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Abstract—Under the background of the continuous progress 

of Industry 4.0 reform, the market demand for mobile robots in 

major world economies is gradually increasing. In order to 

improve the mobile robot's movement path planning quality and 

obstacle avoidance ability, this research adjusted the node 

selection method, pheromone update mechanism, transition 

probability and volatility coefficient calculation method of the 

ant colony algorithm, and improved the search direction setting 

and cost estimation calculation method of the A* algorithm. 

Thus, a robot movement path planning model can be designed 

with respect to the improved ant colony algorithm and A* 

algorithm. The simulation experiment results on grid maps show 

that the planning model constructed in view of the improved 

algorithm, the traditional ant colony algorithm, the Tianniu 

whisker search algorithm, and the particle swarm algorithm 

designed in this study converged after 8, 37, 23, and 26 iterations, 

respectively. The minimum path lengths after convergence were 

13.24m, 17.82m, 16.24m, and 17.05m, respectively. When the 

edge length of the grid map is 100m, the minimum planning 

length and total moving time of the planning model constructed 

in view of the improved algorithm, the traditional ant colony 

algorithm, the longicorn whisker search algorithm, and the 

particle swarm algorithm designed in this study are 49m, 104m, 

75m, 93m and 49s, 142s, 93s, and 127s, respectively. This 

indicates that the model designed in this study can effectively 

shorten the mobile path and training time while completing 

mobile tasks. The results of this study have a certain reference 

value for optimizing the robot's movement mode and obstacle 

avoidance ability. 

Keywords—Ant colony algorithm; robots; mobile path 

planning; obstacle avoidance 

I. INTRODUCTION 

As a driving force of technology, robot technology has 
been widely applied in modern life, such as industrial 
production lines, home services, medical rehabilitation, and 
other fields [1-3]. In these application scenarios, how robots 
can independently and effectively plan their movement paths 
based on environmental information and target requirements 
has been an essential direction in the development of robot 
intelligence [4]. Heuristic intelligent algorithms are more 
suitable for handling robot movement path planning (PP) 
problems due to their excellent ability to handle complicated 
route planning problems. Ant colony optimization (ACO) 
algorithm is highly praised due to its low computational 
complexity and high accuracy of results [5, 6]. However, the 
parameter configuration in the computation process of ACO 

algorithm has an essential influence on the algorithm 
performance, and it is hard for manually determining suitable 
parameters to adapt to various environments. Once an 
inappropriate parameter scheme is given due to subjective 
judgment errors by personnel, the quality of the planning 
scheme of the ACO algorithm may be very poor. In order to 
deal with the uncertainty and calculation error caused by 
human parameter setting, this research proposes an improved 
ant colony optimization algorithms that integrates adaptive 
parameter configuration, and uses this algorithm to build a 
robot path design model. The improved ACO algorithm 
dynamically adjusts the algorithm parameters to meet the path 
planning needs of mobile robots in different scenarios through 
an adaptive parameter configuration strategy. Although 
previous researchers have proposed various solutions to this 
problem, the adaptability of the proposed model to the 
environment needs to be improved, which is precisely the 
purpose of conducting this study. 

This study consists of four major sections. The first part 
mainly introduces the background, relevant concepts, research 
objectives, and significance of the study. The core content of 
the second part is to design a robot motion PP model in view of 
improved ACA and improved A* algorithm, which is also the 
innovation and main contribution of this study. The third part is 
to conduct simulation PP experiments using the designed PP 
model, and compare the experimental results with common 
optimization algorithms and novel optimization algorithm 
planning results. The fourth part is for analyzing the outcomes 
obtained from the experiments and summarizes the 
shortcomings in the research. 

