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Abstract—Using image processing technology has become 

increasingly essential in the education sector, with universities 

and educational institutions exploring innovative ways to 

enhance their teaching techniques and provide a better learning 

experience for their students. Vision transformer-based models 

have been highly successful in various domains of artificial 

intelligence, including natural language processing and computer 

vision, which have generated significant interest from academic 

and industrial researchers. These models have outperformed 

other networks like convolutional and recurrent networks in 

visual benchmarks, making them a promising candidate for 

image processing applications. This article presents a 

comprehensive survey of vision transformer models for image 

processing and computer vision, focusing on their potential 

applications for student verification in university systems. The 

models can analyze biometric data like student ID cards and 

facial recognition to ensure that students are accurately verified 

in real-time, becoming increasingly vital as online learning 

continues to gain traction. By accurately verifying the identity of 

students, universities and educational institutions can guarantee 

that students have access to relevant learning materials and 

resources necessary for their academic success. 

Keywords—Vision transformers; image processing; natural 

language processing; image 

I. INTRODUCTION 

In recent years, deep neural networks such as convolutional 
neural networks (CNNs) [1], recurrent neural networks (RNNs) 
[2], graph neural networks (GNNs) [3], and attention neural 
networks [4] have been widely applied to a variety of artificial 
intelligence (AI) tasks. In contrast to previous non-neural 
models, which relied heavily on hand-crafted features and 
statistical methods, neural models can automatically learn low-
dimensional continuous vectors as task-specific features from 
data, avoiding the need for complex feature engineering. 
Despite the popularity of deep neural networks, many studies 
have discovered that one of their fundamental limitations is 
their data-hungry nature. Due to many parameters in deep 
neural networks, they are prone to overfitting and have poor 
generalization capacity without appropriate training data [5]. 

 CNNs are a fundamental component of modern computer 
vision systems. The advantage of CNNs was that they 
eliminated the need for manually constructed visual elements 
instead of learning to execute tasks “end to end” from data. The 
CNNs minimize manual feature extraction, and the CNN 
architecture is optimized for images and can be 
computationally expensive. Recent arguments have claimed 
that need goes beyond convolutions to represent long-range 
relationships. These initiatives aim to enhance convolutional 
models with content-based interactions, such as self-attention 
and non-local means, to improve performance in various vision 
tasks [6]. Transformers [7] are models that focus entirely on 
the self-attention process to establish global dependencies 
between input and output, and they have dominated natural 
language modelling in recent years [8-9]. Transformers and 
their variations have been thoroughly explored and used in 
natural language processing tasks such as machine translation 
[10], light-weight transformers [11], dynamic mask attention 
networks [12], language modelling [13], routing transformers 
[14], positional encoding schemes [15], and named entity 
identification [16-17]. The contrasts in size of visual elements 
and the high quality of pixels in images compared to words in 
text provide challenges in converting transformer from 
language to vision. The standard transformer is intended to 
process sequence data and is expected to receive a 1D series of 
token embedding. Many applications, including video 
understanding [18], image recognition [19], image super-
resolution [20], object detection [21], segmentation [22], text-
image synthesis [23] and visual question-answering [24], have 
been successfully implemented using transformer models and 
their variants in a variety of fields. 

The survey in [25] explores recent advancements in visual 
transformers, an architecture originally designed for natural 
language processing but increasingly applied in computational 
visual media. The survey categorizes visual transformers based 
on task scenarios and analyzes their key ideas, with a particular 
focus on low-level vision and generation. The study reviews in 
detail backbone design approaches, offers quantitative 
comparisons, showcases image results, and includes 
information on computational costs and source code links to 
facilitate future development. In another recent survey by Jamil 
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et al. [26], the authors presented the first application of ViTs in 
-computer vision, providing an overview of their usage and 
performance in various applications such as image 
classification, object detection, segmentation, compression, 
super-resolution, denoising, and anomaly detection, along with 
a comprehensive analysis of existing models, insights, and 
future research directions. Liu et al. [27] provided a 
comprehensive review of over one hundred visual 
transformers, attention-based encoder- decoder models inspired 
by the Transformer architecture in computer vision. It analyzes 
their effectiveness in fundamental tasks (classification, 
detection, segmentation) and different data stream types, 
presents a taxonomy to organize the methods, evaluates and 
compares them under various configurations, identifies 
unexploited aspects for further improvement, and suggests 
three promising research directions for future development. 
Subsequently, the survey [28] examines the advancements and 
trends in utilizing Transformers for video modeling, addressing 
their limitations with inductive biases and scalability. It 
analyzes how videos are handled at the input level, 
architectural modifications to enhance efficiency and capture 
temporal dynamics, various training regimes, self- supervised 
learning strategies, and provides a performance comparison 
against 3D ConvNets, demonstrating the superior performance 
of Video Transformers in action classification with reduced 
computational complexity. 

Additional work in this approach may aid in a better 
understanding of Transformer models and detecting any 
ererroneous behaviour or biases in the decision-making 
process. Since Transformer designs do not incorporate 
inductive biases (previous knowledge) to deal with visual 
input, transformers generally require a substantial quantity of 
training data in pre-training to determine the underlying 
modality-specific rules [29]. Several neural network 
architectures are known, including CNN, RNN, and 
transformer. CNNs were once the standard [30] in the 
Computer Vision domain, but transformers are gaining 
popularity [29]. While CNNs may capture inductive biases 
such as translation equivariance and localization, Vision 
Transformer overcomes inductive bias through large-scale 
training. According to the existing research [31], CNNs excel 
at small datasets, whereas transformers excel at massive 
datasets. The following fundamental issue is whether to 
employ in future CNN or a transformer. 

Fig. 1 shows the number of publications on different image 
processing techniques using vision transformers [40]. 

 
Fig. 1. The number of publications on different image processing techniques 

using vision transformers. 

TABLE I. SUMMARY OF CONTRIBUTIONS FROM RECENT SURVEYS ON 

VISION TRANSFORMERS 

Reference Year Scope Contributions 

Han et al. 

[32] 
2022 

General 

overview 

Provides a comprehensive introduction 

to Vision Transformers 

Chen et 
al. [33] 

2021 

Image 

classificati

on 

Focuses on the application of Vision 

Transformers for image classification 

tasks 

Jamilet al. 
[26] 

2023 
General 
overview 

Offers an in-depth analysis of Vision 
Transformers in various domains 

Selvaet al. 

[28] 
2023 

Recent 

advancem
ents 

Highlights the latest research trends and 

advance ments in Vision Transformers 

Gehrig et 

al. [34] 
2023 

Object 

detection 

Discusses the utilization of Vision 

Transformers for object detection tasks 

Zhai et al. 

[35] 
2022 

NLP to 
computer 

vision 

transition 

Explores the adaptation of Vision 

Transformers from natural language 
processing to computer vision 

Yang et 

al. [36] 
2022 

Comprehe
nsive  

review 

Provides an extensive analysis of Vision 

Transformers and their applications - 

Guo et al. 

[37] 
2022 

Compariso
n with 

CNNs 

Compares the performance and 
characteristics of Vision Transformers 

with CNNs 

He et al. 

