
(IJACSA) International Journal of Advanced Computer Science and Applications, 

Vol. 14, No. 8, 2023 

348 | P a g e  

www.ijacsa.thesai.org 

Advances in Value-based, Policy-based, and Deep 

Learning-based Reinforcement Learning 

Haewon Byeon 

Department of Medical Big Data-College of AI Convergence, 

Inje University, Gimhae 50834, Gyeonsangnamdo, South Korea 

 

 
Abstract—Machine learning is a branch of artificial 

intelligence in which computers use data to teach themselves and 

improve their problem-solving abilities. In this case, learning is 

the process by which computers use data and algorithms to build 

models that improve performance, and it can be divided into 

supervised learning, unsupervised learning, and reinforcement 

learning. Among them, reinforcement learning is a learning 

method in which AI interacts with the environment and finds the 

optimal strategy through actions, and it means that AI takes 

certain actions and learns based on the feedback it receives from 

the environment. In other words, reinforcement learning is a 

learning algorithm that allows AI to learn by itself and determine 

the optimal action for the situation by learning to find patterns 

hidden in a large amount of data collected through trial and 

error. In this study, we introduce the main reinforcement 

learning algorithms: value-based algorithms, policy gradient-

based reinforcement learning, reinforcement learning with 

intrinsic rewards, and deep learning-based reinforcement 

learning. Reinforcement learning is a technology that enables AI 

to develop its own problem-solving capabilities, and it has 

recently gained attention among AI learning methods as the 

usefulness of the algorithms in various industries has become 

more widely known. In recent years, reinforcement learning has 

made rapid progress and achieved remarkable results in a 

variety of fields. Based on these achievements, reinforcement 

learning has the potential to positively transform human lives. In 

the future, more advanced forms of reinforcement learning with 

enhanced interaction with the environment need to be developed. 

Keywords—Reinforcement learning; value-based algorithms; 

policy gradient-based reinforcement learning; reinforcement 

learning with intrinsic rewards; deep learning-based reinforcement 

learning 

I. INTRODUCTION  

Advances in artificial intelligence and machine learning 
technologies have led to the development and use of AI-based 
services in many industries. At the same time, models using 
reinforcement learning, a branch of machine learning, are 
growing rapidly. 

Machine learning is a branch of artificial intelligence in 
which computers use data to teach themselves and improve 
their problem-solving abilities. In this case, learning is the 
process by which computers use data and algorithms to build 
models that improve performance, and it can be divided into 
supervised learning, unsupervised learning, and reinforcement 
learning [1, 2]. Among them, reinforcement learning [3] is a 
learning method in which AI interacts with the environment 
and finds the optimal strategy through actions, and it means 

that AI takes certain actions and learns based on the feedback it 
receives from the environment [4]. In other words, 
reinforcement learning is a learning algorithm that allows AI to 
learn by itself and determine the optimal action for the situation 
by learning to find patterns hidden in a large amount of data 
collected through trial and error. Reinforcement learning is a 
technology that enables AI to develop its own problem-solving 
capabilities, and it has recently gained attention among AI 
learning methods as the usefulness of the algorithms in various 
industries has become more widely known [5, 6, 7]. 

This study is structured as follows. Section II presents the 
history and components of reinforcement learning, and Section 
III describes the main reinforcement learning algorithms: 
Value Based Algorithms, Policy Gradient Based 
Reinforcement Learning, Reinforcement Learning with 
Intrinsic Reward, and Reinforcement Learning based on Deep 
Learning. Section IV describes applications of reinforcement 
learning. Finally, Section V presents trends in the application 
of Reinforcement Learning in networking and future research 
directions. Section VI outlines the limitations and Section VII 
presents the conclusion to the study. 

II. HISTORY AND COMPONENTS OF REINFORCEMENT 

LEARNING  

Reinforcement learning can be traced back to an 
optimisation method for solving sequential decision problems, 
mathematically modelled by the Markov Decision Process, 
developed in the 1950s [8]. A Markov decision process is 
defined as a tuple (S, A, P, R, γ), where S and A are the agent's 
state space and action space, respectively. P and R are 
transition probability and reward functions, respectively, where 
P is the probability distribution of the next state and R is the 
reward the agent will receive in the next state if it performs an 

action a∈A in state S∈S. The reward is a metric for judging 

the goodness or badness of the agent's actions. γ  is the 

discount rate used to write off future rewards when calculating 
cumulative rewards. This helps the agent reach the goal 
quickly and prevents the cumulative reward from drifting, so 
that learning is stable [9]. The optimal policy for the sequential 
decision problem defined by the Markov Decision Process 
presented above can be found by reinforcement learning. 