II. RELATED WORKS 

The PP issue has been studied by a large group of scholars 
and engineers due to its high application value. Xu et al. [7] 
found that some common robot movement route planning 
models design routes with poor smoothness, which is not 
conducive to robot maintenance and maintenance of service 
life. Therefore, the author team has designed a robot smooth 
PP method in view of improved particle swarm optimization 
(PSO) algorithm and Bessel transition curve. The simulation 
indicates that compared with traditional planning methods, the 
designed route is significantly smoother, and the total distance 
increase of the middle mobile is small. Li et al. [8] proposed a 
four-way search PP scheme suitable for mobile robots. This 
method achieves rapid optimization of PP by searching in four 
directions: horizontal and vertical. Compared with traditional 
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heuristic optimization algorithms, the four-way search scheme 
has strong advantages in solution space search, which helps to 
find high-quality paths with lower costs and satisfy various 
constraints. Yuan et al. [9] proposed a mobile PP algorithm for 
robots equipped with mobile sensor networks. Compared with 
traditional planning models, this algorithm has good 
adaptability and environmental awareness. The outcomes 
reveal that the algorithm in this study effectively improves the 
mobile PP ability of robots equipped with mobile sensor 
networks. The total length of the planned route is smaller than 
that of traditional planning models, and it has good collision 
avoidance ability. Liu and Jiang [10] proposed a PP model in 
view of the pigeon heuristic optimization algorithm. In the 
process of solving PP issues, this model takes the principle of 
avoiding collisions and unnecessary turns as much as possible 
to find a moving path. Through comparative experiments, it 
was found that this algorithm has superior PP performance in 
different scenarios. This indicates that its ability for finding the 
optimal path (OP) in complex environments exceeds other 
classical algorithms, providing an effective and efficient way to 
solve PP problems in complex scenarios. Meng et al. [11] 
proposed a safe and efficient LiDAR-based PP system to 
address the issue of insufficient obstacle avoidance ability in 
the PP of mobile robotic arms. This system is used to solve the 
navigation problem of four-wheel steering and four-wheel 
drive mobile robotic arms in manufacturing plants. In the 
study, the author utilized LiDAR technology to map the 
surrounding environment in real-time and identify obstacles. In 
addition, the study introduced a real-time collision avoidance 
algorithm to avoid dynamic and static obstacles. The 
simulation showcases that the PP system based on LiDAR 
proposed in the study exhibits high accuracy and robustness in 
handling navigation problems in manufacturing environments, 
and has excellent collision avoidance ability. Zhang et al. [12] 
presented a PP method for mobile robots in view of an 
improved local PSO algorithm. This algorithm increases the 
randomness and diversity in the local search process, 
improving the search capability. Through simulation 
experiments, the author verified the superior performance of 
this algorithm in mobile robot PP problems, indicating its good 
applicability and scalability in practical applications. This 
mobile robot PP method in view of improved local PSO 
algorithm provides an effective technical means to solve the 
navigation problem in complex environment in actual scenes. 

In summary, although extensive research has been 
conducted to improve the planning performance and collision 
avoidance ability of intelligent PP models, there is little 
involvement in the construction of models that adjust adaptive 
parameters according to environmental characteristics. This 
mode is meaningful for improving the planning performance of 
PP models and the obstacle avoidance ability of robots. 

III. ROBOT PATH PLANNING AND COLLISION AVOIDANCE 

STRATEGY IN VIEW OF IMPROVED ACO AND A* ALGORITHMS 

The ACO algorithm was invented by imitating the foraging 
process of ants in nature, and has merits like strong adaptability 
and ease of utilizing in conjunction with other algorithms [13, 
14]. For this reason, this algorithm was chosen in this study to 
construct a robot motion trajectory planning model. However, 
the ACO algorithm also has the disadvantage of being easily 

trapped in local optima, so it is also essential for enhancing the 
algorithm. In view of the shortcomings of the ACO algorithm, 
it can improve its node selection, pheromone update 
mechanism, transition probability calculation method and 
volatility coefficient calculation method. 

