
((IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 14, No. 8, 2023

43 | P a g e

www.ijacsa.thesai.org

Symbol Detection in a Multi-class Dataset Based on

Single Line Diagrams using Deep Learning Models

Hina Bhanbhro
1
, Yew Kwang Hooi

2
, Worapan Kusakunniran

3
, Zaira Hassan Amur

4

Computer and Information Science Department, Universiti Teknologi,

PETRONAS Seri Iskandar, Perak Darul Ridzuan, Malaysia
1, 2, 4

Faculty of Information and Communication Technology, Mahidol University, Thailand
3

Abstract—Single Line Diagrams (SLDs) are used in electrical

power distribution systems. These diagrams are crucial to

engineers during the installation, maintenance, and inspection

phases. For the digital interpretation of these documents, deep

learning-based object detection methods can be utilized.

However, there is a lack of efforts made to digitize the SLDs

using deep learning methods, which is due to the class-imbalance

problem of these technical drawings. In this paper, a method to

address this challenge is proposed. First, we use the latest variant

of You Look Only Once (YOLO), YOLO v8 to localize and detect

the symbols present in the single-line diagrams. Our experiments

determine that the accuracy of symbol detection based on YOLO

v8 is almost 95%, which is more satisfactory than its previous

versions. Secondly, we use a synthetic dataset generated using

multi-fake class generative adversarial network (MFCGAN) and

create fake classes to cope with the class imbalance problem. The

images generated using the GAN are then combined with the

original images to create an augmented dataset, and YOLO v5 is

used for the classification of the augmented dataset. The

experiments reveal that the GAN model had the capability to

learn properly from a small number of complex diagrams. The

detection results show that the accuracy of YOLO v5 is more

than 96.3%, which is higher than the YOLO v8 accuracy. After

analyzing the experiment results, we might deduce that creating

multiple fake classes improved the classification of engineering

symbols in SLDs.

Keywords—Single line diagrams; engineering drawings;

synthetic data; symbol detection; deep learning; augmented dataset

I. INTRODUCTION

An engineering drawing (ED) is an illustration of a
schematic that demonstrates the operation or construction of an
electrical system, procedure, or plant facility [1]. Engineering
designs comprise of technical drawings such as mechanical or
architectural blueprints, electrical circuits, and drawings [2]. In
many different businesses, there is an increasing need for
establishing digital systems for processing and analyzing these
representations [3]. With such a framework, connected
businesses will have the unusual opportunity to make extensive
use of diagrams to direct their future practices.

A single-line diagram uses lines and symbols to represent
the logical flow of power through physical processes and plant
components. Although these components resemble each other
in form and shape, they are highly asymmetrical in nature,
which makes these documents complex [1]. Distinct power
distributions are represented by lines of variable thickness, and
each sign stands for a different component such as a

transformer, generator, motor, switch, etc. [4]. A typical SLD
diagram may have over 50 different symbols, making it an
information-rich visual representation. While placing a
purchase order or even when project teams are scheduling their
work, these drawings are carefully inspected in order to
estimate the numbers of various pieces of equipment [5]. When
symbols on SLD diagrams are functionally different but
visually identical, as in Fig. 1, this process can become
considerably more difficult and complex. As a result,
distinguishing one symbol from another can be both crucial
and difficult. Misreading or omitting any material can also
cause severe internal disagreements and be damaging to the
progress of a project.

Scientists, on the other hand, are looking into solutions for
a power system to transform the conventional power system
that existed before into an intelligent power system. The fusion
of a power system with artificial intelligence is getting closer
and closer as new technologies, like artificial intelligence, arise
[6]. It is a common duty in modern businesses and academia to
include artificial intelligence technology in power system
dispatching software to speed up the process of creating circuit
diagrams for power systems. A fundamental document in the
power system, the principal wiring diagram of the power
station is also commonly needed for viewing and change by the
power system's dispatching users [7]. The current power
dispatching system relies heavily on the work expertise of
dispatchers for the creation and upkeep of station wiring
diagrams, which not only raises the danger of safety mishaps in
the power grid system but also drives up the cost of wiring
diagram maintenance [8, 12]. Therefore, one difficulty facing
the contemporary power sector was how to employ artificial
intelligence technology to automatically build the station
wiring diagram.

Generative models have also undergone significant
progress and have been successfully used in numerous areas.
One of those is the Generative Adversarial Networks (GAN),
which has emerged as a well-known and frequently employed
technique for producing content. Ian Goodfellow first
introduced GANs in 2014 [9]. We will go over our GAN-based
approach to solving the issue of imbalanced classes within the
context of Methods section. Another difficult issue that affects
a wide range of fields, including engineering drawings [10], is
the under-or over-representation of one or more classes of
symbols in the diagrams in the dataset [11].

https://www.scopus.com/affil/profile.uri?afid=60001278

((IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 14, No. 8, 2023

44 | P a g e

www.ijacsa.thesai.org

Fig. 1. A part of single line diagram.

It is logical to presume that construction industries have
these designs for their on-going projects in a readable
electronic format that can be edited with cutting-edge software.
However, many businesses continue to maintain these designs
as paper copies or in digitized form, particularly for their older
projects. Therefore, digitizing these drawings in a way that
makes information extraction simple and accessible, may be
advantageous [13]. This can make it simple to correct previous
designs when the plant's components have been replaced over
time owing to maintenance. As a result, project teams will find
it simpler to keep track of their instrumentation inventory
during the building phase and to create a library of up-to-date
drawings for maintenance during the post-installation phase
with the help of digitized and updated SLD diagrams. The
following restrictions are communicated through the
contextualization and digitization of complicated SLDs:

A. Size

According to an estimate in [11], a typical SLD page
consists of approximately 50 distinct types of shapes including
symbols, connectors, and text. To depict a specific segment of
a power system, it may be necessary to utilize anywhere
between 100 to 500 pages.

B. Asymmetrical Components

Apart from the typical challenges of classical machine
vision such as variations in lighting, scale, and pose, technical
drawings utilize equipment symbols that conform to different
standards across various industries. Consequently, assembling
a precisely labeled dataset that can be employed for symbol
classification is a complex undertaking, as mentioned in
reference [14]. It is crucial to have a comprehensive assortment
of precisely defined symbols that lack symmetry to effectively
employ advanced deep learning methods for symbol
recognition.

C. Connecting Lines

Connecting lines that indicate the logical and physical
relation-ships between symbols are abundant and knotted in
complex SLDs. As a result, it is difficult to apply digitization
techniques based on thinning [15] or vectorizing [15]. The art-
work for line identification are represented by lines of various

styles and thicknesses. Furthermore, sophisticated Engineering
Drawings (EDs) adhere to rule sets for application-based
connectivity. This means that based on a standard that cannot
be stated or inferred from the use of the physical lines
connecting the symbols, two symbols may or may not be
connected. As a result, contextualization is more difficult to
implement than when it is applied to simpler drawings, like
circuit diagrams [16]. This opens up several intriguing options,
such as incorporating human expert knowledge through
human-machine inter-action into a potential solution. Another
avenue would be interactive learning [17].

D. Labels

Symbols, connectors, and other text characters may
overlap; however, symbols and annotations in a variety of
scripts and styles are used to distinguish between symbols
exhibiting comparable characteristics, to indicate connectors,
and to clarify additional information. Symbols with an overlap
in drawing sheets are difficult to separate, as demonstrated by
techniques like those used by Cao et al. [18] and Roy et al.
[19]. Three further challenges have been identified once all of
the text elements have been found: As seen in Fig. 1, various
lengths and sizes are used to represent text strings that describe
symbols and connectors. Additionally, it can be challenging to
connect symbols and connectors to their matching text, and
text interpretation mistakes could lead to some information
being misunderstood.

E. Samples with Inconsistent Occurrence

Inconsistent appearance of symbols within the diagrams is
another major issue towards digitization. Deep learning models
perform better with large amounts of samples, while in SLDs,
symbol frequency is highly imbalanced which creates a class
imbalance problem due to the dominance of the majority
classes over the minority classes. Hence, deep learning models
can be biased towards the majority classes.

A range of methods, especially from the field of machine
vision, must be applied to overcome these obstacles. These
include symbol detection and localization, as well as feature
extraction. The fact that recent advancements in deep learning
and machine vision, particularly in the recognition and
classification of objects, have not been put to the test against
such challenging real-world situations, must be noted [21].

In this article, particularly, the YOLOv8 model for object
identification and MFCGAN for class balancing are thoroughly
examined. To extract symbols from drawing images, this study
aims to use SLDs to create a dataset for model training. The
dataset contains 22 different classes of symbols various shapes
and sizes.

