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Abstract—Human motion intention plays an important role in 

designing an exoskeleton hand wrist control for post-stroke 

survivors especially for hand grasping movement. The challenges 

occurred as sEMG signal frequently being affected by noises 

from its surroundings. To overcome these issues, this paper aims 

to establish the relationship between sEMG signal with wrist 

angle and handgrip force. ANN and ANFIS were two approaches 

that have been used to design dynamic modelling for hand 

grasping of wrist movement at different MVC levels. Input 

sEMG signals value from FDS and EDC muscles were used to 

predict the hand grip force as a representation of output signal. 

From the experimental results, sEMG MVC signal level was 

directly proportional to the hand grip force production while 

hand grip force signal values will depend on the position of wrist 

angle. It’s also concluded that the hand grip force signal 

production is higher while the wrist at flexion position compared 

to extension. A strong relationship between sEMG signal and 

wrist angle improved the estimation of hand grip force result 

thus improved the myoelectronic control device for exoskeleton 

hand. Moreover, ANN managed to improve the estimation 

accuracy result provided by ANFIS by 0.22% summation of 

integral absolute error value with similar testing dataset from the 

experiment. 

Keywords—Hand grasping; wrist control; ANN; ANFIS; 

exoskeleton wrist design 

I. INTRODUCTION 

Dexterous human hand movement completed the routine 
of human daily activities by providing specific hand gestures 
for task movements, such as object grasping and posture 
maintenance [1],[2]. Recognizing that hand movement is 
changeable, as human grasping requires varying grip force and 
wrist angles to execute various activities [3]. Moreover, hand 
movement activities induced by user motion intention 
involves muscle contractions which can be monitored using 
surface electromyography (sEMG) data, resulting in force 
output [4],[5],[6]. However, the variation in wrist angle 
position associated with results in variation of sEMG signal 
amplitude, which would have a significant impact on the 
accuracy of grasp force estimation [7]. 

However, several diseases, including stroke, can have a 
negative impact on human hand function. Undeniably stroke is 
a major public health issue in many countries [8],[9]. In 2020, 
the World Health Organization (WHO) reported that 21,592 

people in Malaysia had died from a stroke, accounting for 
12.85% of all deaths in the country [10]. According to the 
2013 Global Burden of Disease study, this disease currently 
ranks third among the most significant contributors to 
disability-adjusted life years [11], [12]. In general, 
approximately three-quarters of stroke survivors are still suffer 
from their post-stroke effects [13]. One of the most prevalent 
disabling effects of a stroke is upper limbs impairment [14]. 
Based on statistic values, between 55% to 75% of stroke 
survivors lost of their hand ability. This hand disability can 
make their survivors dependent on oth ers for help with 
activities of daily living, which can lower their quality of life 
[15], [16]. In the sense of that, since 1952, many researchers 
have looked at the concept of surface electromyography 
(sEMG) signals production as a means of improving Human 
Machine Interaction (HMI) for the benefit of post-stroke 
survivors [17]. 

Providing a path to integrate HMI has always triggers a 
challenge among all the research. In such tasks or activities, 
the robot should be designed to match the human arm's 
dexterity and skill [18]. Therefore, it is crucial to examine the 
biomechanical model of human muscle force and transfer it to 
the robot control in order to establish smooth interaction 
between the human and the robot instead of simple stiff 
interaction [18]. Although it is difficult to estimate grip force 
from sEMG signals, successful force recognition can aid in the 
design of a usable interface for natural and accurate EMG-
based robot control [19]. The estimation of a generated force 
from sEMG signals enables the control of robotic equipment 
such as exoskeletons or prostheses in real time applications 
[20], [21], [22]. 

Realizing the importance understanding of sEMG signals, 
wrist angle and force excitation in forming the hand 
movement activities, the exoskeleton hand has been created in 
Solidwork software and converted in visual Matlab 2017a 
environment to imitate the natural human hand movement.  
The input designed for exoskeleton hand was the sEMG 
signals has been analysed at different wrist angle position 
(flexion and extension) with different Maximum Voluntary 
Contraction (MVC) level of hand grasping. The output 
function of sEMG was the estimation of hand grip force as it 
was needed to improve the myoelectric control system 
performance [6]. 
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Nicola Secciani et al. proposed a control strategy based on 
"classification loop" and a "actuation loop" to control the 
movement of exoskeleton hand for free grasp, spherical grasp, 
and cylindrical grasp [23]. In 2019, Jing Luo et. al., used 
Neural Network Based Approach to estimate the force based 
on received input EMG signals [18]. The research continue as 
He Mao et. al., and Jiaqi Xue et. al., used EMG signals to 
estimate force and angle that represent hand movement such 
as wrist flexion/extension, ulnar/radial deviation, 
pronation/supination, and grip in 2023 [3],[19]. By 
recognising the significance of predicting future output results 
based on EMG input, more opportunities of improvement can 
be realised, as this relationship can strengthen control area in 
exoskeleton hands and prostheses section for future 
development [24]. 

