
(IJACSA) International Journal of Advanced Computer Science and Applications, 

Vol. 14, No. 8, 2023 

475 | P a g e  

www.ijacsa.thesai.org 

Pairwise Test Case Generation using (1+1) 

Evolutionary Algorithm for Software Product Line 

Testing 

Sharafeldin Kabashi Khatir
1
, Rabatul Aduni Binti Sulaiman

2*
, Mohammed Adam Kunna Azrag

3*
, 

Jasni Mohamad Zain
4
, Julius Beneoluchi Odili

5
, Samer Ali Al-Shami

6 
Faculty of Computer Science and Information Technology, University Tun Hussein Onn Malaysia, Batu Pahat, Malaysia

1 

Faculty of Computer Science and Information Technology, University Tun Hussein Onn Malaysia, Batu Pahat, Malaysia
2, 3 

Institute for Big Data Analytics & Artificial Intelligence, University Technology Mara, Shah Alam, Malaysia
2, 3

 

Institute for Big Data Analytics & Artificial Intelligence, University Technology Mara, Shah Alam, Malaysia
4
 

Institute of Digital Humanities, Anchor University, Lagos, Nigeria
5
 

Institute of Technology Management and Entrepreneurship, University Technical Malaysia, Melaka, Malaysia
6
 

 

 
Abstract—Software product line SPLs, or software product 

lines, are groups of similar software systems that share some 

commonalities but stand out from one another in terms of the 

features they offer. Over the past few decades, SPLs have been 

the focus of a great deal of study and implementation in both the 

academic and commercial sectors. Using SPLs has been shown to 

improve product customization and decrease time to market. 

Additional difficulties arise when testing SPLs because it is 

impractical to test all possible product permutations. The use of 

Combinatorial Testing in SPL testing has been the subject of 

extensive study in recent years. The purpose of this study is to 

gather and analyze data on combinatorial testing applications in 

SPL, apply Pairwise Testing using (1+1) evolutionary algorithms 

to SPL across four case studies, and assess the algorithms' 

efficacy using predetermined evaluation criteria. According to 

the findings, the performance of this technique is superior when 

the case study is larger, that is, when it has a higher number of 

features, than when the case study is smaller in scale. 

Keywords—SPL; SPL testing; combinatorial testing; pairwise 

testing; evolutionary algorithm; 1+1 EA 

I. INTRODUCTION 

Software product line (SPL), which is also called software 
product line development, is a set of software engineering 
practices for making similar software systems from a single set 
of software assets and using the same production method for 
all of them [1]. In other words, SPL is a group of products that 
is put together based on a set of features. A Feature Model 
(FM) decides which products are valid. Most of the time, it's 
not possible to test all of the products that would come from an 
SPL [1]. So, a small group of these products must be chosen. It 
used to be best if it got a good order of products. 

Effective testing strategies will help any organization that 
spends a lot of money on software development. This is a 
demand in SPL because the proportion of testing costs goes up 
as the costs of developing each product go down. Due to the 
large number of ways the base software can be changed, testing 
an entire product line takes a long time and costs a lot of 
money [2]. These issues had to do with which platform was the 

most efficient and what should be tested in separate products 
based on how hard it was to test the whole product line. 

If testing is seen as a long process, the ability and 
effectiveness of testing can be improved by making the 
creation of test cases happen automatically. Even though this is 
a step in the right direction, more research needs to be done on 
the SPL testing process because it is impossible to test all of 
the individual systems that make up a large SPL software 
system. Test case generation in SPL [3], [4] is based on 
variation point management. The authors in [5] say that SPL 
testing is hard, but it would be best if all SPL products were set 
up correctly. In reality, though, this is hard to do. Large 
product configurations have made SPL testing difficult to 
handle, as [6]. In fact, some features can be set up in tens of 
millions of different ways. Since there is pressure to make test 
suites for the whole product line smaller, it will be hard to test 
each product in an SPL and stay on budget [7]. Combinatorial 
testing and other testing methods can cut down on the number 
of test suites needed for this, but they don't come without their 
own problems when it comes to scalability. 

An Evolutionary Algorithm (EA) is a type of evolutionary 
computation, which is an optimization algorithm used in the 
field of artificial intelligence that is based on a population. In 
EA, processes like reproduction, mutation, recombination, and 
selection are used to model how natural evolution works. Even 
though it started in the early 1960s, EA is still a fairly new and 
changing field, with most research focusing on how it can be 
used. 

The EA, as the name implies, functions similarly to natural 
evolution. People believe that the processes of recombination, 
mutation, and selection make individuals more fit because they 
adapt to their surroundings. An "EA individual" is a single 
optimization solution, whereas an "EA population" is a 
collection of ―EA individual" optimization solutions. 

Combinatorial testing is a type of testing that can be used to 
test a software product in a thorough way [8]. The goal is to 
have a product that doesn't have any bugs and can work with a 
wide range of inputs. Pairwise testing, also called "all-pairs 



(IJACSA) International Journal of Advanced Computer Science and Applications, 

Vol. 14, No. 8, 2023 

476 | P a g e  

www.ijacsa.thesai.org 

testing," is a way to check the quality of software by 
comparing the actual results to what was expected. Here, 
software testers look at all possible pairs of parameters used to 
test a feature and compare and contrast them. 

Pairwise testing has become an important technique for any 
software tester over the past few years. This method has been 
around for almost 20 years, but it has become more popular in 
the last five. At least 20 tools that can make pairwise test cases 
have had their information made public up to this point [7, 8]. 

Based on the examined research, there are three main 
problems that sum up the issues at hand. First, there are so 
many possible industrial SPL products that it would be 
impractical to check each one individually to see if it meets 
each criterion. Second, it is not possible to do a full test that 
looks at every possible combination of parameters and values. 
Lastly, a way for evaluating the effectiveness of EA and 
creating valid comparisons, as well as a technique for reducing 
testing effort and shortening testing time using the suggested 
strategy [9]. This study's objectives are to apply the (1+1) 
evolutionary algorithm to generate pairwise test cases in 
software product line testing and to compare the effectiveness 
of the (1+1) EA in terms of pairwise coverage, execution time, 
test suite size, and test case redundancy for the mobile phone, 
vending machine, online shopping, and IoT device case 
studies. 