A policy is a function that takes a state value as input and 
determines what action the agent should take. A reinforcement 
learning agent observes the state of itself and its environment 
based on its sensors and information from other agents, decides 
what to do based on the observed state values and policies, and 
is sometimes rewarded for its actions. At this point, the 



(IJACSA) International Journal of Advanced Computer Science and Applications, 

Vol. 14, No. 8, 2023 

349 | P a g e  

www.ijacsa.thesai.org 

reinforcement learning agent learns its policy to maximise its 
cumulative reward expectation, and the policy that maximises 
the cumulative reward expectation is the optimal policy. This is 
based on the Reward Hypothesis. The reward hypothesis states 
that any goal (e.g., solving a problem) can be described as 
maximising the agent's cumulative reward. 

This implies the importance of designing a reward function. 
Since reinforcement learning is how an agent learns its policy 
by interacting with the environment through trial and error, 
relying on reward cues, a poor reward function will not only 
make it difficult for the agent to learn, but will also lead to 
unexpected side effects even if it does learn [10]. 

In summary, reinforcement learning generally consists of 
three main elements. 

 Agent: An object that performs actions in the 
environment according to the current policy. 

 Environment: The external system with which the agent 
interacts. The environment provides feedback to the 
agent in the form of rewards or punishments based on 
actions taken. 

 Reward: Feedback is the positive or negative feedback 
an agent receives from the environment based on its 
actions. 

The agent's goal is to maximise the total amount of rewards 
over time, which means that the goal of reinforcement learning 
is to find a strategy that maximises the cumulative reward in a 
given environment [11]. In most cases, this means emphasising 
long-term rewards over short-term rewards. This process of 
reinforcement learning can be thought of as a trial-and-error 
process, where the AI learns by taking actions and observing 
the rewards or punishments that result from those actions. The 
agent uses this information to update its policies so that it can 
make better decisions in the future. 

III. MAIN REINFORCEMENT LEARNING ALGORITHMS 

Reinforcement learning algorithms can be classified into 
value-based, policy-based, and model-based algorithms. 

A. Value-based Algorithms 

 Value-based algorithms estimate the value of each state or 
state-action pair and select the optimal action to improve the 
agent's performance [12]. Typical examples are Q-learning and 
Deep Q-Network (DQN)(Fig. 1 and Fig. 2). 

Q-learning based reinforcement learning approximates the 
Q-value for a state-action pair each time and then decides 
which action to take in which state [13]. For exploration, we 
often use ε-greedy policies. An ε-greedy policy is a method 
that chooses a random action in a given state with probability ε, 
and the action with the highest Q-value with probability (1 - ε). 
Representative examples are DQN and Rainbow [14], which 
combines DQN with six DQN improvement algorithms. 

The technical features of DQN can be summarised as 
follows: first, the use of convolutional neural networks for 
image recognition; second, the introduction of empirical replay 
to eliminate the correlation between samples and increase the 
efficiency of sampling; and third, the separation of the online 

Q-network, which determines the agent's behaviour, and the 
target Q-network, which is used to calculate the target Q-value, 
for learning stability [15]. 

 
Fig. 1. The concept of deep Q network. 

First, Rainbow is a technique that combines DQN with the 
following six DQN enhancement algorithms. For example, 
double Q-learning DQN takes the maximum value of the target 
Q-network in the current state when calculating the target Q-
value, resulting in overestimation of the target Q-value and 
poor learning performance. Double Q-learning prevents the 
overestimation of the target Q-value by calculating the target 
Q-value using the behavioural value that maximises the online 
Q-net as the input of the target Q-net [16]. 

 
Fig. 2. Concept of applying gaussian noise to the weights of a neural 

network. 

Second, prioritised experience replay - DQN learns by 
extracting experiences uniformly from experience replay, i.e. 
prioritised experience replay is a method of extracting samples 
that are more likely to be conducive to learning [17]. 