We were unable to locate a study that assesses a significant
amount of deep learning-based detection algorithms that have
been particularly designed for the problem do-main of single-
line symbol identification while taking into account key
variables including Precision, Recall, and F1.

The following are the main contributions of this study:

 Symbols in SLD images are classified using YOLOv8,
the latest variant of YOLO model.

((IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 14, No. 8, 2023

45 | P a g e

www.ijacsa.thesai.org

 Mixed-quality single-line symbols are synthetically
generated using MFC-GAN.

 A GAN-based solution is provided for enhancing the
quantity of minority classes to handle the class
imbalance problem; along with an expansion of the
YOLOv5 training set using newly generated synthetic
data.

 We suggested an experimental setup using MFC-GAN
for creating synthetic images.

 The accuracy of symbol identification and recognition
in Single Line Diagrams (SLDs) is enhanced by using a
YOLOv5-based network for object detection.

According to experiments, the IoU and performance of the
model can be enhanced through the use of synthetic image data
generated using different GANs.

The remainder of this paper is structured as follows: In
Section II, we delve into the landscape of existing research
within the relevant domain, examining both the challenges that
have been encountered and the solutions that researchers have
put forth in this realm. Moving forward to Section III, we
intricately explore the proposed methodology and perform an
in-depth analysis of the dataset. Moreover, within this section,
we provide a comprehensive exposition of the detection model.
The outcomes of our dataset construction and symbol detection
are meticulously presented in Section IV. Subsequently, we
engage in a thorough discussion of the results in Section V.
Lastly, we draw this study to a conclusion in Section VI.

II. RELATED WORK

This section covers recent accomplishments made by the
research community in this domain. We discuss single-line
engineering drawings, different deep learning techniques used
for digitizing the engineering drawings, later we present GANs
and discuss the general architecture and recent advancements
made to improve the performance of GANs.

A. Single Line Diagrams

In various papers, including [1-4], the problem of
recognizing and grouping symbols present in single-line
diagrams (SLD) has been raised. The challenge of digitizing
SLD, where the aim is to summarize the link between the
numerous symbols, served as the inspiration for several of
these works. The study in [22] provides an overview of
numerous strategies created to digitize ED. In earlier research,
including [23-26], symbols were recognized using classifiers
that were traditionally based on machine learning and fed
hand-crafted characteristics.

SLD digitization has notably drawn a lot of business
interest due to the wide range of applications that may be made
from a digital output, such as security evaluation, graphic
simulations, or data analytics [27]. There are certain strategies
developed expressly to handle the digitization of SLDs in the
literature. More than 30 years ago, Furuta et al. [48] and Ishii et
al. [28] published research on developing software to enable
fully automated P&ID digitization. These techniques are
currently ineffective due to incompatibility with hardware and
software requirements. About ten years later, Howie et al. [29,

30] suggested a semi-automatic technique for localizing
symbols of interest using the templates of the symbols as input.
Gellaboina et al.'s [49] description of the most recent method
for symbol identification uses an iterative learning strategy
based on recurrent training of a neural network (NN) with the
Hopfield model. This method was developed to pinpoint the
most frequently occurring symbols in the artwork that also
displayed a prototype pattern. Deep learning models were
utilized [31] to build one-line diagrams automatically while
generating core power systems.

B. Symbol Detection Using YOLO

Object detection can identify the sort of object present in an
image or video and pin-point its location at the same time. In
photos and videos, object detection expresses the location
information as X and Y coordinate values. Additionally, the
width and height values—which represent the object's size—
are utilized as label information. Typically, the width and
height data are expressed as bounding boxes using the X and Y
coordinates.

Recent studies have employed deep neural networks to
perform symbol spotting. For instance, researchers in [34]
employed the YOLO 32, [33] model to identify symbols in
floor plan diagrams. In another study [10], symbol detection
was reformulated as a semantic segmentation problem, which
led to the development of a pixel-level approach for symbol
detection. Researchers are using YOLO for the goal of symbol
recognition and classification as a result of the one-stage
detection method's growing popularity and success [11]. To do
this, the authors of [12] suggested transforming a construction
image into a region adjacency network, where each node
represented a connected component in the image. These nodes
were then categorized using a YOLO. The YOLO and CNN-
based technique was put forth in [13] and used to categorize
symbols in [14].

Recent research has confirmed the effectiveness of YOLO
variants in detecting complicated engineering components [35].
For instance, one-line symbols in substation diagrams were
localized and categorized using YOLOv3. The model correctly
identified 97% of the symbols. YOLO algorithms
demonstrated encouraging results in detecting the symbols in
electrical circuits despite the lack of suitable datasets [20].
Additionally, YOLO variations were used to accurately
classify hand-drawn electric symbols with a 95% accuracy
[11]. To the best of our knowledge, the work detailed here is
the first attempt at localizing and matching symbols in a zero-
shot method despite the very extensive literature that already
exists in this field.

Since 2012, two primary types of deep learning-based
object detection models have emerged: one-stage detectors and
two-stage detectors, as described in research [32].
Understanding the concepts of region proposal and
classification is essential to comprehend the distinction
between the two categories. Region proposal refers to an
algorithm that quickly identifies possible object locations,
while classification is the process of categorizing objects based
on their specific type. Although two-stage detectors are better
at accurately detecting objects, their slow prediction time
restricts their real-time detection ability. To address this issue,

((IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 14, No. 8, 2023

46 | P a g e

www.ijacsa.thesai.org

one-stage detectors have been proposed that perform both
classification and region proposal simultaneously, resulting in
faster object detection. The one-stage detector is a technique
that produces results by simultaneously executing classification
and region proposal.

As depicted in Fig. 2, upon inputting the image to the
model, the Convolutional Layer is employed to extract its
features and perform classification. Simultaneously, a region
proposal is conducted to generate the output. Models like
YOLO, RetinaNet, RefineDet, etc. are good examples [37].

Fig. 2. One-stage model for object detection.

One of these one-stage detectors is YOLO, which
integrates the region proposal and classification stages into a
single operation. This means that it predicts the position and
type of an object simultaneously by treating the bounding box
and class probability as a single problem. YOLO divides the
image into grids of a predetermined size to forecast the
bounding box for each grid, and then trains the bounding-box
confidence score and grid cell class score, as mentioned in
reference [38].

The YOLO processing procedure is depicted in Fig. 2.
First, an SxS grid area is created from the input image. The
number of bounding boxes anticipated in each grid cell is equal
to the number of bounding boxes that correspond to the area
where an object is located. This can be denoted as (x, y, w, h),
where (x, y) denotes the center point coordinates of the
bounding box, and (w, h) denote its width and height.

Second, the confidence, which stands for the box's
dependability and is determined similarly to Equation (1). The
IoU (Intersection over Union) is used to determine it by
computing the ratio of the overlapping area between the
predicted and ground truth bounding boxes divided by the
probability Pr(Object), which represents the likelihood of an
object being present in the grid.

pred
Pr(Object) × IoU

truth
 (1)

The probability of C classes is then determined for each
grid and Equation (2) is shown.

pred
(Classi | Object) (2)

In this instance, what is strange is that YOLO does not
classify the number of classes (background) as an input to a
neural network model, although the existing Object detection
does [38]. YOLO divides the input image into grids in this
manner, performing classification and bounding box
calculations for each grid at the same time.

C. Synthetic Data Generation Using GANs

Several studies in the past decade have explored the
challenge of identifying symbols in architectural floor plans.
To overcome the scarcity of training data available for neural
networks, the authors recommended employing a Generative
Adversarial Network (GAN) to generate synthetic training
data.

Ian Goodfellow first introduced generative adversarial
networks (GAN) in 2014. (Goodfellow et al., 2014). These are
regarded as generative models that can produce original
content. The Generator (G) and the Discriminator (D) are two
competing models (such as CNNs, neural networks, etc.) that
make up GANs [39]. The discriminator is a classifier that gets
input from both the generator and the training set (genuine
content). (Fake input). The discriminator will learn how to
differentiate between real input samples and bogus input
samples during the training phase. However, the generator is
trained to provide samples that accurately reflect the
fundamental properties of the original data. (Replicating
original content). The GAN model is shown in Fig. 3.

Fig. 3. Architecture of generative adversarial networks.

Equation (3) demonstrates that the value function is
employed to perform adversarial training of both models G and
D.

minD maxG V(D, G) = Ex~pdata(x)[logD(x)] + Ez~pz

(z)[log(1 − D(G(z)))] (3)

Where x is a sample from the real training data, Pdata (x) is
the probability distribution over the real data, the probability
distribution over the noise vector z is referred to as Pz, and the
outcome of the generator function G (or generated images) is
denoted as G(z). GANs are at the forefront of image generation
quality, as per [39].