[38] 
2022 

Medical 

image 
analysis 

Examines the use of Vision 

Transformers in the field of medical 
image analysis 

Aleissaee 

et al. [39] 
2023 

Remote 

sensing ap 
plications 

Surveys the application of Vision 

Transformers in remote sensing tasks 

Table I summarizes significant contributions from the 
existing survey articles on vision transformers. 

The contributions of this article are as follows: 

 An overview of the background and preliminaries of 
vision transformers, widely used in natural language 
processing, and how they can be adapted for image 
processing. 

 Discusses how vision transformers have been used for 
image classification and enhancement, which involves 
improving the quality of images by removing noise, 
enhancing contrast, and increasing resolution. 

 Explores how vision transformers can be used for object 
detection, which is the process of identifying and 
locating objects within an image, and how they can 
achieve state-of-the-art performance on this task. 

 Highlights the role of vision transformers in education 
and university systems, specifically in student 
verification, where they can automate the process of 
verifying student identities, making it faster and more 
accurate. 

 Discusses how vision transformers can deal with 
multimodal tasks, where they can process and fuse 
information from multiple modalities, such as text, 
image, and audio. 

The rest of this article is organized as follows. The second 
part introduces the background details of the transformer, and 
the third part explores the usage of the visual transformer 
variants. The fourth part throws light on multimodal variants of 
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using vision transformers. It also discusses the future research 
directions of visual transformers and the fifth part concludes 
the paper. 

 
Fig. 2. Overall organization of the article. 

Fig. 2 shows the overall organization of the sections 
presented in this article. 

II. PRELIMINARIES (OR) BACKGROUND OF TRANSFORMERS 

The transformer is made of L layers, each of which has two 
major blocks: a Multi-Headed Self Attention (MSA) layer that 
performs a self-attention operation on various projections of 
the input tokens and a Multi-Layer Perceptron (MLA). Both 
the MSA and MLA layers are preceded by layer normalization 
and followed by a skip connection [41]. The attention 
mechanism was initially applied for 1-D data processing in 
natural language processing [42-43]. It has recently expanded 
to handle two-dimensional images and three-dimensional video 
data [44]. 

The fundamental components of a transformer include 
Multihead Self-Attention (MSA), Multi-Layer Perceptron 
(MLP), and Layer Normalization (LN) [7]. The authors [45] 
proposed the Gaussian Error Linear Unit (GELU) used to a 
great extent as one of the high-performing activation functions 
for neural networks. The work in [46] discusses the challenges 
of applying batch normalization to RNNs and introduces a new 
technique (called layer normalization) which addresses these 
challenges. Layer normalization computes mean and variance 
for normalization from all summed inputs to neurons in a layer 
on a single training case. It is effective in stabilizing hidden 
state dynamics in recurrent networks. It significantly reduces 
training time compared to previous techniques. 

A. Transformers for NLP 

In recent years, the transformer has evolved into a 
fundamental component of numerous cutting-edge natural 
language processing (NLP) models. Like RNN, the transformer 
is a robust performance model helpful for standard NLP 
applications such as intent identification in a search engine, 
text creation in a chatbot engine, and classification. The 
authors proposed a feed-forward network design that relies 
entirely on attention processes and avoids convolutions and 
recurrence. It achieved state-of-the-art performance on several 
tasks significantly and generalized exceptionally well to other 

NLP tasks, even with limited data. This design served as the 
foundation for numerous NLP models. GPT [47-49] and BERT 
[8] are two pioneering Transformer- based pre-trained models 
(PTMs) that employ autoregressive and autoencoding language 
modeling as pre-training objectives, respectively. Different 
Pre-trained models XLNet [50], RoBERTa [51], ALBERT 
[52], and T-NLG [53] are used in NLP tasks. Fig. 3 shows the 
structural difference between Transformer, GPT, and BERT 
[54]. 

Devlin et al. utilized the Transformer encoder (and only the 
encoder) to pre-train deep bidirectional representations from 
the unlabeled text. This pre-trained BERT model is fine-tuned 
with just one extra output layer to reach state-of-the-art 
performance for various NLP tasks without significant task- 
specific architectural changes. GPT [47] is a framework and 
training technique for natural language processing problems 
based on the Transformer architecture. The process for training 
is twofold. First, unlabeled data was used to learn the initial 
parameters of a neural network model using a language 
modeling aim. Then, using the associated supervised goal, 
these parameters are modified to a target task. 

B. Vision Transformers for Image Classification 

There have been many efforts to apply Transformers to 
vision tasks. These works are divided into two categories. The 
first category comprises models of pure attention. These 
models frequently use self-attention and strive to create 
convolution-free vision models. The second category 
encompasses networks developed using self-attention and 
convolutions [55]. Self-attention networks have revolutionized 
NLP and rapidly advanced image analysis tasks such as image 
classification and object recognition [56-57]. 

In computer vision, attention is employed in conjunction 
with or instead of CNN. This reliance on CNN is not required, 
as a pure transformer applied straight to sequences of image 
patches can do quite well on image classification tasks. The 
original text Transformer accepts a series of words as input and 
then uses them for classification, translation, or other natural 
language processing tasks. Dosovitskiy et al. [58] made the 
fewest feasible changes to the Transformer architecture to 
work directly on images rather than words for the vision 
transformer. Fig. 4 shows the architecture of the vision 
transformer. 

Vision transformer generates a grid of square patches from 
an image. Each patch is converted to a single vector by 
concatenating the channels of all its pixels and then linearly 
projecting it to the chosen input dimension. Because 
transformers are structure-independent, they can add learnable 
position embedding to each patch, allowing the model to learn 
about the structure of the images. Vision transformer does not 
know the relative location of patches in the image or even if the 
image has a two-dimensional structure a priori. It must learn 
this information from training data and encode it in the position 
embeddings. Feed the sequence as an input to a state-of-the-art 
transformer encoder. Pre-train the vision transformer model 
with image labels, fully supervised then on an extensive 
dataset. Fine-tune the downstream dataset for image 
classification. 
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Fig. 3. Structure of transformer, GPT, and BERT. 

 
Fig. 4. Vision transformer architecture. 

The Image GPT (iGPT) method [59] is an unsupervised 
generative pre-training technique for developing robust visual 
representations. By directly applying a GPT-2 [48] model to 
the image pixels, compelling image completions and samples 
were obtained, demonstrating that a completely Transformer-
based architecture is viable for some visual tasks, regardless of 
the input image quality. 

It does not need to prepare a large dataset to properly train 
the network in Data-efficient Image Transformers (DeiT) [6]. 
Instead, student-teacher setup and more intensive data 
augmentation and regularization are employed, such as 
stochastic depth [60] or repeated augmentation [61]. The 
teacher is a neural network designed to guide its student 
induction bias for convolutions [19]. 

LeViT is based on the architecture of the vision transformer 
[58] and the training technique of DeiT [19]. Regarding the 
speed/accuracy trade-off, LeViT considerably outperforms 
previous convents and vision transformers [62]. LeViT is five 
times faster than EfficientNet on the CPU at 80. 

