

magnetic 
resonance 

angiography 

Distal hyperintense vessels on FLAIR MRI 

1: absent 
2: subtle 

3: prominent 

Marta. [30] 
CT 
angiography 

1: Good (100% collateral supply of the 
occluded 

MCA territory);  

2: Intermediate (collateral supply filling 
>50% but <100% of the occluded MCA 

territory) or  

3: Poor (collateral supply filling ≤50% but 
>0% of the occluded MCA territory) 

Jiahang Su 

[31] 

CT 

angiography 

0: absent collaterals (0% filling in occluded 
territory) 

1: poor collaterals (>0% and 50% filling in 

occluded 
territory) 

2: moderate collaterals (>50% and <100% 

in occluded 
territory) 

3: good collaterals (100% filling in 

occluded territory) 

 

Proposed 

method 

 
CBCT 

1: good collaterals (collateral supply 
>50% and <100%) 

2: poor collaterals (collateral supply 
>0% and 50%) 
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Su et al. and Tan et al. proposed a four-grade scoring 
system to prove a correlation between the outcome and effect 
of Endovascular Thrombectomy (EVT). Silvestrini et al. 
studied 66 patients having cervical arterial dissection. The 
researchers showcased the potential of Transcranial Doppler 
(TCD), a non-invasive technique, in assessing the long-term 
prognosis of patients in such cases. TCD was employed within 
24 hours of a stroke associated with carotid dissection to 
evaluate the collateral status. 

Maas et al. and Higashida et al. rated using a five-point 
scale for collateral circulation viewed during CT angiography. 
In the study conducted by Maas et al., a reference group of 235 
patients without occlusions was included, along with 134 
patients with acute stroke and MCA occlusion. The study 
aimed to assess the severity of ischemic stroke, prehospital 
clinical fluctuations, and clinical deterioration in the days 
following hospital admission. Additionally, the impact of 
collaterals was also evaluated in the study. After 1 hour of the 
onset of symptoms, poor collaterals were visible in 38% of 
patients; this number fell to 12% in patients whose images 
were taken 12 to 24 hours later. Patients with inadequate 
collaterals did not experience any variations in prehospital 
symptoms. Those with insufficient collaterals, as opposed to 
those with normal or voluminous collaterals, had a four times 
higher likelihood of experiencing symptom deterioration while 
hospitalized. 

Miteff et al. and Kersten-Oertel et al. used three grading 
systems. Kersten-Oertel et al. developed a technique for 
variations of mean intensities between the left and right 
hemispheres. The computed score and the neuroradiologist's 
assessment correlated well (r

2
 = 0.71), but the approach itself 

had difficulty for individual variations, such as those resulting 
from calcification and normal vasculature asymmetry between 
hemispheres. Miteff et al. employed a grading system 
consisting of three levels to assess the collateral circulation. A 
grade of three was assigned when the vessels were observed to 
be reconstituted beyond the occlusion site. A grade of 2 
indicated the presence of visible vessels at the Sylvian fissure. 
A grade of one denoted the situation where contrast 
opacification was only observed in the distal superficial 
branches. In their study, 55% of the patients had good 
collaterals, 26% had moderate collaterals, and 18% had poor 
collaterals. 

B. Deep Learning in Ischemic Stroke Analysis 

There are several works already published to automate 
diagnosis decisions in ischemic stroke classification.  Raj et al. 
introduced a novel approach that combined ResNet50 and ViT 
in their study. The combined model achieved an accuracy of 
87%. When evaluating the detection of hemorrhage, infarct, 
and normal cases, the true positive rates were 0.77, 0.76, and 
0.91, respectively. The study involved a total of 233 patients, 
out of which 70 had infarcts, 67 had hemorrhages, and 96 were 
classified as normal. It is worth noting that the number of slices 
depicting hemorrhage and infarct was relatively low, as these 
conditions typically occur in specific brain areas that are 
visible in only a limited number of CT scan slices. In their 

study, Wei et al. introduced a novel classification approach 
called Semantic Segmentation Guided Detector Network 
(SGD-Net). The technique combines DenseUNet121, 
ResUNet50, and VGGUNet16 models for the classification of 
DWI images in 216 acute ischemic stroke patients. The DWI 
images had a scale of 384 × 384 pixels per transverse slice, 
with each patient having 20 to 28 serial transverse slices. 