Third, Dueling Networking-DQN calculates Q-values on 
the fly. Since the Q-value takes into account both state and 
behaviour, it can be strongly influenced by behaviour when 
evaluating the value in a particular state. By decomposing the 
Q-value into the value of a particular state and the benefit of 
different actions that can be taken in that state, Dueling 
Networks can compute the value of a particular state more 
robustly while taking into account the value of actions [18]. 

Fourth, multi-step learning DQN uses the reward after the 
1-step bootstrap, which is the very next state, to compute the 
target Q-value. By extending it to learn with the reward 
information after n-step bootstrapping, it evolves into multi-
step learning (ex. with improved learning stability and speed) 
[19]. 

Fifth, Distributional RL-DQN, uses the expectation of the 
Q-value. In this case, the limitation is that it is difficult to 



(IJACSA) International Journal of Advanced Computer Science and Applications, 

Vol. 14, No. 8, 2023 

350 | P a g e  

www.ijacsa.thesai.org 

exploit the randomness inherent in the Markov decision 
process if only the expectation of the Q-value is used. In this 
case, Distributional RL is a method that uses a distribution of 
rewards instead of a single average. By using Distributional 
RL, you can not only improve learning performance, but also 
design safer agents by allowing agents to avoid risky 
behaviours [20]. 

Sixth, Noisy Nets-DQN uses the ε-greedy policy. However, 
the ε-greedy policy often leads to inefficient exploration 
because it outputs random behaviour regardless of the agent's 
current situation, and there is also the problem of setting the ε 
value. This is where Noisy Nets can be used (Fig. 3). By 
training a neural network (Noisy Nets) that adds noise to the 
weights and biases of the policy neural network when training 
the policy neural network, Noisy Nets has the advantage that 
the randomness of the agent's behaviour automatically adapts 
to the state the agent is in and over time (reducing randomness 
and promoting greedy choices as training progresses) [21]. 

 
Fig. 3. The concept of noisy networks. 

 
Fig. 4. The concept of element-wise multiplication. 

B. Policy Gradient-based Reinforcement Learning 

A policy-based algorithm directly optimises the policy that 
determines the agent's behaviour. In other words, policy 
gradient reinforcement learning directly yields a policy that 
determines which action to take in which state. A policy can be 
defined as a parameter vector θ, which is a function that takes 
observations as input and outputs an action value as output. 
The use of probabilistic policies in reinforcement learning is 
efficient for balancing exploration and exploitation. In deep 
reinforcement learning, this is approximated using a functional 
rate deep neural network, where the parameter vector θ is the 
weight and bias of the neural network. Policy gradient based 
reinforcement learning uses a policy gradient technique to 
compute this parameter vector, θ. The policy gradient 
technique is a method that uses gradient multiplication to find θ 
(Fig. 4). In other words, after finding the gradient of the 
objective function for a given θ, updating θ by a certain 
distance in the direction of the increasing gradient is repeated 
until the gradient converges or for a maximum time step. 

The objective function is the expectation of the cumulative 
reward of acting according to the policy, expressed as in Eq. 

(1). 

 ( )     
[ (   )]  (1) 

The gradient of the objective function is defined by the 
policy gradient theorem [22], as shown in Eq. (2). 

   ( )     
[  (   )      ( | )] (2) 

The policy gradient updates the policy's parameters in the 
direction of maximising the objective function, as shown in Eq. 
(3). 

       ( )   (3) 

A prime example of policy-based reinforcement learning is 
Proximal Policy Optimisation (PPO) [22]. One of the 
drawbacks of policy-based reinforcement learning is that the 
policy of the parameters can change rapidly. This leads to 
learning instability, which results in slow learning speed and 
poor performance. To prevent such learning instability, TRPO 
(Trust region policy optimisation) [23] adds a condition that 
constrains the Kullback-Leibler (KL) divergence before and 
after a policy update to be below a certain level. TRPO 
attracted the attention of researchers due to its success in 
solving robot control problems with continuous action spaces, 
which were not solved by DQN. However, TRPO has the 
disadvantage that it requires a lot of computation to solve the 
constraints and is incompatible with various neural network 
structures (e.g., dropout, parameter sharing). To compensate 
for these disadvantages while maintaining the performance of 
TRPO, PPO removes the computationally intensive KL 
diveigenoe constraint and indirectly limits the number of 
policy renewals by simply clipping the ratio of pre- and post-
policy renewals in the TRPO objective function. Although PPO 
was published in 2017, it is still the state-of-the-art algorithm 
and has been reported in many studies to be very good in terms 
of performance, computational efficiency and ease of 
implementation [24]. 