GANs have been effectively used to solve a variety of
issues, including speech synthesis, segmentation, and image
production [40]. They have also been successfully used in
recent years to address issues with class imbalance. The class
mismatch is widespread throughout numerous industries,
including banking, security, and health [6]. The issue arises
when one or more classes are unequally or excessively
represented in the dataset. When dealing with imbalanced
datasets, a conventional supervised learning algorithm tends to
favor the majority class [41].

By including conditional probabilities in the value function,
supervised GANs offer an improvement over the basic GAN
architecture. This gives the user more control over the samples
that are created and introduces the diversity that is required to
supplement synthetic input data for datasets with class

Convolutional

Layers Feature

Maps

Multi-class

Classification

Bounding Box

Regression

Input

Image

Feature

Extraction

Feature

Maps

Output

For each grid or spatial

location

G D

Class 1

Class 2

Class n

Real /

Fake
X

C

Z G

(z,

((IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 14, No. 8, 2023

47 | P a g e

www.ijacsa.thesai.org

imbalance. Examples of this kind are AC-GAN [10], CGAN
[9], and vanilla GAN [8]; even though the literature
demonstrates that these models, particularly in extreme
situations, can be significantly impacted by class disparity [11].

III. RESEARCH METHODOLOGIES

We present our method for recognizing the end-to-end
symbols from intricate engineering drawings in Section III A.
The dataset utilized for the tests will be covered in detail in the
subsection that follows. Data exploration and pre-processing
will be part of this. The specifics of our suggested approach to
dealing with a class imbalance in these drawings are provided
in Section IV.

Machine learning is commonly used to classify symbols
and texts. Fig. 4 shows a conceptual model for digitizing
engineering drawings that includes the essential phases. Such a
framework will be extremely useful in fields where schematics
can be turned into knowledge.

We determine the characteristics and variety of the created
minority samples for our image-generating experiment after
each run. In classification studies, we add created minority
samples from trained models to the training data. (MFCGAN).
The classification performances on the minority classes are
then provided after a YOLO classifier has been trained on the
expanded dataset.

A. Overview of Symbol Detection Framework

We first look for the areas of an engineering diagram that
might contain interesting symbols and attempt to extract all the
components from drawing. The next step is to locate and count
the interesting symbols that originate from these zones of
interest. The vast array of shapes and structures that these
symbols emerge in drawings is the task's main problem.
Furthermore, as stated in Section I, we cannot anticipate
identical depictions of a specific component on all drawings.
Additionally, there are a great number of different components
and elements that are frequently used in these diagrams. As a
result, it is not viable to use a fully supervised technique,
training thoroughly to recognize and classifying every single
type of object that could be seen in such images.

Information about the symbols that appear in an
engineering drawing can be found in a variety of ways,
including:

1) A table of legends listing the names of the components

represented by the different symbols.

2) A table with numbers that represent the index of a

component and the name of the object it represents.

3) There is no tabular data linking the names of objects to

the appropriate diagrams.

In the current study, we focus on the first form of drawing,
in which the component name and drawing image are both
provided. We go into great detail on the various parts of the
suggested framework in the sections that follow.

Fig. 4. Schematic of model for digitization of SLDs.

B. Summary of SLD Dataset

For the study in this paper, we chose to employ Single Line
Diagrams (SLDs), as shown in Fig. 1. The engineering partner
gave a set of 800 sheets for review. These diagrams contain a
variety of symbols of varied sizes and dissimilar
(asymmetrical) nature, as shown in Fig. 5.

The dataset is suitable for evaluation because the SLDs
have a variety of attributes. The numerous electrical system
components and connectivity information can be seen
schematically represented on the SLD sheets. It is a
representation of electrical apparatus and power flow
movement, frequently in the form of symbols (represented as
various kinds of lines).

In many industries, these diagrams can be found as paper
documents or digital photographs. Evaluating and analyzing
these materials requires a lot of experience, knowledge, and
time [15]. Furthermore, misreading these publications can have
disastrous repercussions. For instance, if an engineer needs to
modify a wire in an electrical system after installation, they
must first verify the associated SLD diagram and decide what
safety precautions to take. Therefore, it's important to
comprehend these designs correctly.

Fig. 5. Example of asymmetrical symbols found in SLDs.

((IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 14, No. 8, 2023

48 | P a g e

www.ijacsa.thesai.org

The original data's big SLD sheets are 7500x5250 pixels in
size. To expedite training, we divided the sheet into a 6x4 grid,
resulting in 24 patches of sub-images that were minuscule in
comparison to the original images (1250×1300).

The data generated by the annotation is kept in a file that
corresponds to the 22 different classes. The width and height of
the symbols that the bounding boxes enclose, as well as the
center x and y values of the bounding boxes, were recorded as
data. The collection of 800 images includes 12,500 samples,
which represent 22 different types of symbols. The initial
sample is severely imbalanced, as shown in Fig. 6.

A deep learning model needs to be fully annotated to be
ready for training. To do this, we used the LabelBox program
to annotate the set of SLD photos, as shown in Fig. 7. Twenty
two different symbols in the total collection were annotated.
Using the LabelBox tool to record the classes of the associated
symbols and their locations is a simple approach for annotating
a diagram.

In some instances, the distinctions between the symbols can
be very significant. For instance, the dataset contains 1340
instances of generator symbols but only 99 and 117 instances
of each disconnect and load symbol. Although delta and
capacitor are present in the sample more than 800 times each,
inductor and voltmeter are only present 203 and 212 times
respectively. Three symbols that were significantly
underrepresented overall were not included in the first trial (i.e.
appears only once or twice in split sets).

Fig. 6. Sample distribution in the original SLD dataset.

Fig. 7. An SLD annotated using labeling tool.

C. Symbol Detection

The YOLO approach was favored due to two key reasons.
Firstly, it has a simple architecture that enables the prediction
of multiple bounding boxes and class probabilities
simultaneously using a single convolutional neural network.
Secondly, YOLO is known for its high speed in comparison to
other object detection techniques, which is essential for
practical use in testing SLDs that contain an average of 50
engineering symbols.

1) YOLOv8 architecture: At the time this paper was being

written, Ultralytics was actively working on YOLOv8 as they

addressed community concerns and added new features. Glenn

Jocher, the creator of YOLOv8, also discussed the developer-

friendly features of YOLOv8 [54]. YOLOv8 comes with a

CLI that enables training a model easier, in contrast to other

models where chores are separated across numerous

executable Python files. The addition of new convolutional

layers and YOLOv8's Anchor Free Detection are further

features of the software.

Since they may represent the distribution of the boxes from
the target benchmark but not the distribution of the custom
dataset, anchor boxes were a notoriously difficult component
of older YOLO models. YOLOv8 is an anchor-free model, in
contrast. In other words, rather than predicting an object's
offset from a known anchor box, it predicts the object's center
directly. To expedite Non-Maximum Suppression (NMS), a
challenging post-processing procedure that sorts through
candidate detection following inference, anchor-free detection
decreases the number of box predictions [51, 55].

Using Equation (4), the bounding box's position is
determined:

P x,y *
 (4)

According to Equation (4), x and y denote the yth bounding
rectangle of the xth grid. The probability value assigned to the

yth bounding box of the xth grid is ∪. If the yth bounding box

contains an object, then Px,y is assigned a value of 1;
otherwise, it is assigned a value of 0. The IoU between the
predicted class and the actual ground truth is referred to as the
IoUgroundtruth, and a greater IoU typically corresponds to
more accurate predicted bounding boxes.

The bounding box, categorization, and confidence loss
functions are combined to form the YOLOv8 loss function.
The total loss function of the YOLOv8 is represented by
Equation (5) [42]:

loss
YOLOv5 = lossboundingbox + lossclassification +

lossconfidence
(5)

The stem's primary construction block, C2f, took the place
of C3, and the first 6x6 conv is now a 3x3. Below is a diagram
summarizing the module, where "f" represents the number of
features, "e" represents the rate of growth, and CBS is a block
made up of a conv, a BatchNorm, and a SiLU later. All of the

0

500

1000

1500

F
u
se

C
ir

cu
it

 B
re

ak
er

D
ra

w
o
u

t…

C
ap

ac
it

o
r

G
en

er
at

o
r

T
ra

n
sf

o
rm

er

V
o
lt

m
et

er

A
m

m
et

er

D
is

co
n
n
ec

t

S
w

it
ch

O
C

B

C
.T

G
ro

u
n
d

D
io

d
e

D
ra

w
o
u

t
 F

u
se

In
d
u
ct

o
r

D
el

ta

R
es

is
to

r

A
ir

 C
ir

cu
it

…

Ir
o

n
-c

o
re

…

L
o
ad

Original Sample Distribution

((IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 14, No. 8, 2023

49 | P a g e

www.ijacsa.thesai.org

bottleneck's outputs are concatenated in C2f. C3 merely
utilized the output of the previous bottleneck.