However, it is imperative to acknowledge that the 
evaluation of security and privacy-related testing concerns 
should also be taken into account while conducting SPL testing 
[50]. Access control and authorization procedures are essential 
elements of software systems that are responsible for managing 
sensitive data or executing crucial operations. The process of 
testing these mechanisms across various products within a 
software product line presents challenges due to the potential 
variations in access control requirements and authorization 
procedures among different products. 

In order to address this matter, it is possible to utilize 
sophisticated testing methodologies, such as pairwise testing, 
to build a set of test cases that encompass various combinations 
of access control criteria and authorization processes. The 
(1+1) evolutionary algorithm can be utilized as an efficient 
method for generating test cases. The efficiency of these test 
cases can then be assessed by utilizing metrics such as 
coverage and defect detection rate. 

In addition to access control and authorization methods, 
software product line testing should also encompass additional 
important security and privacy-related testing concerns, 
including but not limited to data privacy, encryption, and 
secure communication. By effectively addressing these 
concerns [48, 49], software developers may guarantee security 
and ensure the privacy of their products. 

Segment Particle Swarm Optimization (Se-PSO), Enhanced 
Segment Particle Swarm Optimization (Ese-PSO), and African 
Buffalo Optimization (ABO) are swarm intelligence-based 
optimization algorithms inspired by the behavior of social 
organisms such as ants, bees, and honeybees. They have been 
successfully applied to various optimization problems and can 
also be used for test case generation. These algorithms can be 

utilized in pairwise test case generation to generate optimal test 
cases that cover all possible pairwise combinations of input 
parameters [10, 11, 12, 13, 14, 47]. 

Pairwise testing is effective at reducing the number of test 
cases required for high coverage, but it may not be adequate for 
testing non-functional requirements such as performance, 
security, and usability. Furthermore, it has been observed in 
certain research that the effectiveness of pairwise testing could 
be reliant upon the particular attributes of the software product 
line under examination, including the number of features and 
the level of variability. Hence, additional research is required 
to assess the efficiency of pairwise testing across various 
scenarios and to develop more sophisticated methodologies for 
evaluating software product lines. 

The intention of this study is to apply the (1+1) 
evolutionary algorithm to the task of generating pairwise test 
cases for software product line testing and to assess the 
efficacy of this technique using a number of measures, 
including pairwise coverage, execution time, test suite size, and 
test case redundancy. The objective is to demonstrate that the 
(1+1) evolutionary algorithm can be helpful for producing 
high-quality test cases for software product lines and to 
encourage the evolution of more sophisticated testing methods 
for software product lines. 

The rest of this article is organized as follows: Section II 
outlines the works that are related to this study. Section III 
demonstrates the method for conducting this study with case 
studies that are used to carry out the experiment. In Section IV, 
a number of experiments are carried out, and the findings are 
thoroughly examined. Section V contains a discussion of the 
study's findings. Finally, in Section VI and VII, we provide a 
brief summary of the paper and discuss future work 
respectively. 

II. RELATED WORKS 

SPL is a collection of software-heavy systems with a 
common base and features tailored to a specific audience or 
mission. Features identify SPL members by highlighting 
shared and unique traits. Feature models express feature 
relationships and limitations to reflect all SPL outputs. 

The SPL testing process is difficult. Testing every product 
is impractical. The number of configurations (or products) 
caused by an FM usually grows exponentially with the number 
of features, resulting in millions of potential products to test. 
Test engineers are trying to reduce their test suites to meet 
budgets and deadlines [15]. 

Software testing a product line takes time [16, 3]. A 
product line lets a buyer build a software system with many 
options [17]. Business is embracing SPL. Bosch, Philips, 
Siemens, General Motors, Hewlett-Packard, Boeing, and 
Toshiba use product-line approaches to reduce development 
and maintenance costs, improve quality, and speed product 
development [17, 18]. 

A. Software Product Line Testing 

Testing software product lines is important because one 
bug can affect hundreds of thousands or millions of products. 
The study [19] lists several product line assessment methods. 



(IJACSA) International Journal of Advanced Computer Science and Applications, 

Vol. 14, No. 8, 2023 

477 | P a g e  

www.ijacsa.thesai.org 

Product-by-product testing begins by generating and testing 
concrete products one at a time using single-product testing 
methods. Family-based testing checks if all products in a 
family meet the requirement [20]. 

A family-based approach tests multiple products. Computer 
simulations represent all line products. By superimposing all 
product test specifications, modern family-based testing 
methods don't allow for good testing of software's interaction 
with hardware and the environment [21, 22]. Family-based 
testing may be time-consuming and incomplete due to its 
complex execution environment. 

Testers and software engineers use FM to compare and 
create testable products. Testing all product feature 
combinations is not always possible. Application complexity 
reduces product selection. Combinatorial testing is used in the 
selection process to examine multiple variables. This selection 
method disregards FM defects. A fault-based approach like 
mutation-based testing can improve error detection and SPL 
product compliance. The research [23] suggests mutating 
products for SPL feature testing. The method can be used to 
create and evaluate test cases like a test criterion. FM's model 
features and connections. Feature diagrams (FDs) usually show 
the FM as a tree. 

B. Test Case Generation Approaches in SPL 

SPL test case generation has led to several testing methods. 
Combinatorial and model-based testing are examples. 
Combinatorial testing prevents tests from growing 
exponentially by trying all possible input permutations. 
Combinatorial testing addresses test selection from the whole 
combinatorial product since testing often has a finite test 
budget and exhaustive testing is usually intractable. Pairwise 
combinatorial testing is common here. A family of products 
with all FM valid pairs of features is the goal [24]. Counting 
covered pairs which help evaluate the product set. 