A. Design of Improved ACO Algorithm Based on Adaptive 

Parameter Setting 

In actual working conditions, mobile robots will spend too 
much time in significant turning movements, and the 
corresponding energy loss will inevitably increase. Therefore, 
in PP, it is necessary to minimize significant turning points, 
improve the planning path, and diminish the motion cost of 
mobile robots. So now an improved planning path transition 
probability calculation method that integrates corner heuristic 
information is designed, as shown in Eq. (1). 
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The superscript of the variable in Eq. (1) represents the ant 

number; The subscript is the path number; ( )ij t , ( )ij t  and 

( )ij t  respectively represent the pheromone quantity, heuristic 

information and corner heuristic function on the corresponding 

track of the corresponding ant at time t ; 
kallowed  represents 

the feasible adjacency grid label set of ant k . The related 

calculating method of the corner heuristic function ( )ij t  is 

depicted in Eq. (2). 

1( )ij t T     (2) 

In Eq. (2), 
1  is an adjustable parameter with a value 

range of (0,1); T represents the turning cost. The corner of the 
path can be described as shown in Fig. 1, where the corners of 
paths (1) and (2) are both 45°, and the corners of paths (3) and 
(4) are 90° and 135°. 
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Fig. 1. Schematic diagram of improved path transition probability calculation 

method for path corners. 
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Therefore, T  in Eq. (2) can be calculated according to Eq. 
(3). 
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In the traditional ACO algorithm, the path is selected 
according to the roulette wheel method, and there is a relatively 
significant pheromone concentration in the algorithm operation 
phase, which leads to the slow convergence of the ACO 
algorithm in the calculation premise [15, 16]. Meanwhile, in 
very large environmental conditions, traditional ACO 
algorithms may experience convergence stagnation, which 
significantly reduces the global solution optimization 
performance of the algorithm [17]. Therefore, an adaptive 
parameter setting method is designed here, which uses a 
mixture of random sexual selection and deterministic selection 
to calculate the selected path, as shown in Formula (4). 
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In Eq. (4) s  represents the selected path; 
k

ijp  is the 

possibility of the corresponding ant appearing on the 
corresponding path;  ,   and   represent the corresponding 

ant numbers for ( )ij t , ( )ij t , and ( )ij t , respectively; q  is a 

uniformly distributed random variable in the range of [0,1], and 

0q  is the threshold corresponding to the deterministic 

selection. The calculation method for 0q  is shown in Eq. (5). 

In this new adaptive parameter setting method, random 

variable q  and deterministic selection threshold 0q  are used to 

show the randomness and certainty in the selection process 
respectively. 

  0 max max0.2 [ / ] 0.7cq N N N       (5) 

In Eq. (5),   is the adjustment coefficient; maxN , cN  

serves as the maximum quantity of iterations and the current 
quantity of iterations. Combining the search characteristics of 

ant colony during the iteration process, the initial 0q  of the 

improved ACO algorithm is generally greater than q , which 

means that the initial path of the improved ACO algorithm is 
determined in a pseudo random probability manner. In the later 

stage, as the small value of 0q , ants are more likely to conduct 

random searches. It indicates that this strategy of selecting path 
nodes based on adaptive parameter calculation can effectively 
reduce the algorithm runtime, accelerate the algorithm 
convergence, and reduce the probability of stagnation. This 
increases the likelihood of the algorithm finding the optimal 
solution. 

The traditional ACO algorithm will update the pheromone 
according to the way of updating all paths, but the 
disadvantage of this way is that the pheromone quantity of all 
paths may not differ greatly. This cannot highlight the 
competitiveness of the dominant path, and the convergence 
speed is slow. Therefore, to strengthen the attraction of the 

path, the pheromone updating method is now adjusted. The 

calculation method of pheromone ( )ij t n   at time t n  is 

shown in Eq. (6). 
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In Eq. (6), 
aL  and 

nL  are the optimal values in the iteration 

history and the optimal values in this iteration, respectively; 
nL  

is the adjustable coefficient. Therefore, when the calculation of 

each iteration of the algorithm is completed, when 
aL >

nL , the 

corresponding path of this iteration is shorter. Eq. (6) will 
strengthen the pheromone strength of this iteration and save the 

OP generated in this iteration. On the contrary, if 
aL <

nL , it 

means that the current path is not the shortest path. Eq. (6) will 
reduce the strength of pheromone. 