To improve image classification accuracy, Chen et al. [51] 
describe Cross Vision Transformer (CrossViT) [63], a dual-
branch vision transformer learning multi-scale features. The 
proposed technique analyses separately small-patch and large-
patch tokens using two distinct branches with varying 
computational costs. These tokens are subsequently merged 
numerous times repeatedly by attention to complement one 
another. It also created an efficient token fusion module based 
on cross-attention using a single token for each branch as a 
query to exchange information with other branches. Cross-
attention needs linear time for computational and memory 
complexity when it usually requires quadratic time. 

Transformer-iN-Transformer (TNT) [64] combines both 
patch-level and pixel-level representation by utilizing an outer 
Transformer block that processes patch embedding and an 
inner Transformer block that models the relation between pixel 
embedding. 
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C. Transformer for Image Enhancement 

Chen et al. developed a pre-trained image processing model 
based on the transformer design, namely Image Processing 
Transformer (IPT) [65]. The IPT model features multiple 
heads, multiple tails, and a standard transformer body for 
performing various image processing tasks such as super-
resolution and denoising. The IPT model was trained using 
supervised and unsupervised methods, demonstrating a 
significant capacity to capture intrinsic characteristics for low-
level image processing. Experiments indicate that IPT can 
outperform state-of-the-art techniques using a single pre-
trained model following a brief fine-tuning phase. 

Yang et al. [20] proposed a novel Texture Transformer 
Network for Image Super-Resolution (TTSR) in which the low-
resolution (LR) and high-resolution (Ref) images are expressed 
as queries and keys, respectively, in a transformer. TTSR is a 
collection of closely linked modules designed for image 
generation tasks, comprising a learnable texture extractor based 
on deep neural networks, a relevance embedding module, a 
hard-attention module for texture transfer, and a soft-attention 
module texture synthesis. 

D. Transformer for Object Detection 

Carion et al. [21] introduced DEtection Transformer 
(DETR) to eliminate the requirement for such hand-crafted 
components and developed the first fully end-to-end object 
detector with highly competitive performance. DETR is a basic 
architecture shown in Fig. 5 that combines CNNs with 
Transformer encoder-decoders [66]. They use Transformer’s 
versatile and robust relation modelling capabilities to substitute 
hand-crafted rules when appropriately prepared training signals 
are used. DETR is a novel approach to object recognition based 
on transformers and bipartite matching loss for direct set 
prediction. Applied to the problematic COCO dataset, the 
method obtains results equivalent to an improved Faster R-
CNN baseline. DETR is simple to construct and offers a 
modular design easily extendable to panoptic segmentation, 
resulting in competitive performance. Additionally, it 
outperforms Faster R-CNN on big objects, most likely because 
of the global information processing produced by self-
attention. 

However, it has its own range of difficulties. These 
difficulties are primarily due to the Transformer’s attention 
deficiencies in handling image feature maps as essential 
elements: (1) DETR’s ability to identify small objects is 
relatively poor. Modern object detectors use high-resolution 
feature maps to identify small objects more accurately. 
However, high-resolution feature maps would impose an 
excessive complexity level on the self-attention module of 
DETR’s Transformer encoder, which scales quadratically with 
the spatial dimension of the input feature maps. (2) Compared 
to current object detectors, DETR takes more training epochs 
to converge. DETR is primarily due to the difficulty of training 
the attention modules that analyze visual characteristics. 

Deformable (DETR) [21] remove the requirement for 
several handmade components in object detection while 
exhibiting acceptable performance. However, because of the 
limitations of Transformer attention modules in processing 
visual feature maps, it has a sluggish convergence rate and a 
restricted feature spatial resolution. To address these concerns, 
authors [67] suggested Deformable DETR, in which the 
attention modules focus exclusively on a limited number of 
critical sampling points surrounding a reference. Deformable 
DETR is a technique for object detection that seeks to address 
DETR’s delayed convergence and high complexity problems. 
It combines the advantages of deformable convolution sparse 
spatial sampling with the relation modelling capability of 
transformers. Deformable DETR introduced a deformable 
attention module that uses a few sample sites as a pre-filter for 
conspicuous key components among all feature map pixels. 
Without relying on FPN, the module may be organically 
expanded to aggregate multi-scale characteristics. With ten 
fewer training epochs, deformable DETR can outperform 
DETR (particularly on tiny objects). Extensive trials on the 
COCO [68] benchmark validate this method. 

Zheng et al. propose a novel transformer variation called 
the Adaptive Clustering Transformer (ACT) to reduce the 
computation cost associated with high-resolution input [69]. 
ACT uses Locality Sensitive Hashing (LSH) to cluster query 
characteristics adaptively and approximates the query-key 
interaction using the prototype-key interaction. ACT is capable 
of reducing the quadratic complexity inherent in self-attention. 

 

Fig. 5. DETR’s general architecture. The image is from [21]. 
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Inspired by the tremendous success of pre-training 
transformers in natural language processing, Dai et al. [70] 
proposed Unsupervised Pre-train DETR (UP-DETR) for object 
detection. The proposed UP-DETR model includes pre-training 
and fine-tuning procedures: (a) the transformers are 
unsupervised trained on a large-scale dataset without human 
annotations, and (b) the complete model is fine-tuned using 
labelled data, similar to the original DETR. Precisely clip 
random regions from the provided image and send them to the 
decoder as queries. Pre-trained on these query patches from the 
original image, the model detects them. The authors solve two 
critical difficulties during pre-training: multitask learning and 
multi-query localization. To balance classification and 
localization preferences in the pretext task, freeze the CNN 
backbone and propose a patch feature reconstruction branch 
optimized for conjunction with patch detection. (2) To 
accomplish multi-query localization, expand UP-DETR from 
single-query patches to multi-query patches by including object 
query shuffling and an attention mask. To expedite DETR’s 
training convergence and prediction capability in object 
detection, Sun et al. [71] conduct extensive experiments and 
suggest two innovative methods, namely TSP-FCOS 
(transformer-based Set Prediction with FCOS) and TSP-RCNN 
(transformer-based Set Prediction with RCNN). These 
techniques converge considerably quicker than the original 
DETR and significantly outperform DETR and other baselines 
regarding detection accuracy 

Beal et al. [72] developed ViT-FRCNN, a competitive 
object detection solution that uses a transformer backbone, 
implying that sufficiently distinct architectures from the well-
studied CNN backbone are viable for advancement on complex 
vision problems. Transformer-based models have proven 
capacity to pre-train with large datasets without reaching 
saturation and fast fine-tune to different tasks, both observed 
with ViT-FRCNN. 

The authors [73] suggested a novel variation of Vision 
Transformer models based on focal attention, called Focal 
Transformer that outperforms state-of-the-art (SoTA) vision 
Transformers on various publicly available image classification 
and object detection benchmarks. 

Extracting strong feature representations is a significant 
issue in the re-identification of objects (ReID). Although 
techniques based on CNNs have gained considerable success, 
they analyze just one local area at a time and suffer from 
information loss due to convolution and down-sampling 
operators. To address these constraints, He et al. [74] 
introduced Transformer for Object re-identification 
(TransReID), a pure transformer-based object Reid framework. 
First, encode each image as a sequence of patches and then 
construct a transformer-based strong baseline with a few 
essential enhancements that obtain competitive performance on 
many Reid benchmarks using CNN-based techniques. 