All-pairs testing, also called pairwise testing, is a way to 
test software by giving it as many possible combinations of 
two inputs. This method helps us understand how inputs 
interact, improving product quality and dependability. Pairwise 
testing is useful for testing software product lines, which are 
collections of configurable products. Pairwise testing can 
improve product line testing and be applied to a case study 
[25]. Pairwise testing with other methods and business 
knowledge may reduce testing costs and improve quality [26, 
37]. The paper recommends pairwise testing to reduce test 
cases. 

T-wise testing checks all input value permutations with a 
constraint of "T" inputs. This strategy can help test too many 
inputs. T-wise testing balances test case volume and coverage 
[27]. SPL's model-based t-wise testing creates a TS with 
comprehensive t-wise coverage. A valid t-set has t features that 
meet some constraints. 

Covering arrays in software product line testing improves 
system failure detection [28]. For testing, a two-layer covering 
array is used to represent equivalence classes and compute 
their names in the second layer. Covering arrays are used to 
test component interactions in a systematic manner. Let N, t, k, 

and v be integers with k ≥ t ≥ 2 and v ≥ 2. A covering array 

CA (N; t, k, v) is an N × k array A in which each entry is from 

a different alphabet, and there is a row of B that equals x for 

every N × t subarray B of A and every χ ∈ Σ ∧t. Then t 

denotes the covering array's strength, k the number of factors, 
and v the number of levels [29]. 

Model-based testing (MBT) automates test case creation 
for SPL testing. A Systematic Literature Review (SLR) on 
MBT for SPL testing is presented by [30]. MBT in SPL issues, 
evaluation, and solutions are discussed. The study summarizes 
SPL MBT perspectives in a taxonomic structure. The latest 
SPL development is taxonomy based MBT classification. 

Reduced testing is needed when resources are limited. 
Risk-based testing [31] is popular for system prioritization. 
Two other factors determine the probability of system entity 
damage or loss. 

SPL regression testing is difficult because it must test every 
member of a product family after a change. Regression test 
selection (RTS) selects a subset of regression test cases to 
lower regression testing costs [32]. In the product line context, 
each test case can be executed on multiple products that reuse 
the test case, making SPL regression testing time-consuming 
and resource-intensive even with RTS. Eliminating 
unnecessary test case executions helps. 

In [33], a suggested method that finds a group of products 
where running the test case will cover the same sequence of 
source code statements and give the same testing results, and 
then filters out the group from the test case's scope. 

C. Search-based Techniques for SPL Testing 

SPLs are collections of systems that have the same core 
functionality but are tailored to meet the needs of specific user 
groups. All products would have to be tested in theory, but 
that's not possible in practice. Because of this, "interesting" 
ones can be chosen to focus on using search-based approaches. 

Evolutionary computation is a population-based 
metaheuristic optimization algorithm used in artificial 
intelligence research. EA simulates natural evolution using 
reproduction, mutation, recombination, and selection. EAs 
mimic natural evolution. Recombination, mutation, and 
selection are thought to increase fitness by adapting individuals 
to their environment. EA "population" members are 
optimization solutions. EAs excel at optimization, scheduling, 
planning, design, and management [34]. Investments, 
production, distribution, etc. have these issues. 

Initially, a theoretical study of the (1+1) EA is presented 
and discussed. On a population of one, it only employs the 
mutation operation and an elitist selection method to generate a 
new generation. Although the (1+1) EA is the simplest 
evolutionary algorithm, it shares a fundamental principle with 
all others [35]. The (1+1) EA locates the maximum of a linear 
function, as proven by a theorem in [28]. The two members of 
the population at any given iteration are known as the "parent" 
and the "offspring," hence the name "1+1." For linear function 
optimization, the (1+1) Evolutionary Algorithm is predicted to 
take O (n ln n) time if the mutation rate is of size (1/n). 

Differential evolution (DE), Evolution strategy (ES), and 
Evolutionary Programming (EP) are all examples of other 



(IJACSA) International Journal of Advanced Computer Science and Applications, 

Vol. 14, No. 8, 2023 

478 | P a g e  

www.ijacsa.thesai.org 

Evolutionary Algorithms that can produce multiple offspring 
and compete [36]. As an illustration, the Evolution Strategy 
allows for the creation and competition of mutants. 

Table I provides a summary of some of the existing search-
based techniques for testing in SPL. Moreover, the strengths 
and weaknesses of the technique are provided as well. 

TABLE I.  SUMMARY OF STUDIED SEARCH-BASED TESTING TECHNIQUE 

Technique  Authors  Strengths Weaknesses 

1+1 

Evolutionary 

Algorithm (1+1 
EA) 

Slowik & 

Kwasnicka, 

Zhou et al 
2020. [36] 

Simplest EA, 

requires low 

requirements and it 
can reach any 

point in the search 

space in a single 
step. 

it's not easy to 

find a good drift 

function. 

Genetic 

Algorithm (GA) 

Rao & 

Tripathy 2019. 

[38] 

The ability to 

make exceptional 

use of parallel 

computation, 

simplicity of use, 

rapid convergence 
to the global 

optimum, few 

necessary control 
variables. 

Do not scale 

well with 

complexity, can 

be quite slow. 

Non-dominated 

Sorting Genetic 
Algorithm II 

(NSGA-II) 

Hojjati et al., 

Muhammad 
Abid Jamil et 

al 2018. [39] 

Demonstrates 

elitism and is not 
dependent on any 

measure of 

distributivity. 

The 

computational 
complexity of 

solving the 

problem grows 
in proportion to 

the size of the 

problem. 

Strength Pareto 

Evolutionary 

Algorithm II 
(SPEA-II) 

Jamil et al 

2019. [31] 

Utilizes a fine-

grained fitness 

assignment 
strategy and an 

improved archive 

truncation 
technique. 

lack of accuracy 

in its density 

estimation 

III. METHODOLOGY 

The methodology for conducting the research includes four 
stages. The first thing that will be done is an analysis of the 
software product line online tools (SPLOT), and then in Step 1, 
the FM for all of the case studies will be prepared. Following 
that, the pairwise testing will be carried out using the (1+1) EA 
in Step 2. Evaluation of the parameters that were employed is 
the third step. Lastly, an in-depth analysis and comparison of 
the results is carried out. The research methodology is depicted 
in Fig. 1. 