Gautam and Raman conducted a comparison of their 
technique with other CNN models, including AlexNet, 
ResNet50, P_CNN_WP, and P_CNN. The authors introduced a 
framework specifically designed for the classification of brain 
CT images into hemorrhagic, ischemic, and normal categories 
using 2D CT scan slice images. Rajendran et al. conducted 
three experiments to classify CT slices of ischemic stroke 
patients. The third approach using an ensemble model 
(ResNet50, VGG16, and InceptionV3) achieved an accuracy of 
81.98%. Ozaltine et al. used OzNet method combined with 
other method such as minimum Redundancy Maximum 
Relevance (mRMR) method and Decision Tree (DT), k-
Nearest Neighbors (kNN), Linear Discriminant Analysis 
(LDA), Naïve Bayes (NB), and Support Vector Machines 
(SVM) to achieve high classification performance. As a result, 
the new method OzNet-mRMR-NB is able to classify strokes 
with an accuracy of 98.42%. Eshmawi et al. developed a binary 
classification using new CAD-BSDC model for MRI images. 
The simulation results showed that the proposed CAD-BSDC 
technique was more effective than the most recent state-of-the-
art approaches in terms of a variety of performance measures. 

Recently, study by Sercan et al. examined the deep learning 
method for stroke classification. The U-Net, a method 
proposed in this study, utilizes encoder-decoder architecture. 
This architecture, which is based on deep learning, is highly 
effective in addressing various challenges in artificial 
intelligence applications. The results of the study indicate 
exceptional performance of the proposed model, with accuracy 
rates of 98.9% for stroke classification and 98.5% for ischemia 
and hemorrhage classification. Govindarajan et al. gathered 
data on 507 patients as part of a study by classifying stroke 
disorders using a text mining combination and a machine 
learning classifier. They employed ANN to train multiple 
machine learning techniques for their analysis, and the SGD 
method provided them with the best value, which was 95%. 

In this study, a deep transfer residual convolution neural 
network structure named ResNet18 is proposed to classify 
collateral circulation using CBCT images. This method was 
selected due to ease in residual mapping and shortcut 
connections lead to better results compared to very deep plain 
networks [32]. In addition, using the ResNet method, the 
training process is easier and the performance is sustained even 
though the architecture is getting deeper [32]–[34]. Thus, this 
proposed method is able to help neuroradiologists to speed up 
the treatment decision 

III. METHODOLOGY 

The classification proposed method can be described using 
the flowchart in Fig. 3. 
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Fig. 3. Research flow for proposed method. 

C. Materials 

For this study, we included 30 patients who had suffered an 
ischemic stroke. For all subjects, CBCT imaging was acquired 
on a Philips VasoCT scanner. The VasoCT upgrades are 
supported on the Philips Allura Xper systems provided with 
XperCT. The VasoCT acquisitions are performed with a 
motorized rotational C-arm movement and result in an 
isotropic stack of VasoCT images that can be visualized in any 
random position without image quality loss. All samples have 
medical records which have been confirmed by 
neuroradiologists. Images were encoded in DICOM (Digital 
Imaging and Communications in Medicine) format. The 
research mainly focuses on the process of classification by 
using CNN techniques using Python as the computational tool. 
This research does not include clinical representation, patient 
history, historical findings, or present solutions for the lesion. 

Based on the collected data, automatic classification is 
implemented using ResNet18 models. The research mainly 
focuses on the process of classification by using ResNet18 
models using Python as the computational tool. The deep 
learning framework is PyTorch. The Jupyter Notebook 
compiler that belongs to the Anaconda package was used in 
addition to some other basic Python libraries such as Numpy, 
Pillow, Augmantor, and OpenCV. 