The first conv's kernel size was changed from 2x2 to 3x3,
but the bottleneck remains the same as in YOLOv8. We might
infer from this data that YOLOv8 is beginning to return to the
ResNet block that was established in 2015. Features are
directly concatenated in the neck without being forced to have
the same channel dimensions. By doing this, the parameters
count and tensor size as a whole are decreasing. YOLOv8
enhances photos while you're training online. The model views
a slightly different variety of the images it has been given at
each epoch.

2) Multi-fake class generation: Class imbalance has been a

subject of extensive research, and various techniques have

been developed, ranging from simple data augmentation and

sampling to more sophisticated approaches like GAN [56]. In

this study, we are utilizing MFC-GAN to generate more

classes to handle the imbalance problem.

Our goal is to adopt a method similar to the MFC-GAN

approach introduced in [57] to tackle the problem of class

imbalance in the dataset of engineering symbols, specifically

at the classification level.

The very little and occasionally subtle differences between
the various classes of symbols led to the selection of this
paradigm. We may train the discriminator using the MFC-
GAN model to categorize both actual and false symbols,
which allows for more precise discrimination across cases, as
seen in Fig. 8.

By conditioning the generator on attribute labels, control
generation was accomplished. Numerous studies involving
various sample sizes in the minority classes, notably the goatee
and eyeglass classes, were conducted. The MFC-GAN model
is trained from scratch for each run, and samples are created
following the end of the training.

Fig. 8. Framework design for multi-fake class GAN.

The discriminator network for this study is built with four
convolutional layers with two-stride spacing and uses batch
normalization in between layers. Leaky ReLu with an alpha of
0.2 is used to activate all convolution layers, and the Sigmoid
function is employed as the activation function in the final
layer.

The classifier model generates a 2xN soft-max output for N
classes and shares the discriminator layers with it. The
generator is constructed using five transpose convolution layers

with a stride of two and one linear layer. All the layers except
the last one are activated using Leaky ReLu, and the final layer
is activated using a sigmoid function. Batch normalization is
applied between adjacent layers.

The generator of the GAN model takes a noise vector with
a size of 100 as input along with symbol label encoding, which
is similar to the input of most GAN models. The label
encoding is important for class-specific generation, which is a
significant aspect of our experiment.

The generator produces a 64x64 image of greyscale
symbols. A batch size of 100 and a learning rate of 0.001 were
used, which were selected through experimentation. Both the
discriminator and the generator employed spectral
normalization. Eq. (6), (7), and (8) will be used to train the
suggested model.

Ls=E[logP(S=real|Xreal)]+E[logP(S=fake|Xfake)] (6)

Lcd=E[logP(C=c|Xreal)]+E[logP(C′ =c′|Xfake)] (7)

Lcg=E[logP(C=c|Xreal)]+E[logP(C=c|Xfake)] (8)

Where Ls denotes the chance that the sample is real or
fraudulent and is used to determine the sampling loss. The
losses for classification of both the generator and discriminator
are calculated using Lcd and Lcg. The set of created images is
called Xfake, and Xreal represents the training data.

3) Architecture of YOLOv5: In this study, the YOLOv5

algorithm was utilized, which is one of the most recent

variations of the YOLO algorithm [44]. This algorithm is a

speedy and effective system for identifying objects and

locating them instantly. Since the symbols present in SLDs

have a high degree of similarity, rapid detection is also

necessary, which the YOLOv5 algorithm can fulfill. The

system was built using the PyTorch deep learning framework,

which has excellent detection performance and has simplified

the process of training and testing specialized datasets. The

YOLOv5 algorithm comprises three components: the head, the

neck, and the backbone [45].

For our investigation, we opted to utilize the YOLOv5
detection model because of its straightforwardness and
transparency. YOLOv5 created CSPDarknet, which formed the
core of the network [58], by combining Darknet with the cross-
stage partial network (CSPNet) [43]. CSPNet addresses the
issue of recurrent gradient information in large-scale
backbones by integrating gradient changes into the feature
map, which decreases the model's parameters and FLOPS
(floating-point operations per second). This ensures inference
speed and accuracy while also reducing model size, which is
crucial for accurate and speedy recognition of sperm cells.
Furthermore, the YOLOv5 incorporates a path aggregation
network (PANet) [59] as its neck to improve information flow.
PANet employs a novel feature pyramid network (FPN)
architecture with an enhanced bottom-up method-ology to
increase low-level feature propagation. Adaptive feature
sharing connects the feature grid to each feature level, ensuring
that the downstream subnetwork receives meaningful data from
every feature level. In addition, PANet enhances precise

((IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 14, No. 8, 2023

50 | P a g e

www.ijacsa.thesai.org

localization signals at lower levels, considerably improving the
object's location accuracy. The head of YOLOv5, the YOLO
layer, generates three different sizes of feature maps to enable
multi-scale prediction, allowing the YOLO model to handle
small, medium, and large objects [58].

The CSPNet provides the framework for this algorithm.
Because of the simplified model of CSPNet, fewer
hyperparameters and FLOPS are produced, and the
disappearing and ballooning gradient issues caused by complex
neural networks are addressed. These enhancements improve
the effectiveness and accuracy of object recognition inference.
CSPNet has various features, including multiple convolutional
layers, three convolutions in four CSP blocks, and spatial
pyramid sharing. The CSPNet is responsible for extracting
features from an input image, pooling and convolving that data
to create a feature map. Consequently, in YOLOv5, the
backbone serves as a feature generator [60].

The neck or core segment of YOLOv5 is referred to as the
PANet. Its main function is to collect all the features obtained
from the backbone, maintain them, and send them to the deeper
layers to perform feature fusions. These feature fusions are
then passed on to the head for object recognition, allowing the
output layer to be aware of the high-level characteristics.

Fig. 9. Network architecture of YOLOv5 model.

The YOLOv5's head is responsible for identifying objects.
It places bounding boxes and a class probability score around
the target item, which is determined by 1x1 convolutions. The
overall architecture of YOLOv5 is depicted in Fig. 9.

The position of the bounding box is established using
Equation (9):

 = P x,y *

 (9)

Equation (9) demonstrates that the yth bounding box of the
xth grid is defined by x and y. The yth bounding box of the xth
grid has probability value. Px,y equals 1 when a subject is
present within yth bounding box; otherwise, it is equal to 0.
The IoUgroundtruth is the IoU that exists among the predicted
class and the actual data. Higher IoUs are related to more
accurate predicted bounding boxes.

The loss function of YOLOv5 is produced by merging the
bounding box, classification, and confidence loss functions.

The combined loss function of YOLOv5 is shown in Equation
(10) [46].

loss
YOLOv5 = lossbounding box + lossclassi f ication +

losscon f idence (10)

Equation (11) is used to determine the lossboundingbox.

lossbounding box = λif

 , hg(2-kakna)[(xa-
)

2
 + (ya-

)

2
+ (wa-

)
2
+

(ha-

)
2
] (11)

Equation (11) uses h' and w' to denote the width and height
of the target item, while xa and ya denote the coordinates of the
target object in an image. Lastly, the indicator function (λif)
shows whether the bounding box contains the target object.

The lossclassification method is shown in equation (12):

lossclassi f ication = λclassification

 CЄc1 La (c) log

(LLa(c)) (12)

lossconfidence is determined using Equation (13):

lossconfidence = λconfidence

(ci - cl)
2
 + λg

(ci - cl)

2
(13)

In Equations (12) and (13) show the symbols that represent
confidence and signify the category loss coefficient λ,
classification loss coefficient, and confidence score.

IV. RESULTS AND EXPERIMENTS

This section can be separated into two experiments and
should present a clear and accurate depiction of the
experimental findings, their analysis, and the conclusions that
can be drawn from the experiments.

There were two experiments done. The initial test was
created to assess a complete method for identifying symbols in
engineering drawings. In this context, the aim is to enhance the
overall efficiency of analyzing a collection of drawings by
detecting and identifying symbols, which is an important task
as symbols make up a significant portion of these drawings.
This can aid in completing other tasks, such as detecting text,
pipelines, etc. The second experiment is different from the first,
as it concentrates on using GAN-based methods to deal with
the problem of class imbalance.