This paper aims to analyse the relationship between sEMG 
signals, wrist angle and hand grip force generation at different 
MVC level using Artificial Neural Network (ANN) and 
Adaptive Neuro-Fuzzy Inference System (ANFIS) dynamic 
modelling system for exoskeleton hand. The output of this 
relationship has been expected to improve the understanding 
on hand grasping control system strategy and selecting the 
best dynamic modelling approach for exoskeleton hand. 

II. RECENT DEVELOPMENT 

EMG-force relationship always been a highlight in 
analysing the hand grasping process related with HMI. When 
using a tool, such as interacting with a robot that requires a 
high degree of dexterity, the dynamics of a person's arms can 
have a significant impact on that person's daily activities [18]. 
Moreover, the dynamic modelling develops for the system 
always come with an issue of finding the suitable approach to 
form the relationship between input of EMG signals generated 
from user motion intention based on muscle contraction 
towards force generated as an estimated output. Daniele et al. 
employed a multiple linear regressions strategy to reduce the 
reconstruction error of exerted endpoint forces from EMG 
force estimates [5].  Gelareh et al. said that other researchers 
frequently employ ANN and Support Vector Machines (SVM) 
to discover mappings processes between EMG and force [4]. 
Furthermore, Galareh et al. revealed that researchers 
employed system identification approaches such as 
polynomial estimation, linear regression, and fast orthogonal 
search (FOS) to estimate force from sEMG signals [4], [6]. 
Jiaqi et al. focused on feature design by comparing the 
performance of EMG linear envelope (ENV) and non-linear 
EMG to muscle activation mapping (ACT) to obtain optimal 
force estimate performance [19]. 

ANN are one of the methods that can be used to define a 
connection between an input with an output. It acts as a black 
box model to approximate a complex nonlinear mapping 
between the sEMG signals towards their wrist angle or force 
generated equivalent to the signal muscle contractions related 
to it. ANN can learn from observation of mixture muscle 
signals and did not require any understanding of biological 
phenomena of exoskeleton hand system such as mathematical 
equation to express the relationship between input and output. 
According to Changmok et al., ANN is computationally 
efficient and has been implemented in various real-time 

systems [25]. Numerous similar research publications have 
demonstrated the effectiveness of neural networks in 
recognising EMG patterns [26]. Francisco et al., 2020, created 
a multiclass categorization model using a regression algorithm 
and neural networks to control an anthropomorphic robotic 
system with three degrees of freedom that can accurately 
remote the robot arm to specified positions in a state machine 
[27]. 

The neural-fuzzy-based myoelectric control system is 
another scheme for controlling an upper limb exoskeleton-
type exoskeleton. Neural fuzzy is defined as the combination 
of a neural network and fuzzy logic in modern artificial 
intelligence theory [28]. Kazuo et al. pioneered the neuro-
fuzzy myoelectric control system, in which fuzzy logic was 
comprised of "IF and THEN" statements and the fuzzy 
modifier was a fully connected neural network [29], [30]. The 
neural network must tune the fuzzy logic using the EMG 
signals. Typically, data-driven approaches for ANFIS network 
synthesis are based on clustering a training set of numerical 
samples of the unknown function to be approximated. Since 
then, ANFIS networks have been successfully applied to 
classification tasks, rule-based process controls and pattern 
recognition problems [31]. According to Jirui et al., ANFIS 
can also be used to represent an effective neural network 
strategy for solving function estimation problems [32]. 
Moreover, Song Yu et. al., managed to prove the result from 
ANFIS is better than Tonic Stretch Reflex Threshold (TSRT) 
approach used for elbow flexors or extensors in their research 
[33]. 