D. Deep Learning Model using ResNet18 

ResNet networks have been developed based on the 
concept of residual learning [35][36][37]. This technique is one 
of the popular techniques in the deep learning model developed 

by He et al. in 2016 [32]. Residual learning is the learning 
process that involves a residual connection [33]. Residual 
connections are the connections that link the output of previous 
layers to the output of new layers [38]. A residual neural 
network (ResNet) is a supervised learning algorithm that is 
based on prismatic cell constructions in the cerebral cortex. 
Individual things or bypasses are utilized by ResNet18 to hop 
past certain levels. The most common residue neural network 
models include double or triple-layer delays [39] with 
nonlinearities (ReLU) and average pooling in between. To train 
the bypass values, an extra weight vector can be utilized; those 
models can be categorized as HighwayNets. DenseNets are 
networks that have multiple simultaneous bypasses. A non-
residual network can be defined as a straightforward system in 
the setting of Convolution Neural Network models [34],[40], 
[41]. 

There are two major reasons to use hidden layers: to 
prevent diminishing slopes and to alleviate the Depreciation 
(precision overload) phenomenon, which occurs when adding 
additional layers to relatively deep network results in increased 
generalization error. The weights adjust throughout learning to 
muffle the previous layer and magnify the recently bypassed 
element. Only the values for the neighboring element's link are 
changed inside the basic instance[42], with no specific values 
for the downstream layers. While a unique nonlinear layer is 
passed over, or when the middle layers are all normal, this 
approach has good performance. 

The functionality of ResNet18 for collateral circulation 
classification has been investigated in this research. The model 
depth is represented by the number "18." From the first to the 
deep network, the system complexity is defined as the highest 
number of successive convolution operations and fully linked 
layers on a path. The ResNet18 models that were used are 
given along with their specifications. ResNet18 algorithms are 
suitable for two-dimensional and three-dimensional methods, 
with the dimensions of filtration systems and source images 
(which might be two-dimension or three-dimension) differing. 
To suit CBCT scans, the updated 3D ResNet18 utilizes lesser 
data and has stride '1' in the first convolution operation. 

ResNet18 has a good performance to another model of 
ResNets, but because it is deep, it may reduce characteristics. 
As a result, we employ the ResNet18 pre-trained model as a 
feature representation (encoder) for our network structure. 
ResNet18 has 16 convolutional layers and several fully 
connected layers (Fc). The input image of ResNet is 224224, 
the pooling operation is 77 pixels, and the remaining layers are 
33 pixels. After average pooling, the fully connected 
convolution layer extracted features, and the network yields a 
wavelet coefficient, which is then processed with Softmax to 
get the categorization rate. There is the same amount of layers 
in the convolution layer that produces the same size extracted 
features. ResNet18 will produce a wavelet coefficient with 
several values, which are used to signal that the input picture 
corresponds to a specific category, and the outcome will be the 
class with the greatest chance. Because the fully connected FC 
keyframe input connections must be limited [43], ResNet18's 
raw image must be adjusted in size. 
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Based on this concept of residual connection as shown in 
Fig. 4, researchers could develop more than one architecture 
such as ResNet18, ResNet34, ResNet50, ResNet100, and 
Inception-ResNet, all of which have shown very high accuracy 
in comparison to those networks that do not have residual 
connections. To imagine what ResNet18 looks like, imagine 18 
weighted layers all interconnected with residual connections. It 
starts with a convolutional layer that has 64 filters, a kernel size 
of 7x7, and a stride of two then it goes through a pooling layer 
that has two strides, and so on till the information reaches the 
fully connected layer. The dotted shortcuts indicate an increase 
in dimensions to be able to concatenate with the next layer 
[44]. 

 

Fig. 4. Original ResNet18 architecture. 

E. Performance Evaluation 

The performance evaluation of the ResNet18 model 
included measures such as accuracy, sensitivity, specificity, 
precision, and F1 score. These are the numerical measurements 
of the model's performance, where accuracy is defined as the 
proportion of accurately detected samples to the total number 
of samples. Specificity and sensitivity are measurements of 
correctly identifying two different classes, which are, by 
definition, negative and positive. 