A. Step 1: Prepare Case Studies using Software Product 

Lines Online Tools (SPLOT) 

SPLOT is a Java2 Web app that uses an HTML template 
engine to make Ajax-based user interfaces for reasoning and 
configuration. Because it is web-based, you don't have to 
update it by hand or download any files, and it's easy to share 
information (for example, through a feature model repository). 
Automated reasoning and product configuration are SPLOT's 
two main offerings right now. To this end, reasoning is 
centered on the automation of crucial debugging tasks like 
checking the consistency of feature models and spotting the 

presence of dead and common features [6]. Measurements of 
properties like the number of valid configurations and the 
degree of variability of feature models are also supported by 
reasoning. Currently, SPLOT supports interactive 
configuration for product configuration, wherein users decide 
at a time, and the configuration system automatically 
propagates those decisions to enforce their consistency. 

 
Fig. 1. Research methodology framework. 

A major complaint from SPL researchers is the dearth of 
freely distributed feature models. To address this problem, 
SPLOT makes available a public model repository with more 
than 20 genuine models from the literature as well as several 
automatically generated models with up to 10,000 features 
each [6]. 

B. Step 2: Apply Pairwise Testing using (1+1) EA 

In this step, we use the PLEDGE tool to generate (1+1)-
based pairwise test cases. PLEDGE is a free software program 
that helps determine which product configurations should be 
tested in order to cover the most possible combinations of 
features. Both a command line and a graphical user interface 
are available for this tool's operation (GUI). All of the 
following are possible with the current release of PLEDGE: 

 FMs loaded from a file: Both the SPLOT and DIMACS 
(Conjunctive Normal Form) formats are supported by 
PLEDGE [32]. 

 Information about FM, such as its limitations and 
characteristics, can be visualized. 

 Making changes to the FM by introducing or removing 
constraints. 

 Producing the test products from the FM by setting 
parameters for the desired quantity and the time allotted 
for their production. 



(IJACSA) International Journal of Advanced Computer Science and Applications, 

Vol. 14, No. 8, 2023 

479 | P a g e  

www.ijacsa.thesai.org 

 Inputting a list of products and sorting them into a 
desired order using one of two suggested methods of 
prioritization. 

 Producing a file to store the finalized or prioritized 
output. 

Several settings can be specified to modify the behavior of 
the 1+1 evolutionary algorithm when using PLEDGE to 
conduct pairwise testing using the 1+1 evolutionary algorithm. 

C. Step 3: Evaluate Testing Parameters 

In this stage, all of the parameters, such as pairwise 
coverage, execution time, the size of test suites, and test case 
redundancy are evaluated based on the methodology that was 
utilized in this study. 

1) Pairwise coverage: For each case study in this research 

is given a percentage of pairwise coverage for a single 

run/iteration, which is the discrete combinations of the 

relevant parameters calculated with PLEDGE. When testing in 

a black box, pairwise coverage ensures that every possible 

combination of input parameters is covered by at least one of 

the test cases. Pairwise testing is more efficient at spotting 

problems because it is based on the observation that most 

defects occur due to the interaction of two values. By allowing 

for systematic testing coverage, pairwise tools can speed up 

the preparation and implementation stages. By conducting 

tests in pairs, we can reduce testing time by half without 

compromising coverage. 

The use of k-means and k-medoids clustering techniques in 
software testing to reduce the test suite and improve the 
algorithm's performance is discussed by [40, 41]. The 
technique of pairwise testing is also cited as an efficient means 
of generating a small test suite with optimal pairwise coverage. 
Also, [42] proposes a new method for increasing testing 
efficiency while maintaining testing efficacy. The paper ranks 
combinatorial test cases according to incremental interaction 
coverage by repeatedly applying the base choice coverage. 

2) Execution time: The execution time is the amount of 

time it takes for a single run to be carried out. Also using 

PLEDGE, the execution time in seconds is available. For each 

run, the time taken to finish the run is provided. In the context 

of pairwise testing, execution time refers to the amount of 

time required to execute the test cases created using the all-

pairs or pairwise testing methodology. The execution time is 

dependent on variables such as the size of the input 

parameters, the number of combinations, the performance of 

the being tested software application, and the testing 

environment. 
Reducing test execution time is crucial for SPL testing, as it 

enables more efficient testing of product lines and reduces the 
need for unnecessary testing [43]. Several SPL testing methods 
have been proposed to decrease test execution redundancy and 
boost efficiency. 

3) Size of test suite: A test suite consists of all the test 

cases that have been logically grouped together. Testing an 

application to show that it exhibits a certain set of behaviors is 

what the test suite is all about. Each test case in a suite will 

have explicit instructions or goals and details on the system 

configuration to be used during testing. [41] emphasizes the 

significance of pairwise testing as a means to circumvent the 

combinatorial explosion issue. The paper proposes that 

pairwise testing can be used to test software systems' vast 

input combinations with fewer test cases. Pairwise testing is 

presented in [28] as a promising technique with the potential 

to drastically reduce the number of test cases required for an 

acceptable level of coverage. 

For each case study involved in this study, a different size 
of test suite can be generated for a single run using PLEDGE. 
The size of test suites can differ based on the number of 
features for each case study, a case study with many features is 
considered big and size of test suites can be high. 

4) Test case redundancy: This study examines a test suite 

by finding redundant test cases, which is essential for lowering 

testing costs. A redundancy score is defined by the 

redundancy formula, which determines the score by dividing 

the total number of test cases by the number of duplicates. The 

redundancy score can be calculated using the formula in 

Equation 1 below, the total number of redundant test cases is 

divided by the total number of test cases generated. [44-45] 

contends that redundancy in test artefacts reduces testing 

costs. 