Both ANN and ANFIS were established mapping methods 
that can be used to design a dynamic modelling for 
exoskeleton hand system. However, to enhance the 
performance of myoelectric control strategies for exoskeleton 
hand system, the selection of mapping method to form a 
dynamic modelling needed to be carefully selected. According 
to Mao et al., intuitive control that mimics human hand 
movement as closely as feasible has been greatly praised [3]. 
When interacting with the external environment, humans 
typically regulate their force at different wrist angle positions 
to ensure good operation performance [18]. However, there 
has been little research into the simultaneous estimation of 
hand grip force and wrist angles in free space, which mimic 
the biological functions of human hands. 

III.  METHODOLOGY 

A. Mechanical Hand Design 

The exoskeleton hand was designed to mimic the natural 
human hand movement. From ten male subjects ages from 21 
to 40 years old, all the anthropometric hand measurement 
were taken. One degrees of freedom (DoF) of the wrist angle 
position has been highlighted in this exoskeleton hand 
designed covered two types of gestures: hand grasping at -45° 
(flexion) and 45° (extension) showed in Fig. 1. Since the wrist 
exoskeleton hand can be moved to achieve wrist desired angle, 
it is completely actuated. 
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(a)         (b) 

Fig. 1. Exoskeleton hand designed (a) flexion position (b) extension 

position. 

B. EMG Data Collection 

All experiments procedure were approved by the 
University Ethical Committee or Centre for Research and 
Innovation Management (CRIM) at University Technical 
Malaysia Melaka (UTeM) Malaysia. The experiment used a 
Hand Dynamometer, LabQuest Mini data acquisitions, 
Vernier EMG sensors, a personal computer with Logger Lite 
data-collection software, Stopwatch, Protector, and 
Kendall5400 diagnostic tab electrodes. Ten male subjects 
signed the researcher's consent form to undertake the hand 
grip pattern experiment at varying wrist angles at different 
MVC level. The experiment began after the subjects were 
fully briefed. Each experiment was repeated three times [34]. 

Flexor Digitorum Superficialis (FDS) and Extensor 
Digitorum Communis (EDC) EMG signal values have been 
employed in this research to represent each hand grasping 
wrist angle movement at different MVC level [3], [35], [23]. 
The medial epicondyle has been used to locate the muscles 
and the palpate scaphoid technique has been employed to 
determine the position of  wrist movement [36], [37]. All 
subjects were in good health with non-neurological diseases 
and used their dominant hand for data collection. 

 

Fig. 2. Experimental set-up [38]. 

Fig. 2 illustrates how experimental procedures conducted. 
The maximum force (MVC) of the hand grasp is a 
measurement of the subject's strongest voluntary contraction 
Electrode patches are put to the top of the abdominal muscles 

of FDS and EDC. Samples were instructed to hold the hand 
dynamometer for five seconds at different hand grip strengths 
(20, 40, 60, 80, and 100% MVC level [34]. Each grip includes 
a two-second rest interval. The retrieved raw EMG signals 
were recorded using the Logger Lite programme. Fig. 3 shows 
the data collection for flexion and extension hand movement 
during the experiment. 

 
 (a)       (b) 

Fig. 3. Data collections for FDS, EDC and forces during (a) wrist angle at 

flexion (b) wrist angle at extension. 

C. EMG Signal Processing 

This paper adapted time-domain-based features using 
Waveform Length (WL) approach as it proven itself to be the 
best feature extraction method among RMS, MAV, IEMG and 
ZC as shown in Fig. 4 [39], [40], [41]. The sampling 
frequency was chosen at 1 kHz to suit the EMG signals range. 
The segmentation of input data was reduced at 50% analysis 
window increment. A second-order band-pass Butterworth 
filter was used for this experimental procedure [42]. The MVC 
method, which was uniquely recorded from each subject, has 
been used to standardize EMG measurement values. This 
approach scales the measurement value between 0 to 1 and 
most used normalization techniques in MVC-normalization 
[43], [44]. 

 

Fig. 4. WL feature extraction for 20%, 60% and 100% MVC at flexion and 

extension wrist angle. 

D. Mapping Process 

Modelling creates a connection between all usage 
parameters. It establishes a sequential connection between 
inputs and outputs. This modelling constructs an accurate 
transfer function to characterize system performance and the 
measured effectiveness of the selected modelling approach. 
Modelling, also known as mapping, is a data-based 
representation of numerous group design types. Since this 
paper recommended employing two mapping methods, ANN 
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and ANFIS were trained and evaluated using the same data set 
to ensure that their outputs were comparable. 