A. Symbol Detection Using YOLOv8

The SLD sheets in our dataset had a size of about
7500x5250 pixels. To avoid using computationally expensive
training data, the SLDs were divided into 24 patches by
multiplying their original width by 6 and their original height
by 4. The resulting patch size was approximately 1250×1300
pixels. The annotations for the entire SLD were used to retrieve
data for each patch's annotations, as described in the preceding
section.

Symbols that spanned multiple patches were excluded from
the training phase. After extensive testing, the third version of
the YOLO framework was selected as it showed better
detection rates for small objects compared to the previous
versions. It should be emphasized that, when compared to the

((IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 14, No. 8, 2023

51 | P a g e

www.ijacsa.thesai.org

entire image size, the technical symbols in our dataset are
relatively small.

To conduct the experiment, the researchers utilized a recent
version of YOLO architecture. Initially, they configured the
total number of classes to be 22 in all three YOLO layers, and
then adjusted the number of filters to 3 (referred to as Classno
5), where Classno represents the complete number of classes
present in the dataset.

The dataset was divided into two sets: training set with 640
SLDs and test set with 160 SLDs, with a ratio of approximately
80:20. A pre-trained YOLO network was used and fine-tuned
on our dataset by adjusting all layers. YOLO was implemented
using PyTorch. To enhance object detection for various object
sizes, it was observed that changing the input size during
training is effective [47]. In this study, the network input size
was modified to 416x416 after every 10 batches, and the
training stopped after 10,000 batches. The learning rate was
0.001, and the batch size was 64.

During the testing phase, the model input size was
increased from 416×416 to 2400×2400. This enabled us to
perform symbol detection on the original SLD images instead
of integrating detection from the SLD patches, thereby
simplifying the symbol detection process for an entire SLD
diagram in one step. To evaluate the model, we experimentally
set the Intersection over Union (IoU) threshold to 0.5 and
compared the detected symbols with the ground truth. A
Python-based front-end was developed utilizing OpenCV and
other libraries to analyze and display manual errors.

B. Training Evaluation of YOLOv8

1) Computer hardware configuration: GPU computing is

a preferred choice for processing deep learning on a PC [50],

and therefore, strong hardware support is required for deep

learning networks. The training and generation processes were

conducted on a GPU workstation that ran on Linux, CUDA

11.1, Python 3.8, and PyTorch 1.8.0, and was equipped with

an Nvidia A40 4 48 GB GPU.

C. YOLOv8 Detection Results

The training phase produced an accuracy of 96%, while the
testing phase produced an accuracy of 95.9%, with 11987 out
of 12500 symbols in the test set correctly detected and
recognized. The loss matrix for the training and validation sets
indicates that the most of the instances of the classes were
identified and detected accurately, indicating that symbols with
sufficient training instances were correctly identified. An
example output from the proposed methods is shown in Fig.
10, with different symbols highlighted in different colors.

In this case, the identified symbols were labeled with
numbers, and the labels predicted by the models were noted
down to compare them with the actual labels later. These
symbols comprised various electrical components like
switches, generators, motor, re-lays, inductors, as well as
input/output labels such as "label_to" and "label_from".

Table I in the paper contains details about the number of
symbols in both the training and testing datasets, with columns
labeled "No. of Training Samples" and "No. of Testing

Samples". It also displays the accuracy achieved for each class
in the testing set, along with the number of symbols that were
correctly identified, listed under "Correctly Detected Samples"
or "Class Accuracy".

Fig. 10. Symbol detection using YOLOv8.

TABLE I. YOLOV8 DETECTION RESULTS BASED ON ORIGINAL SLD

DATASET

Symbols
No. of Training

Samples

No. of Testing

Samples

Class

Accuracy

Fuse 400 80 100%

Circuit Breaker 300 52 100%

Drawout

Circuit Breaker
600 190 99%

Capacitor 601 20 99%

Generator 940 400 100%

Transformer 305 50 97%

Voltmeter 182 20 94%

Ammeter 550 190 100%

Disconnect 89 10 94%

Switch 501 115 100%

OCB 509 290 100%

C.T 309 80 100%

Ground 515 140 100%

Diode 310 30 98%

Drawout Fuse 679 110 100%

Inductor 185 18 98%

The results of the study show that most instances (11987
out of 12500) were accurately detected and identified. Fig. 10
displays different symbols from various SLD diagrams and
how they can be accurately recognized regardless of their
orientation. Some symbols, such as transformers, OCB, C.T,
ground, and delta components, have various orientations, but
the suggested approach can correctly detect and identify them.
Even in situations where the text overlaps, resistors and ground

((IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 14, No. 8, 2023

52 | P a g e

www.ijacsa.thesai.org

symbols are accurately detected, demonstrating the approach's
resilience to innate visual issues, at least in this context, as
opposed to conventional methods.

The round-shaped motor symbol in the testing set was
misclassified as a generator symbol in all five instances due to
their similarity. It is expected that increasing the number of
training examples for this symbol, as well as other symbols in
the majority class (such as switch, relay, C.T, inductor,
voltmeter, load, etc.), would improve their detection rates.

To conclude, based on the results presented in Table I, it
can be inferred that the detection rate for the symbols load,
resistor, and motor was very low. This could be attributed to
the fact that there were only a few training samples for these
symbols. The complexity of the problem notwithstanding, the
average accuracy of the remaining 22 symbols in the dataset
was above 95%, which is a positive result, although these
symbols were excluded.

D. MFC-GAN for Sample Generation and Symbol Detection

The purpose of this study is to evaluate a GAN-based
model that can tackle the class imbalance problem in the
dataset, which is a classification problem as opposed to a
recognition task like in the first experiment. The main aim of
this experiment is to utilize the MFC-GAN model to generate
more symbols, which can then be added to the training set to
improve classification accuracy.

Experiment 2 made use of a dataset that was very similar to
the one utilized in Experiment 1, with all symbols being
resized to 64x64 grayscale images. The problem was framed as
a supervised learning task, where the goal was to learn a
function f(x) that maps a given engineering symbol instance
(xi) to its corresponding class (yi). In this case, the 22 symbols
in the dataset were represented as a discrete set of classes
denoted as Y, where yi belongs to Y. The dataset suffered from
severe class imbalance, as previously mentioned, with some
instances such as the angle choke valve being present in less
than 0.01% of the dataset.

In this experiment, the MFC-GAN model was employed in
two stages, namely the GAN training stage and the
classification stage for this experiment. The purpose was to
address the issue of class imbalance in the dataset. The MFC-
GAN model was initially trained using all the samples in the
dataset, with a focus on the symbols with the least
representation. These symbols included fuse, circuit breaker,
drawout circuit breaker, capacitor, generator, transformer,
voltmeter, ammeter, disconnect, and switch. The numbers of
occurrences of these symbols in the training set were 48, 344,
790, 1340, 821, 355, 212, 740, 99, and 616 respectively. The
model underwent training only once on this dataset, and the
generated samples were obtained after the training. To improve
the learning of minority instance structure while training, the
less represented classes were resampled.

Using the MFC-GAN model trained on the least
represented symbols in the dataset, symbols from the minority
class were generated. Eight symbols with the least
representation were selected. To create a balanced dataset, 80%
of the original dataset was used for training, and the remaining
20% was kept for testing. The artificially generated symbols

were added to the training set, providing more than 4,000
additional synthetic samples for each minority class. This
allowed the dataset to be rebalanced by increasing the
prevalence of the least represented symbols.

Our goal is to evaluate the effectiveness of the synthesized
symbols by comparing the performance of a classification
model trained before and after the inclusion of these sym-bols
in the training set.

The experiment employed a four-layer CNN classification
model, consisting of three convolution layers with 32, 64, and
128 outputs, respectively. The kernel sizes for these layers
were 3x3, 2x2, and max-pooling. The fourth layer was a fully
connected layer with 256 units, which represented the 22
symbol classes, and fed into a 22-way Soft-max out-put. The
model was trained using SGD with 64 batches and a learning
rate of 0.001. The model's classification performance was
assessed using standard measures like true positive rate,
balanced accuracy, G-mean, and F1-Score, with the aim of
comparing the model's performance before and after
incorporating the generated symbols into the training dataset.

1) Results: Fig. 11 displays a comparison between the

original symbols in the diagram and the symbols generated by

the MFC-GAN model.

Fig. 11. Original SLD samples compared with MFC-GAN generated samples.