C. Reinforcement Learning with Intrinsic Reward 

Reinforcement learning is a method of learning by 
exploring the environment through trial and error. In this case, 
the agent evaluates its behaviour and updates its policy based 
on the rewards it receives as a result of its actions. This can 
work well in environments where every action is rewarded, but 
policy learning is less successful in environments where 
rewards are infrequent and darkness is delayed. For example, 
suppose a game has a single reward for avoiding all obstacles, 
skeletons, etc. to get the key. In this case, it is difficult to 
determine whether an action taken in a particular state to get 
the key was beneficial, harmful or pointless. Even DQNs that 
outperform humans in many games are likely to fail in the 
game described above. One way to deal with this problem is to 
use intrinsic rewards. 

Intrinsic rewards are rewards that are generated by the 
agent rather than given by the environment. It mimics the way 
humans learn through intrinsic motivation. A typical intrinsic 
reward function is prediction error. Prediction error is defined 
as the difference between the agent's predicted next state and 



(IJACSA) International Journal of Advanced Computer Science and Applications, 

Vol. 14, No. 8, 2023 

351 | P a g e  

www.ijacsa.thesai.org 

the actual next state. To predict the next state, an agent 
typically defines one or more prediction models (e.g., artificial 
neural networks) and trains them along with a policy. As the 
agent explores the environment and learns the prediction 
models, this prediction error will be lower for states that are 
familiar to the agent and higher for states that are unfamiliar to 
the agent, which has the effect of encouraging the agent to 
explore and, in games, discouraging the agent from dying and 
returning to the initial state. This is because the initial state is 
familiar to the agent, as it is the state to which the agent returns 
when it dies. The intrinsic reward function is designed so that 
the agent receives a reward for every action it performs, so it 
can learn well even in environments where the environment is 
sparse and black is a delayed reward. This also helps to 
broaden the application of reinforcement learning, as it reduces 
the need for a human to design a precise reward function for 
each task in the environment. However, there are a number of 
issues that need to be considered, such as the match between 
the directionality of the task the agent needs to perform and the 
directionality of the internal reward, the non-stationarity of the 
reward for performing the same behaviour in the same state as 
learning progresses, and the scaling of the reward across 
different environments. 

To illustrate this, we refer the reader to Random Network 
Distillation [25]. Random Network Distillation consists of 
three neural networks: goal, prediction, and policy. The policy 
neural network is the one that determines the agent's behaviour, 
while the goal and prediction neural networks take the next 
state value as input and output some feature value. The goal 
neural network is fixed with randomly set weights, and the 
prediction neural network is a neural network with the same 
structure as the goal neural network, and is trained together 
with the policy neural network to produce the same output as 
the goal neural network. In other words, it is called Random 
Network Distillation because it has the effect of distilling a 
random network into a predictive neural network. In Random 
Network Distillation, the internal reward value function and the 
external reward value function are obtained separately and then 
combined, and PPO is used to optimise the policy neural 
network. 

D. Reinforcement Learning (RL) Based on Deep Learning 

Reinforcement learning refers to a group of methods for 
solving stochastic decision problems. Reinforcement learning 
can be classified as a model belonging to supervised learning 
or as an independent field of reinforcement learning. The 
reason it is classified as supervised learning is that it receives 
feedback or guidance from the environment, including humans, 
as it learns. On the other hand, it is classified as an independent 
model because the optimal decision process of reinforcement 
learning is a learning model that differs from the label-based 
discriminative approach typical of supervised learning. 
Reinforcement learning is very similar to the way humans 
learn, as it uses a trial and error process. For this reason, the 
core algorithm of AlphaGo, developed by Google DeepMind, 
is based on reinforcement learning. This makes reinforcement 
learning the closest model to artificial intelligence. Unlike 
supervised learning, reinforcement learning is not given 
training data. Instead, the reinforcement learning problem is 
given a reward function. The definition of solving 

reinforcement learning is to find a policy function that 
maximises the average of future reward values. To solve 
reinforcement learning, researchers have borrowed a 
mathematical model: the Markov decision process (MDP). 
Intuitively, the Markov property means that, given the present, 
the past and the future are independent. For example, the score 
I get on a test tomorrow depends only on my current state and 
how much I study today. An MDP has four main parts. 