E. Transformer for Semantic Segmentation 

Lie et al. [75] proposed a novel vision Transformer called 
Swin Transformer, a hierarchical Transformer with shifted 

windows used for general-purpose computer vision. To 
improve performance, offset windowing restricts self-attention 
computation to non-overlapping local windows while 
permitting cross-window connections. This hierarchical 
architecture can simulate various sizes and has a linear 
computational cost with image scalability. Swin Transformer 
used for image classification 86.4 accuracy on ImageNet-1K 
[76], dense prediction tasks including object identification 58.7 
box AP on COCO, and semantic segmentation 53.5 mIoU on 
ADE20K [77]. 

Zheng et al. [78] introduced a sequence-to-sequence 
prediction framework for semantic segmentation. For the first 
time, authors have eliminated the need for FCN and solved a 
restricted receptive field problem, unlike current FCN-based 
techniques that use dilated convolutions and attention modules 
at the component level. This encoder may be coupled with a 
primary decoder to build a robust segmentation model called 
SEgmentation TRansformer (SETR). SETR uses a pure 
transformer (no convolution or resolution reduction) to encode 
an image as a patch sequence. MaX-DeepLab [79] is the first 
end-to-end model for panoptic segmentation that automatically 
infers masks and classes without the need for hand-coded 
priors such as object centres or boxes. 

The Dense Prediction Transformer (DPT) [80] is a neural 
network design that successfully uses visual transformers for 
dense prediction problems. The monocular depth estimation 
and semantic segmentation tests demonstrate that the given 
architecture generates more fine-grained and globally coherent 
predictions than fully convolutional networks. As with 
previous work on transformers, when trained on large-scale 
datasets, the DPT reaches its full potential. 

F. Transformer for Medical Image Segmentation 

Segmentation of medical images is necessary for 
developing healthcare systems, particularly for disease 
diagnosis and treatment planning. The U-shaped architecture, 
commonly known as U-Net [81], achieved remarkable success 
in various medical image segmentation tasks. However, 
because convolution processes are intrinsically local, U-Net 
typically exhibits problems when representing long-range 
dependence clearly. To fully use the capabilities of 
Transformers, Chen et al. [82] presented TransUNet, which 
incorporates a fully global context by considering image 
features as sequences and effectively uses low-level CNN 
features via a U- shaped hybrid architectural design. Several 
experiments were conducted to evaluate the proposed 
TransUNet system and validate its performance in various 
scenarios, including 1) model scaling, 2) the number of skip-
connections, 3) patch size and sequence length 4) input 
resolution. TransUNet outperforms many competing methods, 
including CNN-based self-attention methods, as an alternate 
framework to the current FCN-based systems for medical 
image segmentation. Fig. 6 shows the architecture of 
TransUNet. 
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Fig. 6. An overview of the TransUNet architecture. Image credit [82]. 

Yun et al. [83] introduced Spectral Transformer (SpecTr), a 
method for segmenting hyperspectral pathology images that 
use transformers to learn contextual features across spectral 
bands. They applied two critical schemes to support context 
learning: (1) A sparsity strategy is used to learn context-
dependent sparsity patterns and improve the model 
performance and interpretability. (2) A technique for spectral 
normalization is given that allows for independent normalizing 
of the feature map at each spectral location, therefore 
eliminating interference caused by distribution mismatches 
between spectral images. On a cholangiocarcinoma 
segmentation dataset, SpecTr was assessed. Experiments 
demonstrate the superiority of the suggested method for 
hyperspectral pathology image segmentation. 

Valanarasu et al. [84] introduced MedT (Medical 
Transformer), an encoder that employs gated axial attention as 
its primary building block and is trained using the Local-
Global training strategy (LoGo) approach. 

The above equation is formulated by the attention model 
presented in [85], and q, K, k w×w is formulated by the width-
wise axial attention model. The gated axial-attention model 
extends previous designs by incorporating a self-attention 
module with an extra control mechanism. 

Guo et al. introduced a unique framework for point cloud 
learning called Point Cloud Trans- former (PCT) [86]. PCT is 
based on the transformer, which has achieved enormous 
success in natural language processing and has tremendous 
promise in image processing. Because it is intrinsically 
permutation invariant when processing a sequence of points, it 
is ideally suited for point cloud learning. The authors increase 
input embedding with the help of the furthest point sampling 
and closest neighbour search to better capture local context 
inside the point cloud. Extensive experimental evidence 
demonstrates that the PCT outperforms state-of-the-art shape 
classification, part segmentation, semantic segmentation, and 
normal estimation tasks. 

G. Transformer for Image Generation 

Inspired by CNN, Image Transformer [87] confines the 
self-attention receptive field to local regions. Image 
Transformer implements an encoder-decoder architecture in 
which the encoder creates a contextualized representation for 
each pixel-channel in the inputs, and the decoder generates one 
channel per pixel at each time step autoregressively. 

Jiang et al. [88] suggest the first GAN completely using 
transformers without convolution. TransGAN has a novel grid 
self-attention mechanism, a memory-friendly generator and a 
multi-scale discriminator. These architectural components have 
been carefully developed to strike a compromise between 
memory efficiency, global feature statistics, and local fine 
details in the presence of spatial variations. 

Lee et al. [89] incorporate the Vision Transformer 
architecture into adversarial generating networks (GANs). The 
authors discovered that conventional regularisation techniques 
for GANs had a poor interaction with self-attention, resulting 
in severe training instability. The ViTGAN model developed 
innovative regularisation strategies for training GANs with 
Vision Transformers to address the problem. 

H. Role of Transformer in Education and University Systems 

To confirm the identity of students, universities and other 
educational institutions typically require them to provide 
identification documents, but this process can be time-
consuming and susceptible to errors. Vision Transformer can 
automate this process, resulting in faster and more accurate 
verification. To implement this approach, the educational 
institution can build a database containing student images and 
identification documents [90]. Then, the Transformer model 
can be trained on this database to learn how to identify 
students’ faces in the images and match them to their 
identification documents. Students can capture the image with 
their mobile device or webcam in the verification process. The 
Transformer model can analyze the image to authenticate the 
student’s identity. The model can compare the student’s face in 
the image to the database of student images to verify that it 
corresponds to the identification document. 
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Moreover, such a transformer model can also detect 
fraudulent activity in student identification documents. The 
model can scrutinize the identification document and highlight 
any discrepancies or irregularities. For example, the model can 
identify if the photo on the identification document has been 
manipulated digitally or if the document has been tampered 
with in any way. This fact not only streamlines the process of 
verifying student identities, making it quicker and more precise 
but also ensures the reliability of the verification process by 
detecting any fraudulent activity in student identification 
documents. 

III. VISUAL TRANSFORMER VARIANTS 

The development of the visual transformer has paved the 
way for significant advancements in computer vision. Since its 
inception, researchers have explored several variants of 
transformer architecture to further improve its performance on 
visual tasks. In this section, we discuss some of the notable 
variants of the visual transformer and their applications. 