Due to special terrain conditions, the constant volatility 
coefficient   will diminish the likelihood of the algorithm 

finding the OP. When the value of   is too large, although the 

algorithm converges faster, it also may fall into local optima; 
When the value of   is too small, the likelihood of previously 

explored nodes being repeatedly explored will increase, and the 
convergence speed will also decrease. Therefore, it now adjusts 
the size of   and obtains the value according to Eq. (7). 
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Fig. 2. Improved ACO algorithm calculation process. 
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In Eq. (7), 
AL  is the worst case path in the current 

calculation result; a  and b  are two constants; The smaller the 

A nL L  value, the greater the likelihood of it falling into local 

optima, and the faster the update speed of  . The improved 

ACO algorithm used in robot movement PP has been designed, 
and its calculation is shown in Fig. 2. 

B. Improved A* Algorithm and Robot Path Planning Model 

Design 

Due to the fact that mobile robots often encounter moving 
obstacles in actual working environments, if the robot still 
follows the planned route, the time and energy consumption to 
reach the endpoint (EP) will increase, and even safety accidents 
may occur [18, 19]. Therefore, when designing a robot motion 
PP model, it is also necessary to consider obstacle avoidance 
issues. Robot movement PP cannot only consider the search 
efficiency of algorithms, but also the degree of twists and turns 
in the route. The classic A* algorithm is often applied to solve 
such problems, but it uses Manhattan distance and Euclidean 
distance to set heuristic functions, with only four search 
directions [20]. The fewer search directions in the classic A* 
algorithm will increase the number of probe nodes and the 
viewpoint of the path, which will affect the performance of the 
algorithm. Moreover, robots moving along winding paths can 

also waste too much time. Consequently, it is essential for 
enhancing the traditional A* algorithm by performing path 
search calculations in eight directions, and combining the 

Manhattan distance ( )Mh n  and Euclidean distance ( )gh n  of 

the current point n to design an estimated cost ( )h n  that can 

simultaneously reduce the number of search nodes and bends. 
The calculation is demonstrated in Eq. (8). 

    ( ) max ,x x y yh n abs n g abs n g    (8) 

In Eq. (8),  abs   represents the absolute value operation; 

xg  and yg  represents the coordinates of the target node yg  in 

both axis directions. Therefore, the improved A * algorithm 
calculation process is demonstrated in Fig. 3. 

In this study, an environment model for robot motion is 
established, as shown in Fig. 4. The basic method for modeling 
is the grid method, which selects grids of appropriate size to 
simulate the environment. The static fault objects in the 
environment in Fig. 4 are simulated using a blue grid, with a 
green cross representing dynamic obstacles (DO), and static 
obstacles that suddenly enter the environment are described in 
red. The white grid in Fig. 4 shows the areas where the robot 
can move freely. 
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Fig. 3. Improved A* algorithm calculation process. 
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Fig. 4. Grid map of robot mobile environment simulation. 

Robots need to continuously search for various obstacles 
within a limited range while moving, in order to make targeted 
obstacle avoidance behaviors. To perceive the movement path 
of the future DO, linear prediction models are now used to 
calculate the motion status of the DO. The current assumption 

is that the moving obstacle in the environment is  ,P x y , and 

the horizontal and vertical coordinate values in the orientation 

are correlated with time t . Therefore,  ,x y can be calculated 

according to Eq. (9), 

x at b

y ct d

 


 
   (9) 

yg  in Eq. (8) are unknown equation parameters. According 

to Eq. (9), calculate the corresponding ( , )l lx y (where 

1,2,...,l n ) at n  time points to obtain a linear equation in 

matrix form, as shown in Eq. (10). 
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The matrix content in Eq. (10) is shown in Eq. (11). 
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In this study, the error vector nE  is set and calculated 

according to Eq. (12). 