 A set of states 

 A set of actions  

 A transition function 

 A reward function 

In this study, we will illustrate the above four points with 
the example in Fig. 5. The most common example used to 
describe MDPs is the situation of a robot in a lattice space as 
shown below. 

 
Fig. 5. A robot in a lattice space. 

As shown in Fig. 5, the robot can be in one of twelve grids, 
which is its state space. In each grid the robot can move up, 
down, left, right or stay in place, and these five actions 
correspond to the action space. If the robot's movement 
through the grid is determined, it will move in the desired 
direction, but if it is stochastic, even if the robot tries to move 
up, it will move right or left with some probability. In this way, 
the transition function describes the probability of reaching the 
next state when a particular action is performed in a particular 
state. Finally, and most importantly for reinforcement learning, 
a reward function is defined for each state: in the above lattice 
space, reaching a gem is rewarded with a +1 reward, and 
reaching a fire is rewarded with a -1 reward. Given an MDP, 
solving reinforcement learning means finding a policy function 
that maximises the sum of expected future rewards. This has 
several implications, but the most important is that it involves 
future rewards. While rewards from current behaviour are 
important, ultimately we need to consider both current and 
future rewards. The next thing to remember is that we're 
dealing with a stochastic system. It is possible that our current 
behaviour will not lead us to the desired state, which means 
that if we can get the same reward, it is better to get it 'sooner'. 
The discount factor takes this into account. It is set to a value 
less than 1 and the reward earned over time is multiplied by 
this value. 



(IJACSA) International Journal of Advanced Computer Science and Applications, 

Vol. 14, No. 8, 2023 

352 | P a g e  

www.ijacsa.thesai.org 

So, given an MDP, how do we find the optimal policy 
function? The two most basic ways of solving reinforcement 
learning are value iteration and policy iteration. To explain 
this, we first need to define value. If we know not only the 
immediate reward we can get now, but also the consensus 
expectation of the rewards we can get when we start from that 
state, we can choose the action that maximises that function 
each time, and thus find the optimal policy function. This 
consensus expectation of future rewards is called the value 
function, V(s). Similarly, given a current state the expected 
future reward for taking an action in the current state is called 
the action value function or Q-function, Q(s,a). Value iteration 
refers to the method of finding this value function. The value 
function is difficult to define intuitively because it is not only 
about the current state, but also about future states and the 
rewards that can be obtained in those states. In general, 
reinforcement learning uses the Bellman equation to find this 
value function, which is defined as follows [26]. 

 ( )      ∑  (       )[ (       )    (   )]   (4)

We can see that the above formula is a recursive equation 
with the value function V(s) we want to find on the left and 
right sides, and the rest is the same as MDP except for V(s). 
We can initialise V(s) to any value and run the above recursive 
equation for all states s until it converges, always finding the 
optimal V(s).In the previous section we looked at value 
iteration, but now we want to look at policy iteration, which is 
different from value iteration. Policy iteration consists of two 
phases: policy evaluation, which evaluates the performance of 
the current policy function, and policy improvement, which 
improves the policy based on the evaluation. These two phases 
alternate until the policy function converges. It is generally 
accepted that policy iterations converge to the optimal policy 
function faster than value iterations. 

In this section we will investigate how to find the optimal 
policy function in an MDP when no model is given. This 
problem is commonly referred to as model-free reinforcement 
learning. The main difference from the model-based 
reinforcement learning described earlier is that we no longer 
know how the environment behaves. In other words, you do 
something in one state and get a reward for the next state, 
which is "passively" informed by the environment. Model-free 
reinforcement learning has several differences from model-
based reinforcement learning, the most important of which is 
exploration. Since we don't know how the environment will 
behave, we have to experiment and use the results to gradually 
learn the policy function. Let's see how we can solve model-
free reinforcement learning defined in this way. We can't use 
the Bellman equation directly because we don't know T(s, a, 
s'), which is the part of the Bellman equation used in model-
based reinforcement learning. 

Policy evaluation is a methodology for evaluating a given 
V(s), replacing a with pi(s) above. 