                  
∑                    

∑          
     (1) 

D. Step 4: Analyze and Compare the Results 

The fourth step is to perform an analysis and comparison of 
the results, which includes testing and an evaluation of 
performance. The results of the testing will be analyzed and 
compared using pairwise coverage, execution time, total test 
suite size as the criteria. In addition to this, test case 
redundancy will be calculated, and a graph depicting the 
findings of the comparison will be offered. 

E. Case Studies 

Within the scope of this research, four distinct case studies 
will each be subjected to a pairwise test case generation 
technique utilizing (1+1) EA. The mobile phone, the vending 
machine, the online shopping, and the IoT device are the case 
studies. The reason for choosing the selected case studies is 
because they are the most used and because they meet the 
needs to conduct this research, besides, there are many 
references that has been used those case studies to conduct 
testing in SPL using other testing techniques. Mobile phone 
and vending machine case studies are the small case studies in 
term of number of features. Meanwhile, e-shop and IoT device 
case studies are the big case studies. 

1) Mobile phone: The mobile phone industry served as 

inspiration for the simplified feature model shown in Fig. 2. 

This model demonstrates how features are incorporated into 

the process of specifying and developing software for mobile 

devices, specifically mobile phones. The capabilities of the 

phone will determine the types of software that can be 

installed on it. The model stipulates that all mobile devices 



(IJACSA) International Journal of Advanced Computer Science and Applications, 

Vol. 14, No. 8, 2023 

480 | P a g e  

www.ijacsa.thesai.org 

must be capable of making and receiving calls as well as 

displaying data in black-and-white, color, or at a very high 

resolution on their screens. In addition, the software for 

mobile phones may, at the user's discretion, include support 

for satellite navigation systems (GPS) and multimedia devices, 

such as cameras, MP3 players, or both. 

 
Fig. 2. Feature diagram of product line mobile phone adapted from [38]. 

2) Vending machine: The FD for the snack and drink 

dispensing machine's SPL is shown in Fig. 3. The vending 

machine assortment here is formally described by the 

accompanying feature diagram. Soda, Tea, Free Drinks, and 

CancelPurchase are used in the feature diagram to represent 

these products as valid options for the consumer. 

 
Fig. 3. Feature diagram of product line vending machine adapted from [39]. 

3) Online shop: The feature model that contains 

information about our online shops is depicted in Fig. 4. The 

name of the product line is located within the most prominent 

feature. There are four aspects that are connected to it: The 

features Catalog, Payment, and Security are connected to the 

feature that is at the top of the list by arcs that have filled 

circles at their ends. This indicates that these three features are 

required, meaning that they are present in each and every 

product variation. The fact that the Search function is not 

required is indicated by an arc that terminates in a circle that is 

not filled in. This descending order of characteristics will 

continue. For example, the feature Payment includes three sub 

features: Bank Account, ECoins, and Credit Card. For each 

product variant, at least one of these sub features must be 

selected. Both the High and Low sub features of the Security 

feature are alternative features, which means that only one of 

them can be selected for each product variant. In addition, 

there is a textual condition that states that selecting credit 

cards is only possible when the security level that is being 

provided is of a high standard. 

 

Fig. 4. Feature diagram of product line online shop adapted from [40]. 

4) IoT device: Internet of Things application development 

is guided by the selection of relevant environmental features 

and the needs of the end user. An efficient modelling 

approach, capable of holding all constraints and allowing 

application development, can be used to control environmental 

variability. Different uses for the same IoT devices introduce 

contextual variations that must be managed to ensure efficient 

development and maximize code reuse. It has been suggested 

that XML-based feature modelling be used to handle 

variability management of SPL. Fig. 5 depicts the smart 

campus IoT system's feature model, complete with predefined 

relationships and constraints. 

 
Fig. 5. Smart campus IoT feature diagram adapted from [46]. 

IV. RESULTS 

In this research, four case studies have been tested using the 
proposed approach. Each case study is tested ten times, and the 
results of each test case are provided. The four test cases, 
namely mobile phone, vending machine, online shop, and IoT, 
are different from each other’s, in terms of the number of 
features, which indicates their size. 

Fig. 6 shows the average results of each case study based 
on the evaluation metrics. For the mobile phone case study, the 
average test case coverage is 85.23%, and the average 
execution time is 1.31 seconds. The average number of test 
cases generated is 2.4, and no test cases are redundant. On the 
other hand, for the vending machine case study, the averages 
for the test coverage, execution time, size of the test suite, and 
percentage of test case redundancy are 75.39%, 1.13 seconds, 
2.4, and 23.33%, respectively. 



(IJACSA) International Journal of Advanced Computer Science and Applications, 

Vol. 14, No. 8, 2023 

481 | P a g e  

www.ijacsa.thesai.org 

 

Fig. 6. Average of the results of the case studies. 

Moreover, the online shop and smart campus IoT case 
studies are the big ones in terms of the number of features in 
this study, and the average percentage of test case coverage is 
93.53% for the online shop and 96.56% for the smart campus. 
Both case study results show the absence of redundant test 
cases. Meanwhile, the average execution time is 0.98 and 0.79 
for the online shop and IoT smart campus, respectively. Lastly, 
the average size of test cases is 10.9 for the online shop case 
study and 21.8 for the smart campus case study. 

Using PLEDGE to conduct the testing, as shown previously 
in the mobile phone and vending machine case studies, 
produced less efficient results compared to the other two case 
studies. The size of the test suite is smaller because there are 
fewer features; meanwhile, there are more redundant test cases 
because, using PLEDGE, the results showed that the tool 
cannot produce a large number of test suites for small case 
studies, and the results also showed that the testing takes more 
time to run, which is remarkably unexpected. 

V. DISCUSSION 

This study's goals are to apply the (1+1) evolutionary 
algorithm to generate pairwise test cases in software product 
line testing with the help of the proposed tool. The 
effectiveness of the algorithm using four metrics, including 
pairwise coverage, execution time, size of the test suite, and 
test case redundancy, for all of the case studies that were 
chosen, and to conclude that the (1+1) evolutionary algorithm 
is useful for generating pairwise test cases in software product 
line testing. 