A. Deeper Visual Transformer 

Zhou et al. found that in contrast to CNNs, the performance 
of vision transformers rapidly saturates as the number of 
convolutional layers increases. As the transformer progresses 
deeper, the attention maps become increasingly similar after a 
certain number of layers. The feature maps in the top layers of 
deep vision transformer models are often similar. It indicates 
that in the deeper layers of vision transformers, the self-
attention mechanism cannot learn appropriate ideas for 
representation learning, preventing the model from achieving 
the predicted performance improvement. Zhou et al. [91] 
identified the problem of the vision transformers’ attention 
collapsing as they progress deeper. They suggest a unique re-
attention technique DeepViT to resolve it with the least amount 
of calculations and memory cost possible. Using Re-attention 
can sustain an improving performance when the depth of vision 
transformers increases. 

The CaiT [92] network’s operation involves two distinct 
processing phases. The first one, the self-attention stage, is 
similar to the vision transformer, except there is no class 
embedding. Second, a series of layers called the class-attention 
stage (CLS) compiles the patch embeddings into a class 
embedding CLS, given to a linear classifier. 

Wang et al. [93] propose a Pyramid vision transformer 
(PVT), a pure Transformer backbone suitable for dense 
prediction applications like semantic segmentation and object 
detection without convolutions. The authors create a 
progressive pyramid shrinking algorithm and a spatial-
reduction attention layer for obtaining multi-scale feature maps 

with minimal memory/computation resources. Extensive 
experimentation on semantic segmentation and object detection 
benchmarks demonstrates that PVT outperforms well-designed 
CNN when the parameters are equivalent. Fig. 7 compares the 
CNN architectures, the vision transformer, and the pyramid 
transform. 

L. Yuan et al. [96] proposed a novel Token–to–Token 
Vision Transformer (T2T-ViT) model that can be trained 
entirely on ImageNet and attain performance equivalent to or 
better than CNN’s. Using T2T-ViT, the image structure 
information is better modelled, and more features are provided. 
Thus T2T-ViT significantly exceeds the Vision Transformer 
features. It has a unique tokens-to-tokens (T2T) approach for 
tokenizing images incrementally and structurally aggregating 
tokens. 

As a result of the improvements in computer vision and the 
enormous quantity of training data, many people feel 
Transformers are not appropriate for tiny datasets. The authors 
of this article [97] debunked the notion that transformers are 
data-hungry. The authors in [97] demonstrated that proposed 
Compact Convolution Transformers (CCT) can compete with 
state-of-the-art CNNs with appropriate data size and 
tokenization for the first time. Through a unique sequence 
pooling technique and convolutions, the suggested model 
eliminates the need for class tokens and positional embeddings. 

Heo et al. [98] proposed a novel architecture called 
Pooling-based Vision Transformer (PiT) to use the pooling 
layers' advantages. The authors demonstrate that a commonly 
utilized design concept in CNN spatial dimensional 
transformation accomplished by pooling or convolution is 
ignored in transformer-based architectures, negatively affecting 
the model performance and the transformer architecture 
benefits from decreasing the spatial dimension. The authors 
initially examined ResNet and discovered that transforming it 
in terms of spatial dimension improves computing efficiency 
and generalization ability. To capitalize on the benefits of 
Vision Transformer, the authors proposed a PiT that integrates 
a pooling layer into Vision Transformer, and the PiT 
demonstrates that pooling layer benefits become effectively 
matched to Vision Transformer. As a result of considerably 
increasing the performance of the Vision Transformer 
architecture, the authors demonstrated that the pooling layer is 
critical for a self-attention-based design by considering the 
spatial interaction ratio. Moreover, extensive experiments 
showed that PiT outperforms the baseline on object detection, 
image classification, and robustness evaluation. Fig. 8 
highlights the difference in dimensions of network 
architectures ResNet- 50, Vision Transformer, and PiT. 
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Fig. 7. (a) CNNs: ResNet [94], VGG [95], etc. (b) Vision transformer [58] (c) Pyramid vision transformer [93]. 

Fig. 8. A schematic diagram illustrates dimension variation in network architectures. (a) ResNet-50, (b)ViT-S/16, (c)PiT-S. image credit [98]. 

B. Hybrid Transformers 

To improve image super-resolution, Z. Lu et al. [99] 
propose an Efficient Super- Resolution Transformer (ESRT). 
ESRT is a hybrid Transformer that uses a CNN-based SR 
network to extract deep features. Backbones for the ESRT 
include the lightweight CNN (LCB) and lightweight 
Transformer (LTB). LCB is a low-cost SR network extracting 
deep SR features by dynamically changing the feature map’s 
size. LTB consists of an efficient Transformer (ET) that 
consumes less GPU Memory space and benefits from the 
uniquely efficient multi-head attention (EMHA). The Reformer 
[100] is a Transformer model capable of processing context 
windows of up to 1 million words on a single accelerator with 
only 16GB of memory. Reformer combines two critical 
approaches for resolving the attention and memory allocation 
issues that limit the applicability of the transformer to lengthy 
context windows. The reformer uses locality-sensitive hashing 
(LSH) to decrease the complexity of attending to long 
sequences and reversible residual layers to maximize the usage 
of available memory. 

H. Wu et al. [101] introduced a novel architecture, the 
Convolutional Vision Transformer (CvT) that enhances the 
performance and efficiency of the Vision Transformer by 
incorporating convolutions into the Vision Transformer. The 
author’s findings indicate that positional encoding, a critical 
component of existing Vision Transformers, can be safely 
omitted from the CvT model, simplifying the design for 
higher-resolution vision applications. 

Chu et al. [102] proposed a highly efficient and direct 
implementation of two architectures - Twins-PCPVT and 

Twins-SVT vision transformer designs. Twins-PCPT is based 
on PVT [93] and CPVT [103] and utilizes global attention. 
Twins-SVT is based on the proposed SSSA, consisting of two 
distinct attention operations: locally-grouped self-attention 
(LSA) and globally subsampled attention (GSA). Both 
transformer models established new benchmarks for image 
classification, semantic/instance segmentation, and object 
detection. 

Zhang et al. introduced the Nested Transformer (NesT) 
[104]. The block aggregation function is essential for enabling 
non-local information transmission across blocks. The 
accuracy of a NesT trained on ImageNet for 100/300 epochs is 
82.3 per cent compared to other techniques [19], [105] that 
achieved up to 57% parameter reduction. A NesT with 6M 
parameters trained from scratch on CIFAR10 [106] achieves 
96% accuracy using a single GPU. 