          
                           

                       
 (1) 

             
             

                            
 (2) 

             
             

                            
 (3) 

           
             

                            
 (4) 

          
                       

                     
 (5) 

IV. RESULTS AND DISCUSSION 

Different collateral circulation classification was performed 
on the above-mentioned dataset using the ResNet18 model. We 
divide the training data and validation data by 80:20, which 
means 80% training data and 20% validation data. In this 
ResNet18 classification technique, based on the seven epochs, 
the result has achieved the best accuracy of 0.6590, as shown 
in Table II. 

TABLE II.  ACCURACY FOR RESNET18 METHOD 

Epoch Testing 

1 0.659 

2 0.548 

3 0.613 

4 0.557 

5 0.601 

6 0.578 

7 0.534 

To the best of my knowledge, no previous research of a 
similar nature has been conducted due to the limitations 
inherent in this study. While there is existing research focused 
on classifying CTA and MRI images [45]–[47], the 
investigation into collateral circulation based on CBCT images 
using deep learning techniques is relatively novel and scarce. 
This study contributes to bridging this gap in the literature by 
exploring the potential of CBCT images and deep learning 
algorithms for collateral circulation classification. 

In this research, the performance of a model is 
also evaluated by using the training and testing loss measures 
respectively, during the training and testing phases of the 
process. The model is trained on a set of input data while in the 
training phase, and the training loss is calculated after each 
iteration of the training process. The training loss measures 
how well the model can forecast the output based on the 
information provided in the input. During the training phase, 
the goal is to achieve the best possible results with the least 
amount of loss. This is often accomplished by modifying the 
model‟s weights and biases by applying an optimization 
procedure such as stochastic gradient descent. 

Fig. 5 presents the training and testing loss graph, which 
provides valuable insights into the performance of the model. 
The graph indicates that the loss during the training phase 
remains relatively low, indicating that the model is learning 
effectively from the training data. However, a notable 
observation is that the loss during the testing phase is 
significantly higher than the training loss, suggesting the 
presence of overfitting. Overfitting occurs when a model 
becomes too specialized to the training data and struggles to 
generalize well to unseen data. To address this issue, several 
modifications can be implemented. One effective approach is 
to introduce regularization techniques. Another strategy to 
combat overfitting is to increase the size of the dataset. By 
obtaining more diverse and representative data, the model can 
learn from a wider range of examples and become more 
resilient to overfitting. 

 

Fig. 5. Training and testing loss comparison graph. 

The performance evaluation metrics can be calculated 
using Eq. (1) and (5). It is calculated that the accuracy is 0.660, 
sensitivity is 0.776, specificity is 0.526, precision is 0.650 and 
F1 score is 0.698. The sensitivity rate of the experiments shows 
that the CBCT scan was detected as positive for collateral 
circulation. The high sensitivity of the suggested model can 
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offer neuroradiologists a „second opinion‟. The dataset is 
assessed using the confusion matrix obtained from the 
experiment as shown in Fig 6. The confusion matrix provides 
in-depth explanations of the model's test outcomes. The 
confusion matrix provides a thorough examination of the 
correct and wrong classifications for this model class. 
Additionally, the confusion matrices demonstrate that some 
samples are incorrectly classified; indicating that the model is 
confused and unable to determine which class is the correct 
class for the incorrectly classified sample. This research can aid 
in providing a quick and precise diagnosis when compared to 
experimental tests, which require more time and have a higher 
likelihood of producing false negative results. 

 

Fig. 6. Confusion matrix for testing data. 

V. CONCLUSION 

In conclusion, a novel fully automatic approach to 
classifying the different stages of collateral circulation from 
CBCT images using the ResNet18 model of CNN is proposed. 
The data augmentation technique was used to increase the total 
number of 4368 CBCT images for training and testing for 
seven training epochs. Two stages of collateral circulation, 
good and poor were classified. The best result of 65.9 % 
accuracy was obtained. With this technique, it will be easier to 
detect collateral circulation classes fast and its treatment 
procedure will be more comprehensive. Despite the 
achievements reported in this paper, several improvements 
remain possible. Future research in the domain shall address 
these issues, possibly with a higher number of data to get a 
better training effect and further tuning of the transfer learning 
model. 
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