1) Method 1: Dynamic Modelling of Wrist Movement 
Using ANN: ANN is one of the methods to generate a 
dynamic modelling for one’s system. Depending on 
application complexity, neural networks can approximate 
nonlinear functions using adaptive weights on different layers 
[45]. From all the collected data set, two of them have been 
used to generate a training model for ANN approaches. The 
default setting has been used to generate this model 
representation as 70% dedicated for training, 15% for 
validation and 15% for testing. One number of hidden layers 
was used to connect two inputs with one output consisting of 
ten neurons shown in Fig. 4. The input were the EMG signals 
from FDS and EDC and output are the force generated from 
the hand grasping procedure at different wrist angles. Tangent 
sigmoid has been selected as ANN activation function and 
Levenberg-Marquardt has been selected as the training 
method [24]. The EMG data set taken from selected muscles 
has been arranged at 20%, 60%, 100% MVC at flexion state 
and 20%, 60%, 100% MVC at extension state to estimate the 
force generation at different wrist angle position. Fig. 5 shows 
architecture for ANN designed to estimate the hand grasping 
force. 

 

Fig. 5. ANN designed architecture. 

2) Method 2: Dynamic Modelling of Wrist Movement 
Using ANNFIS: ANFIS is another mapping method that can 
be used to create a dynamic modelling of a system. It has been 
built up from a combination of ANN and fuzzy logic to create 
its mapping block. It employs the fuzzification layer to map 
the input data to fuzzy sets using membership functions. The 
rule layer applies fuzzy if-then rules (Sugeno method) to 
capture the relationship between input variables and the 
output. The adaptation layer adjusts the parameters of the 
ANFIS model using a learning algorithm, allowing it to 
continuously improve its performance. For ANFIS setting, 
three sets of data coming from similar samples were used. two 
sets of them have been used to form a training block with 70% 
was dedicated for training, 15% for validation and 15% for 
checking. One hidden layer was chosen with ten neurons 
connected to the fuzzy rules to estimate the output value. FDS 
and EDC muscles sEMG signals have been chosen as an input 
while hand grasping force at different MVC levels has been 
selected as an output signal of a system. Number for 
membership function (mf) of ten neurons with combination of 
[2 8] and type of ―gauss2mf‖ was set as an input and output 

selected ―constant‖ as their MF type. 20%, 60% and 100% 
MVC level for both flexion and extension of sEMG signal 
level have been arranged to predict the force hand grasping 
output. Fig. 6 shows an ANFIS designed architecture for the 
system. 

 

Fig. 6. ANFIS designed architecture. 

IV. RESULTS 

Fig. 7 depicts an analysis of hand grip forces. Within the 
same graph, a three-line force graph is plotted. Two of them 
are line graphs that depict the output from the ANN (magenta) 
and ANFIS (light blue) mapping processes, while the other 
(blue) was directly taken from the measurement process 
during the experimental procedure. As the wrist goes from 
flexion to extension, the graph is divided into two portions. 
The first section (wrist angle at flexion position) occurred 
between 0s and 233s. This section is organized into three 
subsections to represent the signal levels of 20% MVC, 60% 
MVC, and 100% MVC. The second part (wrist angle at 
extension position) existed between 234s and 467s. This 
section has also been separated into three subsections to 
represent the signal levels of 20% MVC, 60% MVC, and 
100% MVC. 

 

Fig. 7. Hand grip force analysis graph. 

Fig. 8 depicts the absolute error for the ANN and ANFIS 
mapping methods. The magenta line graph is an error graph 
for the ANN approach, whereas the light blue graph is formed 
by the ANFIS approach. Both graph line plotting reveals a 
fluctuation pattern signal generated by both ways, as can be 
seen. Each method seems to have close estimated hand grip 
force and error values compare to each other and produce 
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quite a similar graph instead. These graphs were created by 
deducing the force measured value during the experiment 
process from the force estimation value obtained from both 
approaches. The total summation area under each graph 
representing the total summation error for each approaches 
used. According to Fig. 8, the sum of absolute error for the 
ANN technique was 19.33%, while the ANFIS approach was 
19.55%. Based on this finding, ANN outperformed ANFIS in 
force estimation with a similar dataset and parameter settings. 

 

Fig. 8. Absolute error for ANN and ANFIS. 