The comparison between the MFC-GAN generated
symbols and the original symbols of the diagram is depicted in
Fig. 11. The generated symbols by MFC-GAN were found to
be more accurate and precise compared to symbols generated
by other methods. The generated samples had clear symbol
traits and distinct categories formed in each instance.
Moreover, these high-quality samples resulted in an improved
performance of the classifier. For example, Table III shows
that for the angle disconnect, which had only 99 instances of
the class, the accuracy improved from 0 to 94%. Similarly,
seven out of eight minority classes demonstrated similar
improvements. However, the MFC-GAN model did not
improve the baseline in the load and inductor classes. It was
observed that certain symbols such as OCB, capacitor,
voltmeter, and ammeter exhibited significant similarity despite
being uniquely generated, which hindered the classifier's
ability to classify the load and inductor classes. This

((IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 14, No. 8, 2023

53 | P a g e

www.ijacsa.thesai.org

observation was further supported by the low precision data in
Table III for these classes.

Fig. 12. Sample distribution in MFC-GAN generated dataset.

In this study, MFC-GAN models were able to produce
occurrences of minority classes that were significantly
underrepresented in the dataset, as demonstrated in Fig. 12.
Both subjective and objective methods were used to evaluate
the generated samples, including an assessment of the
classifier's performance before and after incorporating the
samples into the training sets. The results showed an
improvement in performance across several commonly used
evaluation parameters. However, it should be acknowledged
that the class imbalance issue can only be addressed to some
extent by MFC-GAN, and other strategies may need to be
explored and utilized.

The study categorizes the outcome of classification
predictions into four groups based on the relationship between
the predicted output and the actual value: True Positive (TP),
True Negative (TN), False Positive (FP), and False Negative
(FN). To assess the efficacy of defect detection, the study
calculates the precision, recall, and F1 score of the model for
different types of faults. Precision rate, which measures the
accuracy of detection findings, is computed by dividing the
number of symbols expected to be positive by the total number
of symbols predicted to be positive. Recall rate, which gauges
the thoroughness of detection findings, is calculated by
dividing the number of samples expected to be positive by the
total number of samples that actually have a positive value.
Precision and recall are given in Equations (14) and (15):

Precision =

 (14)

Recall =

 (15)

To evaluate classification problems, it is essential to take
into account both the accuracy of identification and the
completeness of detection. The model is evaluated using the F1
score, which considers both precision and recall. Equations
(16) and (17) express accuracy as the number of symbols that
are correctly identified.

F1-score =

 =

 (16)

Accuracy =

 =

s (17)

The results of the detection data are shown in Table II. The
attributes represent the actual class, and each row represents
the predicted category. The total number of symbols for each
category is calculated by adding up the numbers in each
column. The predicted category and the total number of
predicted symbols for that category are shown in each row. Our
proposed method can accurately detect the majority of single
line-based engineering symbols. In this study, the precision of
symbol detection for all types is over 95%, the average recall
rate is 93.67%, and the F1 score is above 0.9. The average
frame detection time is 0.074 seconds, while the average recall
and precision rates are 90.67% and 0.074 seconds,
respectively.

TABLE II. SYMBOLS GENERATED USING MFC-GAN

Symbol

Name
Symbol

Original

Instances
Generated Instances

Fuse 480 2380

Circuit

Breaker
 344 2400

Drawout

Circuit
Breaker

 790 1800

Capacitor 821 2011

Generator 1340 2219

Transformer 355 2200

Voltmeter 212 2587

Ammeter 740 2500

Disconnect 99 1900

Switch 616 1800

OCB 799 1800

C.T 389 2178

Ground 655 2100

Diode 340 2291

Drawout

Fuse
 589 2408

Inductor 203 1790

Delta 840 1990

Resistor 700 2455

Air Circuit

Breaker
 780 1870

Iron-core

Inductor
 750 1950

Load 117 1701

Motor 541 1870

0
500

1000
1500
2000
2500
3000

F
u
se

C
ir

cu
it

…

D
ra

w
o
u

t…

G
en

er
at

o
r

C
ap

ac
it

o
r

T
ra

n
sf

o
rm

er

V
o
lt

m
et

er

A
m

m
et

er

D
is

co
n
n
ec

t

S
w

it
ch

O
C

B

C
.T

G
ro

u
n
d

D
io

d
e

D
ra

w
o
u

t
 F

u
se

In
d
u
ct

o
r

D
el

ta

R
es

is
to

r

A
ir

 C
ir

cu
it

…

Ir
o

n
-c

o
re

…

L
o
ad

M
o

to
r

Sample Distribution

((IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 14, No. 8, 2023

54 | P a g e

www.ijacsa.thesai.org

V. DISCUSSION

This section may be divided into two subsections which
provide comparisons and conclusive remarks on the
experiments.

A. Comparison with Different Data Augmentation

Techniques

Table II displays the frequency of the different classes in
both datasets. After generating synthetic SLD images using
MFC-GAN, it can be observed that the new samples are
approximately balanced. However, to address the issue of class
imbalance, the original dataset could be improved by including
additional distinct and separate photos.

TABLE III. YOLOV5 CLASSIFICATION PERFORMANCE OF SYMBOLS ON

AUGMENTED DATASET

Metric

S
w

it
c
h

R
e
la

y

M
o

to
r

G
en

er
a

to
r

L
o
a

d

In
d

u
c
to

r

F
u

se

R
e
si

st
o
r

Precision 1.00 1.00 0.85 0.89 1.00 1.00 1.00 1.00

Recall 0.94 0.89 0.92 1.00 1.00 0.90 0.91 0.87

F1-score 0.89 0.94 0.91 0.95 0.88 0.90 0.92 0.91

Accuracy 1.00 0.98 0.99 1.00 1.00 1.00 1.00 1.00

We conducted an experiment to test the accuracy and
performance of YOLOv8 in various conditions and
configurations using 800 images, and an example of the
detection results can be seen in Fig. 13. The accuracy testing
and performance of the experiment using images from our
datasets are displayed in Table IV. YOLOv5 is generally more
accurate than its recent version. Group 2, which is the
augmented dataset, had the highest average accuracy of 96%
when using YOLOv5, with only five detection errors. YOLO's
performance can be improved by utilizing a large dataset that
includes both real and synthetic images generated by GANs.
When a deep learning-based method is trained on a small and
insufficient dataset, it may result in overfitting and difficulties
in mapping the object [52]. Adding noise or generating fake
images during training can make the process of learning the
input image from the output image easier, reducing general
errors, and enhancing the training component [53]. Thus, to
improve item identification accuracy, it is necessary to include
synthetic images in addition to actual photographs.

B. Missed Detection

Table V presents the outcomes of the evaluation of the
model on the SLD components dataset, revealing that there
were a total of 52 instances where the SLD components were
either absent or wrongly classified as some other symbols. Out
of these occurrences, eight symbols were misclassified, while
the remaining 46 symbols were not detected entirely. This
issue can be attributed in part to the nature of some drawings,
where symbols are nearly completely obscured by text and
comments. The Intersection over Union (IOU) metric in Table
V confirms that these missed symbols have a zero IOU,
indicating that they were not detected by the model.

TABLE IV. COMPARISON OF YOLOV8 AND YOLOV5 CLASS ACCURACY

Dataset Accuracy Wrong Detection Missed Detection

Original 95% 8 46

Augmented 96.3% 3 2

Fig. 13. Symbols detected in augmented dataset.

After conducting a visual inspection of the data in Table V,
some symbols were found to be mislabeled. Specifically, when
reviewing the results for the switch representation, it was
observed that the algorithm had predicted the correct class for
symbols with an incorrect label. However, for some symbols,
the algorithm had predicted the wrong class label.

TABLE V. SYMBOLS MISSED OR OVERLOOKED BY THE CLASSIFIERS

Class

No of S ample
Occurrence

Predicted
Sample Class IOU

Y
O

L
O

v
8

Y
O

L
O

v
5

Y
O

L
O

v
8

Y
O

L
O

v
5

Y
O

L
O

v
8

Y
O

L
O

v
5

Disconnect 2 5 Switch Ground 0.50 0.91

Load 1 3 - Fuse 0.56 1.00

Inductor 2 4 - - - 0.00

Voltmeter - 16 - - - 0.00

Diode - 10 - - - 0.00

Circuit

Breaker
- 8 - - - 0.00

VI. CONCLUSION AND FUTURE RECOMMENDATION

In this study, we proposed a system for analyzing and
processing complex engineering drawings. Our approach
achieved more than 96% accuracy in recognizing symbols on
the drawings, based on extensive testing on a large collection
of SLD sheets provided by an industry partner. We utilized
advanced bounding-box detection techniques, which

((IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 14, No. 8, 2023

55 | P a g e

www.ijacsa.thesai.org

demonstrated high accuracy in identifying symbols from 22
different categories, despite some of these symbols having only
minor differences. To address class imbalance in the symbol
dataset, we suggested a GAN-based model. Our experiments
showed that our system could generate realistic engineering
symbols, and adding this synthetic data to the training set
improved classification accuracy. According to the
experimental results, the proposed GAN model was capable of
learning from a smaller amount of training in-stances.