The literature research clarifies the difficulties associated 
with testing software product lines, mostly stemming from the 
wide range of possible configurations and the need for 
effective testing methodologies. The findings of this study 
indicate that the (1+1) evolutionary algorithm is a successful 
approach for generating pairs test cases in the context of 
software product line testing. This algorithm proves to be 
effective in reducing the number of required test cases while 
simultaneously obtaining a high level of coverage. 

Furthermore, the literature review examines the 
significance of assessing the efficiency of testing 
methodologies by considering several factors, including 
pairwise coverage, execution time, and test suite size. The 
study presents a comparative analysis of the effectiveness of 
the (1+1) evolutionary algorithm across four distinct case 
studies, shedding light on its performance in diverse 
circumstances. 

Moreover, the literature review underscores the necessity 
for more research and advancement in the domain of software 
product line testing, encompassing the utilization of search-
based algorithms like evolutionary algorithms. The findings 
and methodology presented in the study make a valuable 
contribution to the field of research by illustrating the 
successful performance of the (1+1) evolutionary algorithm in 
producing pairs test cases for software product line testing. 

VI. CONCLUSION 

The purpose of this research is to apply the (1+1) 
evolutionary algorithm using PLEDGE in order to generate 
pairs of test cases for software product line testing. Using four 
criteria—pairwise coverage, execution time, test suite size, and 
test case redundancy—for each of the selected case studies, it 
was discovered that the 1+1 evolutionary algorithm is 
beneficial for creating pairwise test cases in software product 
line testing. When using PLEDGE to conduct the testing, the 
results demonstrated that this method yields superior results 
when the case study is large, which means it has a large 
number of features, compared to when the case study is small. 

Among the four case studies, the online shop and IoT case 
studies achieved good results in comparison to the mobile 
phone and vending machine case studies. This is because the 
online shop and IoT case studies have a large number of 
features; therefore, by using the PLEDGE tool, a good result 
has been achieved in comparison to when a case study has a 
small number of features, such as the mobile phone and 
vending machine case studies. 

Online shop and IoT case studies achieved better results 
than mobile phone and vending machine case studies. The 
average for pairwise coverage recorded the best for online shop 
and IoT at 93.53% and 96.56%, respectively. Meanwhile, the 
average execution time and the size of test suites are noted to 
be better for online shop and IoT case studies at 0.98s and 
0.79s, 10.9s and 21.8s respectively. Also, both case studies 
showed the absence of redundant test cases. On the other hand, 
the finding revealed that the mobile phone and vending 
machine case studies achieved less performance due to the fact 
that both were considered small with a small number of 
features. 

VII. FUTURE WORKS 

From this research, we were able to gather the following 
list of significant insights regarding areas for possible 
development and improvement: first, there are numerous ways 
to produce test cases using the existing software testing tools. 
Second, the program used in this research, PLEDGE, has 
problems and must be executed multiple times before 
producing meaningful results. The production and 
prioritization of test cases is a crucial aspect of SPL testing, 
and there has been an increasing trend in recent years to 
leverage search-based algorithms as a solution strategy. 

ACKNOWLEDGMENT 

This research was supported by University Tun Hussein 
Onn Malaysia (UTHM) through Tier 1 Grant (Vot H937). 



(IJACSA) International Journal of Advanced Computer Science and Applications, 

Vol. 14, No. 8, 2023 

482 | P a g e  

www.ijacsa.thesai.org 

REFERENCES 

[1] Hierons, R. M., Li, M., Liu, X., Parejo, J. A., Segura, S., & Yao, X. 
(2020). Many-objective test suite generation for software product lines. 
ACM Transactions on Software Engineering and Methodology, 29(1). 
https://doi.org/10.1145/3361146. 

[2] Cico, O., Jaccheri, L., Nguyen-Duc, A., & Zhang, H. (2021). Exploring 
the intersection between software industry and Software Engineering 
education-A systematic mapping of Software Engineering Trends. 
Journal of Systems and Software, 172, 110736. 

[3] Souza, M. R. D. A., Veado, L., Moreira, R. T., Figueiredo, E., & Costa, 
H. (2018). A systematic mapping study on game-related methods for 
software engineering education. Information and software technology, 
95, 201-218. 

[4] Lee, J., Kang, S., & Jung, P. (2020). Test coverage criteria for software 
product line testing: Systematic literature review. Information and 
Software Technology, 122, 106272. 

[5] Santos, I., Melo, S. M., de Souza, P. S. L., & Souza, S. R. (2019, 
September). Testing techniques selection: A systematic mapping study. 
In Proceedings of the XXXIII Brazilian Symposium on Software 
Engineering (pp. 347-356). 

[6] Horcas, J. M., Pinto, M., & Fuentes, L. (2019, September). Software 
product line engineering: a practical experience. In Proceedings of the 
23rd International Systems and Software Product Line Conference-
Volume A (pp. 164-176). 

[7] Wang, R., Artho, C., Kristensen, L. M., & Stolz, V. (2020, December). 
Multi-objective Search for Model-based Testing. In 2020 IEEE 20th 
International Conference on Software Quality, Reliability and Security 
(QRS) (pp. 130-141). IEEE. 

[8] Al-Hajjaji, M., Thüm, T., Lochau, M., Meinicke, J., & Saake, G. 
(2019a). Effective product-line testing using similarity-based product 
prioritization. Software & Systems Modeling, 18, 499-521. 

[9] Dominka, S., Mandl, M., Dubner, M., & Ertl, D. (2018). Using 
combinatorial testing for distributed automotive features: Applying 
combinatorial testing for automated feature-interaction-testing. 2018 
IEEE 8th Annual Computing and Communication Workshop and 
Conference, CCWC 2018, 2018-January, 490–495. 
https://doi.org/10.1109/CCWC.2018.8301632. 