V. DISCUSSIONS 

All of the hand grip forces MVC's plotting in the flexion 
part have higher values than their identical MVC's opponent in 
the extension section. The situation happened as referring to 
the normal human hand grasping movement. As the user 
motion intention directed the hand wrist angle to move 
towards human body, FDS muscle (flexion muscle) produce 
higher sEMG values compared to EDC muscle (extension 
muscle) signal which causing the flexion hand movement as 
shown in Fig. 3 [38]. For the flexion hand movement, the 
measured and estimated force values obviously demonstrated 
a higher signal level compared to their MVC in the other 
section. For the extension section, the hand wrist angle was 
pulled away from the human body, causing the EDC muscle to 
generate a greater sEMG value than the FCR muscle [3], [39]. 
As shown in Fig. 7, this extension movement degrades the 
hand grasp force value in each MVC level compared to the 
flexion movement. 

At 20% MVC flexion section, the estimation graph 
plotting from both ANN and ANFIS mapping lingering closer 
to the measured value during the experiment. However, in the 
extension section, the estimation graph plotting introduced a 
small gap reading compared to the value from the 
experimental procedure. This could happen because the sEMG 
signal values from both muscles are almost the same when 
they are contracting at a lower level. The wrist angle position 
doesn't seem to have a big impact on how the signal number is 
read. Different case happened at 60% MVC level for both 
sections. Both muscles produce significant values of sEMG 
signals that causing the estimation force graph plotting for 
both approaches manage to differentiate between different 
wrist angle position. The fluctuation of force output graph 
might be coming from the nonlinearity of sEMG signals 
muscles contraction and the noise that interrupted during the 
data collection. 

For 100% MVC, the force signals output estimation for the 
flexion section manages to have a higher value in their 
estimation but still does not give the same value as the 
measured one. The explanation for this is because subjects 
were instructed to flex their hands while grasping the hand 
dynamometer with 100% strength at 100% MVC of muscle 
contractions. Hand shaking commonly happened at this stage 
thus created a noisy environment while the data is being 
recorded, hence resulting an effect towards sEMG values used 
in the estimation process. For the extension section, at 100% 
MVC, the estimation graph for both hand grip force 
approaches achieves a nearly identical with the measured one 
due to a favourable environment for muscles contractions and 
a lower force measured value that allows the subject to 
perform well in hand grasping experimental procedure. 

VI. CONCLUSION 

Hand grasping is one of the most essential hand gestures 
for humans, including post-stroke patient survivors, to 
perform daily tasks. To comprehend and control the 
exoskeleton hand grasping gesture, the relationship between 
sEMG signal value, wrist angle, and hand grip force 
production triggered by the user's intention to grasp an object 
must be clearly understood. WL was chosen for feature 
extraction method in time domain in this study. To clarify the 
concept of force generation in both conditions, 20%, 60%, and 
100% of the MVC level for flexion and extension wrist joint 
angle movement were analysed. As a consequence of the 
experiment procedure and dynamic modelling process, the 
sEMG MVC signal level was determined directly proportional 
to the generation of hand grip force. However, the hand grip 
force signal generated will depend on the wrist angle position. 
It was also determined that the hand grasp force signal 
production became greater when the wrist was in flexion as 
opposed to extension. 

ANN and ANFIS were both dynamic modelling method 
used to analyse the hand grip force estimation. ANN has the 
capability to interpret unstructured data while, ANFIS used 
the strength from ANN and fuzzy to adapt with various 
environments to design a mapping system for exoskeleton 
hand. For the whole exoskeleton hand system, ANN and 
ANFIS needs a similar training and testing data set.  Both 
approaches manage to generate its own dynamic model to 
represent the exoskeleton hand system. When compared to 
measured hand grip force recorded throughout the experiment 
process, ANN outperformed ANFIS by 0.22% absolute error 
with similar settings for both systems. When compared to 
ANFIS, the ANN technique produces a more accurate 
estimation of hand grip force output results. 

The limitation of this study was the small number of 
neurons of ten provided for the ANN and ANNFIS methods. 
Because this paper only focused on a similar number of 
neurons for output comparison, the value of neurons and their 
combination can be varied to produce a variety of possible 
output for the estimation results. Moreover, there are other 
regression method available thay may need to be considered to 
improved estimation output results such as Support Vctor 
Regression (SVR), Linear Regression (LR), Gaussian Process 
Regression (GPR), ensemble and decision tree. 
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