1 2[ , ,..., ]T

n nE e e e   (12) 

Therefore, Eq. (13) holds. 

n n n nE X T A      (13) 

In Eq. (13), 
nA  is the estimated value. The analytical error 

can be calculated according to Eq. (14). 
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The range of   values in Eq. (14) is (0,1). Its redefinition 

F is calculated according to Eq. (15). 
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According to the observation values of moving obstacles at 
n  different times, their spatial coordinates can be calculated, 

thereby calculating the specific values of parameters 
yg . The 

behavior of the robot sensors, which detect the position of the 
DO in the circumstance will accompany the entire movement 
of the robot, used to estimate parameters for corresponding 
updates. Finally, the subsequent position information of the 
obstacle can be obtained according to the above method. 

In real-world application scenarios, not all obstacles present 
in the environment of mobile robots are stationary, and there 
may be obstacles that can move, such as humans. Therefore, 
robots also need to avoid DO, which requires higher control 
and PP capabilities. Below is the design of collision prediction 
and obstacle avoidance strategies for robots. Considering the 
sensor measurement capabilities and movement methods of 
most mobile robots on the market, it is assumed that robots use 
their own sensors to continuously measure the movement 
position, direction, and speed of surrounding obstacles. The 
motion directions of robots and DO are described in Fig. 5. 

Based on Fig. 5, the collision avoidance strategy designed 
in this study is illustrated: if there is no method of collision 
between the robot and the DO, the motion trajectory of the two 
needs to be observed to determine if there is an intersection 
between the two. If there are no intersections, it is assumed that 
they will not collide. In this case, the robot does not need to 
take additional collision avoidance actions and can move 
according to the originally planned trajectory, as shown in Fig. 
5 for A, B, and F. But in the case where there is an intersection 
point between the robot and the obstacle's motion trajectory, 
the two will collide, and at this point, it is necessary to redefine 
the robot's motion path. For example, in the C and D motion 
situations in Fig. 5, the obstacle intersects with the robot's 
motion at the side, and the corresponding collision avoidance 
strategy is for the robot to remain stationary. After the current 
motion trajectory of the DO does not intersect with the robot, 
the robot continues to move along the set path. In summary, to 
better address the problem of robot motion trajectory planning, 
it is necessary to combine the improved A* algorithm with the 
improved ACO algorithm. The corresponding computation is 
shown in Fig. 6. 
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Fig. 5. Display diagram of dynamic obstacles and robot movement direction. 
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Fig. 6. Calculation process of robot path planning model using hybrid improved A * algorithm and IACO-A * algorithm. 

IV. TESTING AND ANALYSIS OF ROBOT PATH PLANNING 

MODEL BASED ON HYBRID IMPROVED ACO ALGORITHM 

After introducing a robot motion PP model in view of the 
improved ACO algorithm and the improved ACO-A * (IACO-
A *) algorithm, the application of the model needs to be tested. 
In this study, only simulation experiments are used to verify 
the design model. Meanwhile, to simplify the experiment, the 
mobile environment in the test is abstraction into a grid map. 
The simulation experiment was run on the MATLAB2016 
platform, and the parameters of the IACO-A * algorithm were 
determined through multiple trial runs as follows: the 
maximum number of cycles was 50, 4  , 8  , 0.7  , 

and the total quantity of ants was 50. The experimental 
circumstance is a two-dimensional map, and the minimum size 
of the tested grid is 10 m × 10 m, with a maximum size of 
100m × 100m, with a grid growth step of 5m. In the 
experiment, the widely used ACA, PSO algorithm, and the 
novel Beetle Antennae Search (BAS) algorithm were selected 
to construct a comparative planning model. The parameters of 
the comparative model were also determined according to the 
trial operation method. The robot is set to move forward at a 
constant speed of 1m/s when no DO is encountered. After 
encountering obstacles and temporarily stationary, it first 
accelerates to 1m/s at an acceleration of 1m/s

2
, and then 

continues to move at a constant speed. There are two DO in the 
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grid map, and their initial positions appear randomly. Referring 
to the actual working circumstance of mobile robots, the 
proportion of static obstacle grids to the total quantity of grids 
should be within the range of 20% to 70%; within this 
numerical range, the quantity of static obstacles generated is 
also random, and the setting results are shown in Table I. 