 ( )      ∑  (   ( )    )[ (   ( )    )    (   )]  (5) 

The above formula is the policy evaluation formula used in 

model-free reinforcement learning. T(s, (s), s') is an unknown 

value, but if the next state, s', comes from a model called T, we 
can replace the sum of T with the sample mean. One method 

that replaces the Bellman equation with sampling in this way is 
temporal difference (TD) learning. In an MDP, experience 
means that in a state s, I take an action via a given policy 

function (a= (s)), and as a result I receive the next state s′ 

and a reward r. This reward r is a function of (s, a, s). As the 
experiences of (s, a, s', r) accumulate, we learn a value function 
V(s) and an action value function Q(s,a) based on these data. 
The expression for the Bellman equation for Q(s,a) is as 
follows. 

 (   )  ∑  (       )[ (       )           (      )](6) 

The above formula can be used to update the behavioural 
value function Q(s,a). In this formula, we can replace T with 
the sample estimate, which gives us the following formula. 

 (   )  
(   ) (    )   [ (       )         (      )] 

 (7) 

Solving reinforcement learning problems using the above 
formula is called Q-learning. All that is needed to update the 
Q-function using this formula is the experience of (s, a, s', r), 
i.e. the action taken in one state, the observation of the next 
state, and the reward received, and the Q-function can be 
obtained using the above formula. The advantage of Q-learning 
is that it can find the optimal policy function without knowing 
the model. However, Q-learning is not a one-size-fits-all 
method. The main disadvantage of model-less reinforcement 
learning is exploration. Due to the nature of reinforcement 
learning, rewards may be given only once or sporadically at the 
end. The difficulty of this exploration increases as the state 
space grows. 

In deep reinforcement learning (DRL) [27], a method that 
combines this Q-learning with deep learning techniques, one of 
the most important things is how well it explores. One such 
method is called Deep Q Network (DQN), made famous by 
DeepMindtk. DQN is the algorithm that enabled DeepMind's 
AlphaGo to win the 2016 World Championship against Lee 
Sedol and Kasparov. From the algorithmic point of view of 
traditional reinforcement learning, DQN doesn't bring much 
new to the table. However, the main advantage of the QL 
formula is that it can update the Q function without any 
information about the environment. This property is more 
important than you might think, because the difficulty of RL 
compared to traditional SL is that it considers the sum of 
expected future rewards, but the above formula allows you to 
update the Q-function with just one experience. It also has the 
advantage that when choosing (s, a) from (s, a, s', r), Q(s, a) 
always converges to the optimal action value function after 
infinite time, even if a random action a is chosen each time. 
The right-hand side of the above formula is easy to find if we 
know the current Q(s, a) function. To find max a'Q(s', a'), the 
number of possible actions a must be finite. In other words, we 
can plug in all the possible actions and pick the one with the 
largest Q value. And if we think of Q(s, a) on the left side as 
the output of the Q function for some input (s, a) and the right 
side as the target for that input, the Bellman equation for the Q 
function above can be interpreted as giving us the input-output 
pairs for the regression function that we often use in supervised 
learning. 



(IJACSA) International Journal of Advanced Computer Science and Applications, 

Vol. 14, No. 8, 2023 

353 | P a g e  

www.ijacsa.thesai.org 

IV. APPLICATIONS OF REINFORCEMENT LEARNING 

Recently, there has been a lot of research and development 
on reinforcement learning, one of the artificial intelligence 
algorithms, to solve network system optimisation problems. 
Reinforcement learning is a system control method in which a 
reinforcement learning agent in a network management system 
uses information derived from the network environment to 
construct a reward function and achieve an optimal goal 
through iterative improvement. To do this, reinforcement 
learning agents go through an organic process of changing the 
state of the environment, controlling the behaviour of the 
agent, designing the value function, designing the reward 
function, improving the policy, and deriving the optimisation 
model. However, in order to learn a value function for decision 
making by predicting the expected value of output through 
predefined states and actions, a large amount of time must be 
invested in learning, and learning may not be performed well 
due to excessive environmental state information provided, or 
learning may be performed with the wrong goal. To overcome 
these problems, reinforcement learning models that improve 
learning efficiency and prediction accuracy performance by 
configuring the system's reward function as an artificial 
intelligence neural network have been studied. In addition, 
reinforcement learning models that can perform effective 
learning not only for discrete and limited number of 
behaviours, but also for very high degrees of freedom of the 
behaviours to be controlled are being studied. 