[10] Kunna, Mohammed Adam, Tuty Asmawaty Abdul Kadir, Muhammad 
Akmal Remli, Noorlin Mohd Ali, Kohbalan Moorthy, and Noryanti 
Muhammad. "An enhanced segment particle swarm optimization 
algorithm for kinetic parameters estimation of the main metabolic model 
of Escherichia coli." Processes 8, no. 8 (2020): 963. 

[11] Azrag, Mohammed Adam Kunna, Tuty Asmawaty Abdul Kadir, and 
Aqeel S. Jaber. "Segment particle swarm optimization adoption for 
large-scale kinetic parameter identification of Escherichia Coli 
metabolic network model." IEEE Access 6 (2018): 78622-78639. 

[12] Azrag, Mohammed Adam Kunna, Jasni Mohamad Zain, Tuty Asmawaty 
Abdul Kadir, Marina Yusoff, Aqeel Sakhy Jaber, Hybat Salih Mohamed 
Abdlrhman, Yasmeen Hafiz Zaki Ahmed, and Mohamed Saad Bala 
Husain. "Estimation of Small-Scale Kinetic Parameters of Escherichia 
coli (E. coli) Model by Enhanced Segment Particle Swarm Optimization 
Algorithm ESe-PSO." Processes 11, no. 1 (2023): 126. 

[13] Azrag, Mohammed Adam Kunna, Tuty Asmawaty Abdul Kadir, and 
Noorlin Mohd Ali. "A Comparison of Particle Swarm optimization and 
Global African Buffalo Optimization." In IOP Conference Series: 
Materials Science and Engineering, vol. 769, no. 1, p. 012034. IOP 
Publishing, 2020. 

[14] Odili, Julius Beneoluchi, Mohd Nizam Mohmad Kahar, Shahid Anwar, 
and Mohammed Adam Kunna Azrag. "A comparative study of African 
buffalo optimization and randomized insertion algorithm for asymmetric 
travelling salesman's problem." In 2015 4th International Conference on 
Software Engineering and Computer Systems (ICSECS), pp. 90-95. 
IEEE, 2015. 

[15] Onipede, S. F., Bashir, N. A., & Abubakar, J. (2022). Small open 
economies and external shocks: an application of Bayesian global vector 
autoregression model. Quality & Quantity. 
https://doi.org/10.1007/s11135-022-01423-8. 

[16] Zhang, Y., Kong, W., Li, D., & Liu, X. (2020, October). Design and 
Implementation of Automatic Matching and Remote Screening System 
for Intelligent Security Inspection. In Proceedings of the 2020 
International Conference on Computers, Information Processing and 
Advanced Education (pp. 76-83). 

[17] Edded, S., Sassi, S. B., Mazo, R., Salinesi, C., & Ghezala, H. B. (2019). 
Collaborative configuration approaches in software product lines 
engineering: A systematic mapping study. Journal of Systems and 
Software, 158, 110422. 

[18] Ruland, S., Lochau, M., & Jakobs, M. C. (2020). HybridTiger: Hybrid 
model checking and domination-based partitioning for efficient multi-
goal test-suite generation (competition contribution). Fundamental 
Approaches to Software Engineering, 12076, 520. 

[19] Kolesnikov, S., Siegmund, N., Kästner, C., Grebhahn, A., & Apel, S. 
(2019). Tradeoffs in modeling performance of highly configurable 
software systems. Software & Systems Modeling, 18, 2265-2283. 

[20] Mesa, O., Vieira, R., Viana, M., Durelli, V. H., Cirilo, E., Kalinowski, 
M., & Lucena, C. (2018, September). Understanding vulnerabilities in 
plugin-based web systems: an exploratory study of wordpress. In 
Proceedings of the 22nd International Systems and Software Product 
Line Conference-Volume 1 (pp. 149-159). 

[21] Lee, J., Kang, S., & Jung, P. (2020). Test coverage criteria for software 
product line testing: Systematic literature review. Information and 
Software Technology, 122, 106272. 

[22] Sulaiman, R. A., Jawawi, D. N., & Halim, S. A. (2023). Cost-effective 
test case generation with the hyper-heuristic for software product line 
testing. Advances in Engineering Software, 175, 103335. 

[23] Al-Hajjaji, M., Thüm, T., Lochau, M., Meinicke, J., & Saake, G. (2019). 
Effective product-line testing using similarity-based product 
prioritization. Software and Systems Modeling, 18(1), 499–521. 
https://doi.org/10.1007/s10270-016-0569-2 

[24] Akimoto, H., Isogami, Y., Kitamura, T., Noda, N., & Kishi, T. (2019, 
December). A prioritization method for spl pairwise testing based on 
user profiles. In 2019 26th Asia-Pacific Software Engineering 
Conference (APSEC) (pp. 118-125). IEEE. 

[25] Wang, Y., Sun, Y., Wu, X., Shanghai cai jing da xue, Tong ji da xue 
(China), Suzhou da xue, Institute of Electrical and Electronics 
Engineers. Beijing Section, & Institute of Electrical and Electronics 
Engineers. (2018). Proceedings of the 2018 IEEE International 
Conference on Progress in Informatics and Computing : December 14-
16, 2018, Suzhou, China. 

[26] Morgan, J. (2018). Combinatorial testing: an approach to systems and 
software testing based on covering arrays. Analytic methods in systems 
and software testing, 131-158. 

[27] Xiang, Y., Huang, H., Member, S., Li, M., Li, S., & Yang, X. (2020). 
Looking For Novelty in Search-based Software Product Line Testing. In 
IEEE TRANSACTIONS ON SOFTWARE ENGINEERING. 

[28] Rabatul Aduni Sulaiman, Dayang Norhayati Abang Jawawi, & Shahliza 
Abdul Halim. (2022). Classification Trends Taxonomy of Model-based 
Testing for Software Product Line: A Systematic Literature Review. 
KSII Transactions on Internet and Information Systems, 16(5). 
https://doi.org/10.3837/tiis.2022.05.008 

[29] Jahan, H., Feng, Z., & Mahmud, S. H. (2020). Risk-based test case 
prioritization by correlating system methods and their associated risks. 
Arabian Journal for Science and Engineering, 45, 6125-6138. 