TABLE I.  COMPARISON OF ALGORITHM PARAMETER SETTING SCHEMES 

Number 
Algorithm 

name 
Parameter Name 

Numerical 

value 

#1 ACO 

Maximum number of cycles 50 

Ant number 200 

Walking distance 1.5 

Pheromone volatilization factor 0.6 

#2 BAS 

Maximum number of iterations 50 

The initial length of the antennae of 

the longicorn beetle 
10 

Step decay factor 0.95 

Maximum step size 1.26 

Minimum step size 0.35 

#3 PSO 

Maximum number of iterations 50 

Inertia weight 0.6 

Learning factor 1.4 

Maximum speed 27 

Minimum speed 4 

Firstly, a specific PP analysis is carried out using the 
planning results with a minimum grid size of 10 * 10 m and no 
DO conditions as a representative. The grid map generation 
results are randomly selected, and the OP planned by IACO-A 
* and ACO algorithms is indicated in Fig. 7. The horizontal 
and vertical axes in Fig. 7 represent the X and Y axes in the 
two-dimensional grid map, respectively; The scale units are all 
in meters; The blue grid represents the static obstacles that 
exist at the initial moment; The green dots and red crosses 
represent the starting point (SP) and EP of the robot's 
movement path, respectively; The black dashed line serves as 
the planned movement path. Fig. 7 demonstrates that the total 
path lengths of IACO-A * and ACO algorithms are 7.95 m and 
12.64 m, respectively. Both the enhanced and the improved 
ACO algorithms can enable the robot to move from the SP to 
the EP; But the route planned by the IACO-A * algorithm has 
significantly fewer bends, and the overall route is smoother, 
resulting in a shorter motion time. 

Further analysis of the planning results was conducted 
using 10 * 10 m DO conditions. Fig. 8(a), 8(b), 8(c), and 8(d) 
represent the initial planning path, the path when DO, O1 and 
O2 are added, the path to avoid O1, and the path to avoid O2, 
respectively. The green color in Fig. 8 serves as the path of the 
robot; Black serves as the movement path of DO; the dashed 
line serves as the planned path or the path that has been taken; 
The dotted line serves as the path of the obstacle or the robot 
during the avoidance process. Fig. 8(b) and 8(c) indicate that 
the robot will encounter side collisions with O1 DO during its 
movement. Therefore, choose to stay in place for a period of 
time until it is calculated that there is no longer an intersection 
between the two routes before continuing to move along the 

original route. Observing Fig. 8(d), it can be seen that after the 
robot detects a frontal collision with the DO O2, the IACO-A * 
algorithm generates local target points that modify the original 
path to some extent. After avoiding O2, the robot moves along 
the original path. 
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Fig. 7. IACO-A * and ACO algorithm in 10 × the optimal planning path in a 

10 m grid map. 
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Fig. 8. IACO-A * in 10 with dynamic obstacles × planned path in a 10m 

map. 

It reanalyzes the planning outcomes of the unimproved 
ACO algorithm in the presence of DO, and the results are 
shown in Fig. 9. The meanings of the horizontal and vertical 
axes, icons, and lines in Fig. 9 are consistent with those in Fig. 
8. Fig. 9 shows that although the route planned using the 
traditional ACO algorithm also avoids DO O1 and O2, the 
adjusted moving route significantly detours compared to Fig. 8. 
Based on Fig. 8 and 9, it is found that using the IACO-A * 
algorithm and the ACO algorithm, the overall travel distance of 
the two algorithms is 12.28 m and 16.74 m, respectively. This 
indicates that the IACO-A * algorithm exceeds the traditional 
ACO algorithm in the overall obstacle avoidance capability 
and route rationality of the robot PP. 
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Fig. 9. ACO in 10 with dynamic obstacles × planned path in a 10 m map. 