V. TRENDS IN THE APPLICATION OF REINFORCEMENT 

LEARNING IN NETWORKING 

As the network structure becomes more complex, various 
problems in the areas of routing, resource management, 
security and QoS/QoE arise, and to solve them, reinforcement 
learning application techniques are being studied, which 
include adaptive optimisation mechanisms for different 
environments. In the area of routing, research is being carried 
out to use reinforcement learning to optimise the routing 
process as network traffic grows exponentially. In resource 
management, researchers are applying reinforcement learning 
for efficient resource management and scheduling in rapidly 
changing network environments such as smart cities or edge 
clouds. This enables efficient network management by 
controlling network congestion or reducing overhead. In the 
area of network security, reinforcement learning is used to 
detect and respond to anomalies in the network, such as 
network congestion. In the area of QoS/QoE, researchers are 
using reinforcement learning to improve overall QoS/QoE by 
taking into account dynamically changing network 
characteristics. 

VI. LIMITATIONS OF REINFORCEMENT LEARNING 

One of the limitations of reinforcement learning is low data 
efficiency, especially in tasks where data selection is 
expensive, time consuming or dangerous. Therefore, one of the 
ways to deal with this is the off-policy technique, which can 
overcome the limitations of reinforcement learning to some 
extent if the behaviour policy and the target policy are different 
and the behaviour policy is carefully learned. Under this 
premise, imitation learning can also achieve good performance. 
However, most imitation learning algorithms have difficulties 

in achieving performance in suboptimal trajectory situations, 
and usually require interaction with the environment to 
overcome them. Therefore, in the future, it is necessary to 
develop imitation learning with enhanced interaction with the 
environment that can overcome suboptimal trajectory 
situations. 

VII. CONCLUSION 

In summary, reinforcement learning is a learning method at 
the heart of the AI revolution, enabling unimagined 
innovations in fields as diverse as autonomous driving, 
healthcare and gaming. As with any ML technology, it is 
important to consider the ethical implications of its use and 
ensure that it is applied in a responsible and beneficial way. In 
recent years, reinforcement learning has made rapid progress 
and achieved remarkable results in a variety of fields. Based on 
these achievements, reinforcement learning has the potential to 
positively transform human lives. In the future, more advanced 
forms of reinforcement learning with enhanced interaction with 
the environment need to be developed. 

ACKNOWLEDGMENT 

This research Supported by Basic Science Research 
Program through the National Research Foundation of Korea 
(NRF) funded by the Ministry of Education (NRF- RS-2023-
00237287, NRF-2021S1A5A8062526) and local government-
university cooperation-based regional innovation projects 
(2021RIS-003). 

REFERENCES 

[1] M. I. Jordan, T. M. Mitchell, Machine learning: Trends, perspectives, 
and prospects. Science, vol. 349, no. 6245, pp. 255-260, 2015. 

[2] B. Mahesh, Machine learning algorithms-a review. Int. j. sci. res, vol. 9, 
no. 1, pp. 381-386, 2020. 

[3] Y. Li, Deep reinforcement learning: An overview. arXiv preprint, 2017. 

[4] K. Arulkumaran, M. P. Deisenroth, M. Brundage, A. A. Bharath, Deep 
reinforcement learning: A brief survey. IEEE Signal Process Mag, vol. 
34, no. 6, pp. 26-38, 2017. 

[5] R. Nian, J. Liu, B. Huang, A review on reinforcement learning: 
Introduction and applications in industrial process control. Computers & 
Chemical Engineering, vol. 139, pp. 106886, 2020. 

[6] P. Dayan, Y. Niv, Reinforcement learning: the good, the bad and the 
ugly. Curr. Opin. Neurol, vol. 18, no. 2, pp. 185-196, 2008. 

[7] M. Botvinick, S. Ritter, J. X. Wang, Z. Kurth-Nelson, C. Blundell, D. 
Hassabis, Reinforcement learning, fast and slow. Trends Cogn. Sci, vol. 
23, no. 5, pp. 408-422, 2019. 

[8] M. L. Puterman, Markov decision processes. Handbooks in operations 
research and management science, vol. 2, pp. 331-434, 1990. 

[9] W. S. Lovejoy, A survey of algorithmic methods for partially observed 
Markov decision processes. Ann. Oper. Res, vol. 28, no. 1, pp. 47-65, 
1991. 