The subsequent emphasis of this study will be on the
application of GANs to the creation of symbols in a schematic
environment. In future development, an integrated system will
be created using the recommended methods to enable thorough
analysis and processing of technical diagrams like SLD. This
approach will make it much easier to per-form additional tasks
such as line detection or text localization. Furthermore, future
work will involve combining Explainable AI (XAI) and other
GAN methods such as WGAN, CycleGAN, PCCGAN, and
StyleGAN with other detection techniques.

ACKNOWLEDGMENT

We appreciate Yayasan UTP FRG (YUTP-FRG), grant
number 015LC0-280, and Computer and Information Science
Department of Universiti Teknologi PETRONAS for providing
funding and support for this research.

REFERENCES

[1] BHANBHRO, H., HOOI, Y. K., HASSAN, Z., & SOHU, N., "Modern
Approaches towards Object Detection of Complex Engineering
Drawings," in Proc. International Conference on Digital Transformation
and Intelligence (ICDI), IEEE, 2022.

[2] E. ELYAN, L. JAMIESON, AND A. ALI-GOMBE, "Deep learning for
symbols detection and classification in engineering drawings," Neural
networks, vol. 129, pp. 91-102, 2020.

[3] X. Y. , G. F. MENG, AND C. H. PAN, "Scene text detection and
recognition with advances in deep learning: a survey," (in English), Int J
Doc Anal Recog, vol. 22, no. 2, pp. 143-162, Jun 2019, doi:
10.1007/s10032-019-00320-5.

[4] S. MANI, M. A. HADDAD, D. CONSTANTINI, W. DOUHARD, Q.
W. LI, and L. Poirier, "Automatic Digitization of Engineering Diagrams
using Deep Learning and Graph Search," (in English), Ieee Comput Soc
Conf, pp. 673-679, 2020, doi: 10.1109/Cvprw50498.2020.00096.

[5] C. F. MORENO-GARCIA, E. ELYAN, AND C. JAYNE, "New trends
on digitisation of complex engineering drawings," (in English), Neural
Comput Appl, vol. 31, no. 6, pp. 1695-1712, Jun 2019, doi:
10.1007/s00521-018-3583-1.

[6] T. M. NGUYEN, L. V. PHAM, C. C. NGUYEN, AND V. V.
NGUYEN, "Object Detection and Text Recognition in Large-scale
Technical Drawings," (in English), Proceedings of the 10th International
Conference on Pattern Recognition Applications and Methods (Icpram),
pp. 612-619, 2021, doi: 10.5220/0010314406120619.

[7] J. K. NURMINEN, K. RAINIO, J.-P. NUMMINEN, T. SYRJÄNEN, N.
PAGANUS, AND K. HONKOILA, "Object detection in design
diagrams with machine learning," in International Conference on
Computer Recognition Systems, 2019: Springer, pp. 27-36.

[8] A. REZVANIFAR, M. COTE, AND A. B. ALBU, "Symbol Spotting on
Digital Architectural Floor Plans Using a Deep Learning-based
Framework," (in English), Ieee Comput Soc Conf, pp. 2419-2428, 2020,
doi: 10.1109/Cvprw50498.2020.00292.

[9] S. SARKAR, P. PANDEY, AND S. KAR, "Automatic Detection and
Classification of Symbols in Engineering Drawings," arXiv preprint
arXiv: 2204.13277, 2022.

[10] Q. S. Wang, F. S. Wang, J. G. Chen, and F. R. Liu, "Faster R-CNN
Target-Detection Algorithm Fused with Adaptive Attention

Mechanism," (in Chinese), Laser Optoelectron P, vol. 59, no. 12, Jun
2022, doi: 10.3788/Lop202259.1215016.

[11] L. H. WEN AND K. H. JO, "Fast LiDAR R-CNN: Residual Relation-
Aware Region Proposal Networks for Multiclass 3-D Object Detection,"
(in English), Ieee Sens J, vol. 22, no. 12, pp. 12323-12331, Jun 15 2022,
doi: 10.1109/Jsen.2022.3172446.

[12] CINTRA, R. J., DUFFNER, S., GARCIA, C., AND LEITE, AL., ―Low-
complexity Approximate Convolutional Neural Networks,‖ IEEE Trans.
Neural Netw. Learn. Syst., vol. 29, no. 12, pp. 5981–5992, 2018.

[13] KHAN, S. H., HAYAT, M., BENNAMOUN, M., SOHEL, F. A., AND
TOGNERI, R., ―Cost-sensitive Learning of Deep Feature
Representations from Imbalanced Data,‖ IEEE Trans. Neural Netw.
Learn. Syst., vol. 29, no. 8, pp. 3573–3587, Aug. 2018.

[14] STUHLSATZ, A., LIPPEL, J., & ZIELKE, ―Feature Extraction with
Deep Neural Networks by a Generalized Discriminant Analysis,‖ IEEE
Trans. Neural Netw. Learn. Syst., vol. 23, no. 4, pp. 596–608, Apr.
2012.

[15] REN, S., HE, K., GIRSHICK, R., & SUN, J., ―Faster R-CNN: Towards
Real-time Object Detection with Region Proposal Networks,‖ in Proc.
NIPS, 2015, pp. 91–99.

[16] REDMON, J., DIVVALA, S., GIRSHICK, R., & FARHADI, A.., ―You
Only Look Once: Unified, Real-time Object Detection,‖ in Proc. CVPR,
2016, pp. 779–788.

[17] N. Dalal and B. Triggs, ―Histograms of Oriented Gradients for Human
Detection,‖ in Proc. CVPR, 2005, pp. 886–893.

[18] P. F. FELZENSZWALB et al., ―Object Detection with discriminatively
Trained Part-based Models,‖ IEEE Trans. Pattern Anal. Mach. Intell.,
vol. 32, no. 9, pp. 1627–1645, Sep. 2010.

[19] M. EVERINGHAM et al., ―The Pascal Visual Object Classes (VOC)
Challenge,‖ Int. J. Comput. Vis., vol. 88, no. 2, pp. 303–338, 2008.

[20] G. E. HINTON AND R. R. SALAKHUTDINOV, ―Reducing the
Dimensionality of Data with Neural Networks,‖ Science, vol. 313, no.
5786, pp. 504507, 2006.

[21] VIG, E., DORR, M., & COX, D., ―Large-scale Optimization of
Hierarchical Features for Saliency Prediction in Natural Images,‖ in
Proc. CVPR, 2014, pp. 2798–2805.

[22] BHANBHRO, H., HOOI, Y. K., HASSAN, Z., & SOHU, N., "Modern
Deep Learning Approaches for Symbol Detection in Complex
Engineering Drawings," in Proc. International Conference on Digital
Transformation and Intelligence (ICDI), IEEE, 2022.

[23] ELYAN, E., MORENO-GARCÍA, C. F., & JOHNSTON, P., ―Symbols
in Engineering Drawings (SIED): An Imbalanced Dataset benchmarked
by Convolutional Neural Networks,‖ in Proc. 21st EANN (Engineering
Applications of Neural Networks), 2020.

[24] RICA, E., ALVAREZ, S., MORENO-GARCIA, C. F., &
SERRATOSA, F., ―Zero-Error Digitisation and Contextualisation of
Piping and Instrumentation Diagrams Using Node Classification and
Sub-graph Search,‖ Springer International Publishing, August 26–27,
2023.2.6

[25] GUPTA, M., WEI, C., & CZERNIAWSKI, T., ―Automated Valve
Detection in Piping and Instrumentation (P&ID) Diagrams,‖ in Proc.
International Symposium on Automation and Robotics in Construction.
Vol. 39. IAARC Publications, 2022.

[26] SHEN, C., LV, P., MAO, M., LI, W., ZHAO, K., & YAN, Z.,
―Substation One-Line Diagram Automatic Generation Based On Image
Recongnition,‖ in Proc. Global Conference on obotics, Artificial
Intelligence and Information Technology (GCRAIT). IEEE, 2022.