Next, it selects all the comparison models and calculates 
their minimum path length changes with the IACO-A * 
planning model during the training process of a 10 * 10m grid 
map with DO. It is indicted in Fig. 10. In Fig. 10, the horizontal 
axis (HA) serves as the quantity of iterations, while the vertical 
axis represents the minimum path length planned, in meters. 
Different subgraphs and line styles represent different planning 
models. Fig. 10 shows that the IACO-A *, ACO, BAS, and 
PSO planning models converge after 8, 37, 23, and 26 
iterations, respectively. The minimum path lengths after 
convergence are 13.24m, 17.82m, 16.24m, and 17.05m, 
respectively. The experiment indicates that the PP model in 
this study based on the IACO-A * algorithm has the fastest 
convergence speed during training, and the total length of the 
OP after convergence is the smallest. 

The performance of each planning model in the test dataset 
of a 10 * 10m grid map with DO is demonstrated in Fig. 11. 
The HA in Fig. 11 serves as repeated experimental tests, which 
are conducted to verify the stability of the output results of 
each planning model. Fig. 11 shows that when the number of 
repetitions is small, the minimum length fluctuation of the 
output routes of each planning model is more severe. However, 
as the number of repetitions increases, the minimum path 
length fluctuation gradually decreases. The minimum planning 
length standard deviations for IACO-A *, ACO, BAS, and 
PSO planning models are 0.82m, 1.24m, 0.95m, and 1.78m, 
respectively. 
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Fig. 10. Minimum path length of each planning model in training. 
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Fig. 11. Each planning model with dynamic obstacles 10 × Performance in 10 

m grid map testing. 

It further analyzes the minimum planning path length and 
corresponding movement time of each planning model under 
different grid size maps with DO. It is illustrated in Fig. 12. 
The HA in Fig. 12 serves as the edge lengths of different grid 
maps, in meters; The vertical axes of Fig. 12(a) and 12(b) 

represent the minimum travel path length and the 
corresponding total travel time, in units of m and s, 
respectively. The line style is used to distinguish the planning 
model. Fig. 12 serves as that as the size of the map grid grows, 
the time and total distance required for the robots to move from 
the SP to the EP in the map also increase. However, regardless 
of the size of the grid map, the minimum path length and total 
movement time of the IACO-A * planning model designed in 
this study are smaller than all the comparative planning 
models. For example, when the edge length of the grid map is 
100m, the minimum planning length and total movement time 
of IACO-A *, ACO, BAS, and PSO planning models are 49m, 
104m, 75m, 93m and 49s, 142s, 93s, and 127s, respectively. 

Grid edge length(m)

10

M
in

im
u
m

 p
at

h
 l

en
g
th

 (
m

)

IACO-A* ACO

0 10 20 30 40 50 60 70 80 90 100

20

30

40

50

60

70

80

90

100

110

(a) IACO-A * and ACO

BAS PSO

 

10

M
o
v
in

g
 t

im
e 

(s
)

15

30

45

60

75

90

105

120

135

150

(b) PSO and BAS

Grid edge length(m)

0 10 20 30 40 50 60 70 80 90 100

IACO-A* ACO

BAS PSO

 
Fig. 12. Minimum path length and movement time of each model under 

different map sizes. 

In order to further improve the reliability of the research 
results, the IACO-A * model is now placed in a domestic 
mobile robot product to carry out dynamic obstacle avoidance 
experiments in planar and curved scenes. The dynamic 
obstacles are spheres, rectangular parallelepipeds, and regular 
tetrahedrons, respectively. After repeated experiments, it was 
found that the robot system equipped with the IACO-A * 
model has the fastest dynamic obstacle avoidance response 
speed and the shortest obstacle avoidance time. Its practical 
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performance is significantly better than that of mobile robots 
equipped with other models. 