[10] C. Guestrin, M. Lagoudakis, R. Parr, Coordinated reinforcement 
learning. In ICML, Vol. 2, pp. 227-234, 2002. 

[11] J. Oh, M. Hessel, W. M. Czarnecki, Z. Xu, H. P. van Hasselt, S. Singh, 
D. Silver, Discovering reinforcement learning algorithms. In Neural 
Information Processing Systems, vol. 33, pp. 1060-1070, 2020. 

[12] X. Zang, H. Yao, G. Zheng, N. Xu, K. Xu, Z. Li, Metalight: Value-based 
meta-reinforcement learning for traffic signal control. In Proceedings of 
the AAAI Conference on Artificial Intelligence, Vol. 34, No. 01, pp. 
1153-1160, 2020. 

[13] A. Kumar, A. Zhou, G. Tucker, S. Levine, Conservative q-learning for 
offline reinforcement learning. In Neural Information Processing 
Systems, vol. 33, pp. 1179-1191, 2020. 



(IJACSA) International Journal of Advanced Computer Science and Applications, 

Vol. 14, No. 8, 2023 

354 | P a g e  

www.ijacsa.thesai.org 

[14] M. Hessel, J. Modayil, H. Van Hasselt, T. Schaul, G. Ostrovski, W. 
Dabney, et al. Rainbow: Combining improvements in deep 
reinforcement learning. In Proceedings of the AAAI conference on 
artificial intelligence. Vol. 32, No. 1, pp. 3215-3222, 2018. 

[15] Y. Wang, H. Liu, W. Zheng, Y. Xia, Y. Li, P. Chen, et al. Multi-
objective workflow scheduling with deep-Q-network-based multi-agent 
reinforcement learning. IEEE access, vol. 7, pp. 39974-39982, 2019. 

[16] K. Arulkumaran, M. P. Deisenroth, M. Brundage, A. A. Bharath, Deep 
reinforcement learning: A brief survey. IEEE Signal Processing 
Magazine, vol. 34, no. 6, pp. 26-38, 2017. 

[17] X. Wang, H. Xiang, Y. Cheng, Q. Yu, Prioritised experience replay 
based on sample optimisation. J. Eng, vol. 13, pp. 298-302, 2020. 

[18] N. Van Huynh, D. T. Hoang, D. N. Nguyen, E. Dutkiewicz, Optimal and 
fast real-time resource slicing with deep dueling neural networks. IEEE 
J. Sel. Areas Commun, vol. 37, no. 6, pp. 1455-1470, 2019. 

[19] J. F. Hernandez-Garcia, R. S. Sutton, Understanding multi-step deep 
reinforcement learning: A systematic study of the DQN target. arXiv 
preprint, 2019. 

[20] Y. Tang, R. Munos, M. Rowland, B. Avila Pires, W. Dabney, M. 
Bellemare, The nature of temporal difference errors in multi-step 
distributional reinforcement learning. In Neural Information Processing 
Systems, vol. 35, pp. 30265-30276, 2022. 

[21] S. Han, W. Zhou, J. Liu, S. Lü, NROWAN-DQN: A stable noisy 
network with noise reduction and online weight adjustment for 
exploration. arXiv preprint, 2020. 

[22] J. Schulman, F. Wolski, P. Dhariwal, A. Radford, O. Klimov, Proximal 
policy optimization algorithms. arXiv preprint, 2017. 

[23] J. Schulman, S. Levine, P. Abbeel, M. Jordan, P. Moritz, Trust region 
policy optimization. In International conference on machine learning, 
pp. 1889-1897, 2015. 

[24] W. Yi, R. Qu, L. Jiao, Automated algorithm design using proximal 
policy optimisation with identified features. Expert Syst. Appl, vol. 216, 
pp. 119461, 2023. 

[25] Y. Burda, H. Edwards, A. Storkey, O. Klimov, Exploration by random 
network distillation. arXiv preprint, 2018. 

[26] B. O’Donoghue, I. Osband, R. Munos, V. Mnih, The uncertainty 
bellman equation and exploration. In International Conference on 
Machine Learning, pp. 3836-3845, 2018. 

[27] T. Zahavy, M. Haroush, N. Merlis, D. J. Mankowitz, S. Mannor, Learn 
what not to learn: Action elimination with deep reinforcement learning. 
In neural information processing systems, vol. 31, 2018 

 

 