[30] Jung, P., Kang, S., & Lee, J. (2020). Efficient regression testing of 
software product lines by reducing redundant test executions. Applied 
Sciences (Switzerland), 10(23), 1–21. 
https://doi.org/10.3390/app10238686 

[31] Slowik, A., & Kwasnicka, H. (2020a). Evolutionary algorithms and their 
applications to engineering problems. In Neural Computing and 
Applications (Vol. 32, Issue 16, pp. 12363–12379). Springer. 
https://doi.org/10.1007/s00521-020-04832-8 

[32] Huang, Z., Zhou, Y., Xia, X., & Lai, X. (2020). An improved (1+1) 
evolutionary algorithm for k-median clustering problem with 
performance guarantee. Physica A: Statistical Mechanics and Its 
Applications, 539. https://doi.org/10.1016/j.physa.2019.122992 



(IJACSA) International Journal of Advanced Computer Science and Applications, 

Vol. 14, No. 8, 2023 

483 | P a g e  

www.ijacsa.thesai.org 

[33] Slowik, A., & Kwasnicka, H. (2020). Evolutionary algorithms and their 
applications to engineering problems. Neural Computing and 
Applications, 32, 12363-12379. 

[34] Rao, D. S., & Tripathy, D. P. (2019). A genetic algorithm approach for 
optimization of machinery noise calculations. Noise and Vibration 
Worldwide, 50(4), 112–123. 
https://doi.org/10.1177/0957456519839409. 

[35] Hojjati, A., Monadi, M., Faridhosseini, A., & Mohammadi, M. (2018). 
Application and comparison of NSGA-II and MOPSO in multi-objective 
optimization of water resources systems. Journal of Hydrology and 
Hydromechanics, 66(3), 323–329. https://doi.org/10.2478/johh-2018-
0006. 

[36] Jamil, M. A., Nour, M. K., Alhindi, A., Awang Abhubakar, N. S., Arif, 
M., & Aljabri, T. F. (2019). Towards Software Product Lines 
Optimization Using Evolutionary Algorithms. Procedia Computer 
Science, 163, 527–537. https://doi.org/10.1016/j.procs.2019.12.135. 

[37] Hierons, R. M., Li, M., Liu, X., Parejo, J. A., Segura, S., & Yao, X. 
(2020). Many-objective test suite generation for software product lines. 
ACM Transactions on Software Engineering and Methodology 
(TOSEM), 29(1), 1-46. 

[38] Huang, S., Sun, J., & Feng, Y. (2018). Pairwise covariates-adjusted 
block model for community detection. arXiv preprint arXiv:1807.03469. 

[39] Al-Hajjaji, M., Thüm, T., Lochau, M., Meinicke, J., & Saake, G. 
(2019b). Effective product-line testing using similarity-based product 
prioritization. Software & Systems Modeling, 18, 499-521. 

[40] Di Silvestro, F. (2020). Improving testing reusability and automation for 
software product lines. 

[41] Din, F., & Zamli, K. Z. (2019). Pairwise Test Suite Generation Using 
Adaptive Teaching Learning-Based Optimization Algorithm with 
Remedial Operator (pp. 187–195). https://doi.org/10.1007/978-3-319-
99007-1_18 

[42] Jung, P., Kang, S., & Lee, J. (2020). Efficient regression testing of 
software product lines by reducing redundant test executions. Applied 
Sciences, 10(23), 8686. 

[43] Ngoumou, A., & Ndjodo, M. F. (2018). Feature-Relationship Models: A 
Paradigm for Cross-hierarchy Business Constraints in SPL. International 
Journal of Computer Science and Information Security (IJCSIS), 16(9). 

[44] Dubslaff, C. (2019). Compositional feature-oriented systems. In 
Software Engineering and Formal Methods: 17th International 
Conference, SEFM 2019, Oslo, Norway, September 18–20, 2019, 
Proceedings 17 (pp. 162-180). Springer International Publishing. 

[45] Sulaiman, R. A. B. (2020). Cost-Effective Model-Based Test Case 
Generation and Prioritization For Software Product Line (Doctoral 
dissertation, Universiti Teknologi Malaysia). 

[46] Corradini, F., Fedeli, A., Fornari, F., Polini, A., & Re, B. (2021). 
FloWare: An Approach for IoT Support and Application Development. 
Lecture Notes in Business Information Processing, 421, 350–365. 
https://doi.org/10.1007/978-3-030-79186-5_23. 

[47] Wang, Z. J., Yang, Q., Zhang, Y. H., Chen, S. H., & Wang, Y. G. 
(2023). Superiority combination learning distributed particle swarm 
optimization for large-scale optimization. Applied Soft Computing, 136, 
110101. https://doi.org/10.1016/J.ASOC.2023.110101. 

[48] Tauqeer, O. B., Jan, S., Khadidos, A. O., Khadidos, A. O., Khan, F. Q., 
& Khattak, S. (2021). Analysis of security testing techniques. Intelligent 
Automation & Soft Computing, 29(1), 291-306. 

[49] Campanile, L., Iacono, M., & Mastroianni, M. (2022, September). 
Towards privacy-aware software design in small and medium 
enterprises. In 2022 IEEE Intl Conf on Dependable, Autonomic and 
Secure Computing, Intl Conf on Pervasive Intelligence and Computing, 
Intl Conf on Cloud and Big Data Computing, Intl Conf on Cyber 
Science and Technology Congress 
(DASC/PiCom/CBDCom/CyberSciTech) (pp. 1-8). IEEE. 

[50] Stanciu, A. M. (2023). Theoretical Study of Security for a Software 
Product. In Intelligent Sustainable Systems: Selected Papers of WorldS4 
2022, Volume 1 (pp. 233-242). Singapore: Springer Nature Singapore.

 

 