Visual Transformers (VT) [107] defines the problem in the 
semantic token space, intending to represent and process high-
level concepts in images using visual tokens. Moreover, 
different parts of the image have different meanings due to 
their different content. Note that this is entirely different from 
the transformer that processes information in pixel space (such 
as Vision Transformer, DeiT, IPT, etc.) because the amount of 
calculation differs by multiple orders of magnitude. The author 
[107] uses the spatial attention mechanism to convert the 
feature map into compact semantic tokens. Then input these 
tokens into a Transformer, and use the unique functions of the 
transformer to capture the connection between the tokens. In 
this way, VT can 1) Focus on those relatively important areas 
instead of treating all pixels equally like CNN. 2) Encode 
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semantic concepts in visual tokens instead of modelling all 
concepts in all images. 3) Use the Transformer to model the 
relationship between tokens. The VT model is used in 
classification tasks (Model Base: ResNet, Dataset: ImageNet, 
reduced by 6.9 times, increased by 4.6- 7 Accuracy) and 
semantic segmentation tasks (Model Base: FPN, Dataset: LIP 
and COCO-stuff reduced by 6.4 times the amount of 
calculation, the increase point 0.35 mIoU) has achieved 
excellent performance. 

C. Supervised Learning in Vision Transformer 

Supervised learning enables the transformer to learn a 
bottleneck representation in which the content and context are 
mixed around the class token. This results in a relatively 
superficial data model, and its association with labels needs 
many training examples. On the other hand, unsupervised 
learning uses the information redundancy and complementarity 
inherent in image data by learning to rebuild local content 
through context integration [108]. 

In self-supervised learning, no concept whatsoever of 
labelled data for the training. Self-supervised techniques can be 
classified broadly as generative or discriminative [109]. 
Generative methods learn to predict the data distribution. 
However, data modelling is inherently computationally 
expensive and may not be required in all cases for 
representation learning. Discriminative methods, generally 
implemented in a contrastive learning framework [110] or 
through pretext tasks [111], have the capacity to create more 
generalized representations with minimal computing needs. 

Auto et al. [112] proposed a Self-supervised vision 
Transformer (SiT), a unique approach for learning visual 
representations without supervision. Using the autoencoder 
transformer’s inherent capacity to perform multitask learning, 
it created a robust self-supervised system that optimizes 
reconstruction, rotation classification, and contrastive losses 
concurrently. The last utilizes the strength of the transformer to 
train SiT to perform three distinct tasks: image reconstruction, 
rotation prediction, and contrastive learning. 

Bao et al. [113] introduced a self-supervised vision 
representation model BEiT, which stands for Bidirectional 
Encoder representation from image Transformers. The authors 
proposed a masked image modelling task to pre-train vision 
Transformers in a self-supervised manner. In pre-training, each 
image contains two perspectives - image patches and visual 
tokens. First, ”tokenize” the original image into visual tokens. 
Then, using a random masking technique, feed specific image 
patches into the backbone Transformer. The purpose of the 
pre-training is to reconstruct the original visual tokens from the 
damaged image patches. After pre-training BEIT, fine-tune 
model parameters directly on downstream tasks by 
superimposing task layers on the pre-trained encoder. 
Experiments on image classification and semantic 
segmentation demonstrate that our model outperforms prior 
pre-training approaches. For example, base-size BEIT achieves 
83.2% top-1 accuracy on ImageNet-1K with the same 

configuration, considerably surpassing DeiT training from 
scratch at 81.8% [19]. 

D. Video Transformer 

Following the recent success of vision transformer models 
in image classification, Arnab et al. [114] presented pure-
transformer-based video classification models Video Vision 
Transformer (ViViT). To efficiently handle a high count of 
Spatiotemporal tokens, the authors in [114] constructed 
multiple model variations that factorize the transformer 
encoder’s many components across spatial and temporal 
dimensions. The authors in [113] demonstrated how to use 
additional regularisation and pre-trained models to compensate 
for the fact that video datasets are often smaller than the image 
datasets on which Vision Transformer was trained. 

The VisTR, a new video instance segmentation framework 
based on Transformers, considers the video in-stance 
segmentation (VIS) problem an end-to-end concurrent 
sequence decoding/prediction issue [115]. Fig. 9 shows the 
architecture of VisTR. The paradigm is qualitatively distinct 
from previous techniques, streamlining the whole process 
significantly. VisTR approaches the VIS problem from a novel 
similarity-based perspective. Segmentation was used to 
determine pixel-level similarity, whereas tracking was used to 
determine instance-to-instance similarity. Thus, tracking 
instances occurs naturally and smoothly in the instance 
segmentation context. VisTR’s success is developing a novel 
technique, such as sequence matching and segmentation, 
optimized for the framework. This well-designed method 
enables monitoring and segmenting instances at the sequence 
level in their entirety. ViSTR is composed of four major 
components:1) a CNN backbone that extracts feature 
representations from multiple images, 2) an encoder-decoder 
Transformer that models the relationships between pixel-level 
and instance-level features and decodes them, 3) an instance 
sequence matching module that supervises the model, and 4) 
an instance sequence segmentation module that outputs the 
final mask sequences. VisTR outperforms other techniques that 
employ a single model on the YouTube-VIS dataset, reaching 
40.1% in mask mAP at 57.7 frames per second. 

Fan et al. [116] introduce Multi-scale Vision Transformers 
(MViT) for video and image recognition by fusing the 
foundational concept of multi-scale feature hierarchies with 
transformer models. Multi-scale Transformers feature many 
scale stages with varying degrees of channel resolution. 

The industry’s high demand for autonomous driving has led 
to a surge of interest in three-dimensional object detection, 
resulting in several practical three-dimensional object detection 
algorithms [117]. Yuan et al. [55] proposed a Temporal-
Channel transformer to represent spatial-temporal and channel 
domain relationships for video object detection from Lidar 
data. The transformer’s unique architecture encodes temporal-
channel information for many frames, whereas the decoder 
decodes spatial-channel information for the current frame 
voxel-by-voxel. 
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Fig. 9. The architecture of VisTR. image credit ( [115]).

IV. MULTIMODAL TASK 

With the increasing demand for models that can process 
both visual and textual inputs, the application of the visual 
transformer has been extended to multimodal tasks. In this 
section, we explore the capabilities of the visual transformer in 
handling multimodal inputs and review some of the recent 
developments in this area. 

Recent breakthroughs in deep learning have resulted in 
significant advancements in computer vision and natural 
language processing. These accomplishments enable the 
integration of vision and language and multimodal learning 
tasks such as image captioning [118-119], image-text 
matching, visual grounding [120], and visual question 
answering [121]. Yu et al. present a novel framework for 
picture captioning called the Multimodal Transformer (MT) 
[122]. The MT comprises an image encoder that creates visual 
representations using deep self-attention learning and a caption 
decoder that converts the encoder’s visual characteristics to 
textual captions. Liu et al. [123] explore image captioning as a 
sequence-to-sequence prediction problem. Li et al. proposed 
CaPtion Trans- formeR (CPTR), a complete Transformer 
model, to replace the usual ”CNN+Transformer” approach. 
CPTR is convolution-free and can model global context 
information at each encoder layer. Evaluation results on the 
famous MS COCO [68] dataset indicate that the CPTR 
technique is more successful than “CNN+Transformer” 
networks. Detailed visualizations illustrate that the CPTR 
model can use long-range dependencies from the start and that 
the decoder’s “words-to-patches” attention can pay close 
attention. The Conditional Position encodings Visual 
Transformer (CPVT) [103] sub-statutes the predefined 
positional embeddings used in Vision Transformer with 
conditional position encodings (CPE), allowing transformers to 
analyze input images of any size without interpolation. 