[27] A. ALI-GOMBE AND E. ELYAN, "MFC-GAN: Class-imbalanced
dataset classification using Multiple Fake Class Generative Adversarial
Network," (in English), Neurocomputing, vol. 361, pp. 212-221, Oct 7
2019, doi: 10.1016/j.neucom.2019.06.043.

[28] E. ELYAN, L. JAMIESON, AND A. ALI-GOMBE, "Deep learning for
symbols detection and classification in engineering drawings," (in
English), Neural Networks, vol. 129, pp. 91-102, Sep 2020, doi:
10.1016/j.neunet.2020.05.025.

[29] V. NAOSEKPAM AND N. SAHU, "Text detection, recognition, and
script identification in natural scene images: a Review," (in English), Int

((IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 14, No. 8, 2023

56 | P a g e

www.ijacsa.thesai.org

J Multimed Inf R, vol. 11, no. 3, pp. 291-314, Sep 2022, doi:
10.1007/s13735-022-00243-8.

[30] H. BHANBHRO, S. R. HASSAN, S. Z. NIZAMANI, S. T. BAKHSH,
AND M. O. ALASSAFI, "Enhanced Textual Password Scheme for
Better Security and Memorability," (in English), Int J Adv Comput Sc,
vol. 9, no. 7, pp. 209-215, Jul 2018.

[31] R. HUANG, J. GU, X. SUN, Y. HOU, AND S. UDDIN, "A rapid
recognition method for electronic components based on the improved
YOLO-V3 network," Electronics, vol. 8, no. 8, p. 825, 2019.

[32] H. LEE, J. LEE, H. KIM, AND D. MUN, "Dataset and method for deep
learning-based reconstruction of 3D CAD models containing machining
features for mechanical parts," Journal of Computational Design and
Engineering, vol. 9, no. 1, pp. 114-127, 2022.

[33] S. E. WHANG, Y. ROH, H. SONG, AND J.-G. LEE, "Data collection
and quality challenges in deep learning: A data-centric ai perspective,"
The VLDB Journal, pp. 1-23, 2023.

[34] J. WANG, Y. CHEN, Z. DONG, AND M. GAO, "Improved YOLOv5
network for real-time multi-scale traffic sign detection," Neural
Computing and Applications, pp. 1-13, 2022.

[35] C. F. MORENO-GARCÍA, E. ELYAN, AND C. JAYNE, "Heuristics-
based detection to improve text/graphics segmentation in complex
engineering drawings," in Engineering Applications of Neural
Networks: 18th International Conference, EANN 2017, Athens, Greece,
August 25–27, 2017, Proceedings, 2017: Springer, pp. 87-98.

[36] L. JAMIESON, C. F. MORENO-GARCIA, AND E. ELYAN, "Deep
learning for text detection and recognition in complex engineering
diagrams," in 2020 International Joint Conference on Neural Networks
(IJCNN), 2020: IEEE, pp. 1-7.

[37] M. F. THEISEN, K. N. FLORES, L. S. BALHORN, AND A. M.
SCHWEIDTMANN, "Digitization of chemical process flow diagrams
using deep convolutional neural networks," Digital Chemical
Engineering, vol. 6, p. 100072, 2023.

[38] M. KARTHI, V. MUTHULAKSHMI, R. PRISCILLA, P. PRAVEEN,
AND K. VANISRI, "Evolution of yolo-v5 algorithm for object
detection: automated detection of library books and performace
validation of dataset," in 2021 International Conference on Innovative
Computing, Intelligent Communication and Smart Electrical Systems
(ICSES), 2021: IEEE, pp. 1-6.

[39] Naosekpam, V.; Sahu, N. Text detection, recognition, and script
identification in natural scene images: a Review. Int J Multimed Inf R
2022, 11 (3), 291-314. DOI: 10.1007/s13735-022-00243-8.

[40] Zhang, Q. R.; Zhang, M.; Chen, T. H.; Sun, Z. F.; Ma, Y. Z.; Yu, B.
Recent advances in convolutional neural network acceleration.
Neurocomputing 2019, 323, 37-51. DOI:
10.1016/j.neucom.2018.09.038.

[41] Antoniou, A.; Storkey, A.; Edwards, H. Data augmentation generative
adversarial networks. arXiv preprint arXiv:1711.04340 2017.

[42] Amur, Z. H.; Hooi, Y.; Sodhar, I. N.; Bhanbhro, H.; Dahri, K. State-of-
the Art: Short Text Semantic Similarity (STSS) Techniques in Question
Answering Systems (QAS). In International Conference on Artificial
Intelligence for Smart Community: AISC 2020, 17–18 December,
Universiti Teknologi Petronas, Malaysia, 2022; Springer: pp 1033-1044.

[43] Amur, Z. H.; Kwang Hooi, Y.; Bhanbhro, H.; Dahri, K.; Soomro, G. M.
Short-Text Semantic Similarity (STSS): Techniques, Challenges and
Future Perspectives. Applied Sciences 2023, 13 (6), 3911.

[44] Baur, C.; Albarqouni, S.; Navab, N. MelanoGANs: high resolution skin
lesion synthesis with GANs. arXiv preprint arXiv:1804.04338 2018.

[45] Buda, M.; Maki, A.; Mazurowski, M. A. A systematic study of the class
imbalance problem in convolutional neural networks. Neural networks
2018, 106, 249-259.

[46] Denton, E. L.; Chintala, S.; Fergus, R. Deep generative image models
using a￼ laplacian pyramid of adversarial networks. Advances in neural
information processing systems 2015, 28.

[47] Dong, Q.; Gong, S.; Zhu, X. Class rectification hard mining for
imbalanced deep learning. In Proceedings of the IEEE international
conference on computer vision, 2017; pp 1851-1860.

[48] Dosovitskiy, A.; Springenberg, J. T.; Riedmiller, M.; Brox, T.
Discriminative unsupervised feature learning with convolutional neural
networks. Advances in neural information processing systems 2014, 27.
Douzas, G.; Bacao, F. Effective data generation for imbalanced learning
using conditional generative adversarial networks. Expert Syst Appl
2018, 91, 464-471.

[49] Fernández, A.; López, V.; Galar, M.; Del Jesus, M. J.; Herrera, F.
Analysing the classification of imbalanced data-sets with multiple
classes: Binarization techniques and ad-hoc approaches. Knowledge-
based systems 2013, 42, 97-110.

[50] Frid-Adar, M.; Klang, E.; Amitai, M.; Goldberger, J.; Greenspan, H.
Synthetic data augmentation using GAN for improved liver lesion
classification. In 2018 IEEE 15th international symposium on
biomedical imaging (ISBI 2018), 2018; IEEE: pp 289-293.

[51] He, K.; Zhang, X.; Ren, S.; Sun, J. Deep residual learning for image
recognition. In Proceedings of the IEEE conference on computer vision
and pattern recognition, 2016; pp 770-778.

[52] Huang, C.; Li, Y.; Loy, C. C.; Tang, X. Learning deep representation for
imbalanced classification. In Proceedings of the IEEE conference on
computer vision and pattern recognition, 2016; pp 5375-5384.

[53] Inoue, H. Data augmentation by pairing samples for images
classification. arXiv preprint arXiv:1801.02929 2018.

[54] Karras, T.; Aila, T.; Laine, S.; Lehtinen, J. Progressive growing of gans
for improved quality, stability, and variation. arXiv preprint
arXiv:1710.10196 2017.

[55] Mariani, G.; Scheidegger, F.; Istrate, R.; Bekas, C.; Malossi, C. Bagan:
Data augmentation with balancing gan. arXiv preprint arXiv:1803.09655
2018.

[56] Netzer, Y.; Wang, T.; Coates, A.; Bissacco, A.; Wu, B.; Ng, A. Y.
Reading digits in natural images with unsupervised feature learning.
2011.

[57] Odena, A. Semi-supervised learning with generative adversarial
networks. arXiv preprint arXiv:1606.01583 2016.

[58] Wan, L.; Wan, J.; Jin, Y.; Tan, Z.; Li, S. Z. Fine-grained multi-attribute
adversarial learning for face generation of age, gender and ethnicity. In
2018 International Conference on Biometrics (ICB), 2018; IEEE: pp 98-
103.

[59] Yue, Y.; Liu, H.; Meng, X.; Li, Y.; Du, Y. Generation of high-precision
ground penetrating radar images using improved least square generative
adversarial networks. Remote Sensing 2021, 13 (22), 4590.

[60] Thuan, D. Evolution of Yolo algorithm and Yolov5: The State-of-the-
Art object detention algorithm. 2021.