V. RESULTS AND DISCUSSION 

This study designed an improved ACO path planning 
model based on adaptive parameter setting, and conducted 
dynamic obstacle avoidance path planning experiments in a 
simulation grid map. The experimental results show that the 
model designed in this study has a grid size of 10 × the total 
planned path length under the conditions of 10 m and no 
dynamic obstacles is 7.95 m, which is lower than the output 
path length of the comparative model and can reach the set 
focus normally. Simultaneously, a in the case of a grid size of 
10 * 10m and the presence of dynamic obstacles, the IACO-A 
* planning model corresponds to the robot using pause and 
generate local target points to avoid obstacles O1 and O2 that 
may cause side and frontal collisions, respectively. The ACO 
algorithm corresponds to the robot avoiding O1 and O2 
obstacles with the same movement mode by generating local 
target points, but the overall movement distance is 16.74 
meters, which is significantly higher than the data of the 
IACO-A * planning model. Moreover, in various scenarios 
where the grid edge length of the simulated grid map changes 
from 10 to 100, the total path length of the planning model 
output in this study is consistently lower than that of all the 
comparative models, and also lower than the total path length 
under the same conditions as in references [9] and [11]. 
Finally, the IACO-A * model was placed in a domestic mobile 
robot product to carry out dynamic obstacle avoidance 
experiments in planar and curved scenes. The dynamic 
obstacles have the shapes of sphere, rectangular cuboid, and 
regular tetrahedron, respectively. After repeated experiments, it 
was found that the robot system equipped with the IACO-A * 
model has the fastest dynamic obstacle avoidance response 
speed and the shortest obstacle avoidance time. Its practical 
performance is significantly better than that of mobile robots 
equipped with other models. 

From the results of various types of experiments conducted 
in this study, it can be seen that the robot movement path 
planning model based on the improved ACO algorithm 
designed in this study has excellent path planning and obstacle 
avoidance capabilities, which can enable the robot to smoothly 
and efficiently avoid dynamic obstacles in the route. 

VI. CONCLUSION 

In this study, an improved ACO algorithm and an improved 
A * algorithm were developed, and the two were fused to 
construct a robot motion PP model. The experiment reveals 
that under the conditions of grid size 10 * 10m and no DO, the 
total path lengths of IACO-A * and ACO algorithms are 7.95m 
and 12.64m, respectively. Both the enhanced and the improved 
ACO algorithms can enable the robot to move from the SP to 
the EP. Under the conditions of a grid size of 10 * 10 m and 
the presence of DO, the IACO-A * planning model 
corresponds to robots that use pause and generate local target 
points to avoid obstacles O1 and O2 that may cause side and 
frontal collisions, respectively. The ACO algorithm 
corresponds to the robot that avoids obstacles O1 and O2 with 
the same motion mode by generating local targets; however, 
the overall mobile distance of 16.74m is significantly higher 

than the data of the IACO-A * planning model. During the 
training process, the IACO-A *, ACO, BAS, and PSO 
programming models completed convergence after 8, 37, 23, 
and 26 iterations, respectively. The minimum path lengths after 
convergence were 13.24m, 17.82m, 16.24m, and 17.05m, 
respectively. When the edge length of the grid map is 100m, 
the minimum planning length and total movement time of the 
IACO-A *, ACO, BAS, and PSO planning models are 49m, 
104m, 75m, 93m and 49s, 142s, 93s, and 127s, respectively. 
The experimental data prove that the robot motion PP model 
designed in this study with respect to the improved ACO 
algorithm has excellent PP and obstacle avoidance capabilities. 
However, due to research limitations, it was not possible to 
invite multiple industry experts to subjectively evaluate the 
practicality of the model. From the results of this experiment, it 
can be seen that the shape of obstacles has an extremely small 
impact on the path planning results of the IACO-A * model. 
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