Hu and Singh [124] developed a Unified Transformer 
(UniT) encoder-decoder model that accepts pictures and(or) 
text as input and trains on various tasks ranging from visual 
perception and language comprehension to combined vision- 
language reasoning. UniT consists of encoding modules that 
encode each input modality as a sequence of hidden states, a 
transformer decoder over the encoded input modalities, and 

task-specific output heads that apply task-specific output heads 
to the decoder hidden states to generate the final predictions for 
each task. Desai and Johnson [125] proposed that visual repre- 
sentations from textual annotations (VirTex) are a pre-training 
technique for visual representations that use semantically dense 
captions. First, VirTex jointly trains CNN and Transformer to 
create natural language captions for images from scratch. Then, 
apply the newly acquired characteristics to subsequent visual 
recognition tasks. A Decision Transformer [126] architecture 
encodes states, actions, and returns using modality-specific lin- 
ear embeddings and a positional episodic time step encoding. 
Fig. 10 shows the architecture of the Decision transformer. 
Tokens are fed into a GPT architecture, which uses a causal 
self-attention mask to predict behaviors auto-regressively. 

The vision transformer architecture is integrated into 
generative adversarial networks (GANs) for image generation. 
Regularisation methods for GANs that are now available do 
not interact well with self-attention, resulting in significant 
training instability. GANs using Vision Transformers are 
trained using novel regularization techniques. ViTGAN beats 
the existing CNN-based StyleGAN2 method on the CIFAR-10, 
CelebA [127], and LSUN bedroom datasets [128]. 

 

Fig. 10. Decision transformer architecture. Image credit [126]. 

V. FUTURE RESEARCH DIRECTIONS OF VISUAL 

TRANSFORMERS 
As the field of Visual Transformers continues to develop, 

numerous potential avenues for future research exist. This 
section focuses on the summary of lessons learned from the 
discussions made throughout the article and future research 
directions. These directions offer valuable opportunities to 
enhance the performance and capabilities of Vision 
Transformers. 
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A. Lessons Learnt 

1) Adaptation of vision transformers: The survey 

highlights the adaptability of Vision Transformers in their use 

for image processing, which was previously known in natural 

language processing. This fact demonstrates the chance to use 

already-developed skills and methods from one field to 

another, expanding the possible uses of Vision Transformers. 

2) Image enhancement and classification: The survey 

shows how well Vision Transformers perform various image 

enhancement tasks, such as lowering noise, raising contrast, 

and boosting resolution. Additionally, their efficient use in 

image classification tasks demonstrates their capacity to 

extract significant representations from images and achieve 

competitive performance levels. 

3) State-of-the-Art object detection: The study 

demonstrates the remarkable object detection performance of 

Vision Transformers, which outperforms conventional 

approaches and produces cutting-edge results. This fact shows 

the main contribution that Vision Transformers make to the 

field by enhancing robustness and accuracy in object 

localization and identification key processes. 

4) Automation in education systems: The survey looks at 

how student verification processes used in educational 

institutions utilize Vision Transformers. Vision Transformers 

can streamline administrative operations, increasing speed and 

accuracy by automating the identity of the verification 

process. This fact demonstrates the crucial role that Vision 

Transformers have played in changing and strengthening the 

administrative procedures used in educational institutions. 

5) Multimodal processing: The survey explores Vision 

Transformers’ ability to handle multimodal tasks that require 

the processing and fusion of data from many modalities, in- 

including text, picture, and audio. This fact demonstrates the 

potential of Vision Transformers to enable thorough 

comprehension and analysis of complex data, leading to 

breakthroughs in areas like cross-modal retrieval, multimodal 

sentiment analysis, and visual question answering. The review 

demonstrates the significant contributions and developments 

made by Vision Transformers for image processing through an 

in-depth examination. The main findings from this overview 

highlight the flexibility of Vision Transformers, their 

effectiveness in image enhancement and classification, their 

cutting-edge performance in object detection, their potential to 

automate administrative tasks in educational systems, and 

their proficiency in handling multimodal data. These priceless 

insights provide direction for future study and practical use of 

Vision Transformers across numerous areas, encouraging 

further development in computer vision. 

B. Future Research Directions 

1) Efficiency optimization: Recent research has focused a 

lot of attention on finding ways to increase the effectiveness of 

Visual Transformers. There is a rising need to create methods 

to increase Visual Transformers’ efficiency without sacrificing 

performance due to the demand for real-time and resource-

constrained applications. Recent studies have looked into 

several solutions to this problem. For instance, researchers 

have studied techniques for sparse attention, which 

concentrate on focusing just on relevant areas of input to 

lighten the total computing load. Also, low-rank 

approximations, which approximate the attention matrices 

with low-rank structures and save a significant amount of 

computation, have been studied. Additionally, to decrease the 

memory footprint and inference time of Visual Transformers, 

researchers have looked into model reduction techniques like 

pruning or quantization. Recent developments in Visual 

Transformer efficiency show tremendous promise for enabling 

implementation in resource-constrained contexts while 

preserving their efficacy and performance. 

2) Robustness and generalization: A significant area of 

research continues to be strengthening the robustness and 

generalization abilities of Visual Transformers, with current 

developments tackling the difficulties presented by real-world 

settings. Researchers have been looking into cutting-edge 

methods to lessen the effects of occlusions, which frequently 

impair accurate object detection in complex surroundings, in 

the pursuit of enhanced resilience. Recent research has looked 

at techniques to improve performance in obstructed situations, 

such as partial occlusion handling through attention processes 

or occlusion-aware training procedures. Additionally, the 

danger of adversarial attacks has been elevated to a top 

priority when using computer vision models. By using 

competitive training techniques or defence mechanisms 

against such attacks, researchers have made substantial 

progress toward creating robust Visual Transformers that can 

tolerate adversarial perturbations. In addition, recent research 

initiatives have focused on addressing domain transitions. It 

has been investigated to enhance the generalization abilities of 

Visual Transformers across various datasets or real-world 

domains using techniques like domain adaption or domain 

generalization. Researchers are making progress towards 

giving Visual Transformers the robustness and generalization 

skills they need to meet the challenges posed by many 

complicated real-world circumstances by actively taking into 

account these recent developments. 

3) Interpretability and explainability: Various computer 

vision challenges have revealed impressive performance from 

Visual Transformers. However, it is difficult to comprehend 

the logic behind their forecasts because of their lack of 

interpretability. The recent research aims to overcome this 

drawback by investigating ways to make Visual Transformers 

easier to understand. A possible strategy is using attention 

visualization methods to draw attention to the areas of an 

image impacting judgment. Researchers and users can learn 

more about the particular characteristics or regions that the 

Visual Transformer concentrates on while making predictions 

by visualizing the attention maps. In addition, techniques like 

gradient-based attribution approaches and saliency maps have 

been used to pinpoint the most crucial input features 

influencing the result. These methods aid in identifying the 



(IJACSA) International Journal of Advanced Computer Science and Applications, 

Vol. 14, No. 8, 2023 

285 | P a g e  

www.ijacsa.thesai.org 

primary determinants of the Visual Transformer’s choice, 

enhancing the predictability and interpretability of results. 

Future research aims to provide users with more transparent 

and interpretable Visual Transformers, enabling improved 

understanding and utilization of these potent models in 

practical applications. The last will be accomplished by 

continuing to investigate and improve these methodologies. 

4) Multi-modal and cross-modal learning: A fascinating 

research area that will help us interpret complicated visual 

data better is the extension of Visual Transformers to handle 

multimodal and cross-modal data. Inquiries into integrating 

Visual Transformers with various modalities, such as text, 

audio, and depth information, have advanced significantly in 

recent years. For instance, using the strength of Visual 

Transformers to interpret visual data alongside textual context, 

researchers have created unique architectures that integrate 

vision and language models. Tasks such as image captioning, 

visual question answering, and cross-modal retrieval have all 

benefited from this integration. Additionally, research into 

using audio data in Visual Transformers has produced 

promising outcomes for tasks like sound event recognition or 

audio-visual scene analysis. Another fascinating development 

is integrating depth information with Visual Transformers, 

which enables comprehensive scene interpretation and 3D 

perception. Visual Transformers can deliver a thorough and 

holistic comprehension of complicated visual data by 

successfully integrating and learning from several modalities, 

pushing the limits of computer vision research and 

applications. Continued study in this field can reveal fresh 

perspectives and enhance Visual Transformers’ capacity to 

handle multimodal and cross-modal input. 

5) Incremental and continual learning: Recent research 

has focused heavily on enabling Visual Transformers to 

continually learn from streaming or updating data since it 

allows models to adapt to changing contexts and evolving 

concepts. The flexibility and adaptability of Visual 

Transformer may be enhanced by recent developments in 

incremental learning methods. Rehearsal approaches, which 

save and playback a portion of previously observed data 

during training to reduce catastrophic forgetting, are one 

noteworthy strategy. Research has also looked into methods 

like lifelong learning, where the model gradually picks up new 

skills while holding on to knowledge from earlier jobs. As a 

result, Visual Transformers can continuously improve their 

skills without compromising how well they do previously 

mastered jobs. Strategies like adaptive learning rates, dynamic 

network designs, and online learning algorithms have been 

investigated to address the problem. Visual Transformers can 

effectively learn from evolving data streams, improve their 

performance, and keep current knowledge by concentrating on 

incremental learning and devising ways to adapt to new 

classes or concepts over time. More research is needed in this 

field to make Visual Transformers more flexible and adaptable 

in practical applications and dynamic contexts. 

6) Attention mechanism exploration: Research on Visual 

Transformers in recent years has concentrated on 

understanding and improving attention mechanisms to 

improve their effectiveness. Different attention types that can 

improve the modelling skills of Visual Transformers are the 

subject of one area of research. For instance, non-local 

attention mechanisms have drawn attention to their ability to 

identify distant relationships in pictures or movies, facilitating 

a better comprehension of the whole context. Another 

interesting approach is sparse attention, which tries to keep 

good performance while reducing computing complexity by 

focusing only on pertinent areas or pixels inside an input. 

Additionally, researchers have looked at the usage of learned 

attention masks, in which attention weights are dynamically 

computed based on the input data, enabling the model to 

assign adaptively attention to the most informative regions. 

The performance and modelling skills of Visual Transformers 

could be significantly improved by these latest developments 

in attention mechanisms. Researchers can open new doors for 

developing computer vision and expanding the capabilities of 

Visual Transformers in various applications by exploring 

these attention variants and continuing to innovate in this area. 

7) Domain-specific adaptation: Various computer vision 

challenges have revealed impressive performance from Visual 

Transformers. However, because of the particular traits and 

demands of such areas, its application to specific tasks or 

domains frequently presents difficulties. Future research 

efforts can concentrate on investigating domain-specific 

adaptation methods to modify Visual Transformers for 

specific application domains. Recent studies have begun to 

explore domain adaptation techniques that use labelled data 

from the target domain to align the model’s representation 

with the domain-specific features. To adapt Visual 

Transformers for tasks like disease diagnosis, organ 

segmentation, or anomaly detection, for instance, researchers 

in the field of medical imaging have investigated strategies 

like transfer learning or fine-tuning on medical datasets. 

Although Visual Transformers have demonstrated potential in 

satellite image analysis, more study is required to create 

domain-specific adaptations to deal with issues like size 

variation, heterogeneous data sources, or a lack of labelled 

data. In a similar way, in robotics, Visual Transformers can be 

configured to perform visual perception tasks in specific 

robotic applications, such as robot localization, object 

recognition, and scene interpretation. Researchers can bridge 

the gap between Visual Transformers and certain application 

areas, enabling higher performance and overcoming the 

particular difficulties encountered in those domains by 

concentrating on domain-specific adaption strategies. The 

investigation of these methods holds promise for releasing 

Visual Transformers’ full potential across many specialized 

fields and advancing computer vision in particular application 

areas. 

8) Data-efficient learning: Visual Transformers have 

displayed outstanding performance in computer vision 
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applications, although their training frequently necessitates 

large amounts of labelled data. Recent research has 

concentrated on investigating data-efficient learning 

approaches to lessen the dependence on sizable annotated 

datasets and enable efficient learning with few labelled 

examples. In this regard, semi-supervised learning strategies 

have drawn interest since they use labelled and unlabeled data 

during training. Visual Transformers can gain from a larger 

training set and perform better by using the quantity of 

unlabeled data and incorporating it into the learning process. 

Another exploratory route, which seeks to learn 

representations solely from unlabeled data, is unsupervised 

learning. These techniques allow models to develop helpful 

presentations from unannotated data that may be applied to 

subsequent tasks. Unsupervised learning has recently made 

significant strides in several computer vision areas, including 

picture categorization, object recognition, and image 

synthesis. Researchers can harness the potential of Visual 

Transformers in situations with little labelled data by 

exploring data-efficient learning techniques, making it 

possible to deploy these models more frugally and widely in 

various applications. 

V. CONCLUSION 

This article discusses critical self-attention architectures 
and examines in detail transformer models for various image-
processing applications. We comprehensively discuss the 
strengths and weaknesses of existing techniques, particularly 
the possible future research directions. With a particular 
emphasis on general image processing problems, this survey 
offers a unique perspective on recent advances in self-attention 
and Transformer-based techniques. We discuss state-of-the-art 
self-attention models for semantic and instance segmentation, 
image classification, object detection, image captioning, video 
analysis and classification, multi-model tasks, and three-
dimensional data analysis. We hope our work will spark 
interest among the image-processing community in 
maximizing the applications of vision-transformed models. 
Transformer models are pretty complicated from the 
perspective of parameters, computing time, and resources 
required. Visualizing and comprehending essential parts in an 
image for classification purposes is still a problem in 
transformers, and spatially accurate activation-specific 
representations are necessary [129]. The use of a vision 
transformer model in university education systems facilitating 
the detection of fraudulent activities in student identification 
documents is also highlighted. The model can thoroughly 
examine the identification document, detecting inconsistencies 
or anomalies as highlighting fraudulent activity. 
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