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Abstract—Single Line Diagrams (SLDs) are used in electrical 

power distribution systems. These diagrams are crucial to 

engineers during the installation, maintenance, and inspection 

phases. For the digital interpretation of these documents, deep 

learning-based object detection methods can be utilized. 

However, there is a lack of efforts made to digitize the SLDs 

using deep learning methods, which is due to the class-imbalance 

problem of these technical drawings. In this paper, a method to 

address this challenge is proposed. First, we use the latest variant 

of You Look Only Once (YOLO), YOLO v8 to localize and detect 

the symbols present in the single-line diagrams. Our experiments 

determine that the accuracy of symbol detection based on YOLO 

v8 is almost 95%, which is more satisfactory than its previous 

versions. Secondly, we use a synthetic dataset generated using 

multi-fake class generative adversarial network (MFCGAN) and 

create fake classes to cope with the class imbalance problem. The 

images generated using the GAN are then combined with the 

original images to create an augmented dataset, and YOLO v5 is 

used for the classification of the augmented dataset. The 

experiments reveal that the GAN model had the capability to 

learn properly from a small number of complex diagrams. The 

detection results show that the accuracy of YOLO v5 is more 

than 96.3%, which is higher than the YOLO v8 accuracy. After 

analyzing the experiment results, we might deduce that creating 

multiple fake classes improved the classification of engineering 

symbols in SLDs. 

Keywords—Single line diagrams; engineering drawings; 

synthetic data; symbol detection; deep learning; augmented dataset 

I. INTRODUCTION 

An engineering drawing (ED) is an illustration of a 
schematic that demonstrates the operation or construction of an 
electrical system, procedure, or plant facility [1]. Engineering 
designs comprise of technical drawings such as mechanical or 
architectural blueprints, electrical circuits, and drawings [2]. In 
many different businesses, there is an increasing need for 
establishing digital systems for processing and analyzing these 
representations [3]. With such a framework, connected 
businesses will have the unusual opportunity to make extensive 
use of diagrams to direct their future practices. 

A single-line diagram uses lines and symbols to represent 
the logical flow of power through physical processes and plant 
components. Although these components resemble each other 
in form and shape, they are highly asymmetrical in nature, 
which makes these documents complex [1]. Distinct power 
distributions are represented by lines of variable thickness, and 
each sign stands for a different component such as a 

transformer, generator, motor, switch, etc. [4]. A typical SLD 
diagram may have over 50 different symbols, making it an 
information-rich visual representation. While placing a 
purchase order or even when project teams are scheduling their 
work, these drawings are carefully inspected in order to 
estimate the numbers of various pieces of equipment [5]. When 
symbols on SLD diagrams are functionally different but 
visually identical, as in Fig. 1, this process can become 
considerably more difficult and complex. As a result, 
distinguishing one symbol from another can be both crucial 
and difficult. Misreading or omitting any material can also 
cause severe internal disagreements and be damaging to the 
progress of a project. 

Scientists, on the other hand, are looking into solutions for 
a power system to transform the conventional power system 
that existed before into an intelligent power system. The fusion 
of a power system with artificial intelligence is getting closer 
and closer as new technologies, like artificial intelligence, arise 
[6]. It is a common duty in modern businesses and academia to 
include artificial intelligence technology in power system 
dispatching software to speed up the process of creating circuit 
diagrams for power systems. A fundamental document in the 
power system, the principal wiring diagram of the power 
station is also commonly needed for viewing and change by the 
power system's dispatching users [7]. The current power 
dispatching system relies heavily on the work expertise of 
dispatchers for the creation and upkeep of station wiring 
diagrams, which not only raises the danger of safety mishaps in 
the power grid system but also drives up the cost of wiring 
diagram maintenance [8, 12]. Therefore, one difficulty facing 
the contemporary power sector was how to employ artificial 
intelligence technology to automatically build the station 
wiring diagram. 

Generative models have also undergone significant 
progress and have been successfully used in numerous areas. 
One of those is the Generative Adversarial Networks (GAN), 
which has emerged as a well-known and frequently employed 
technique for producing content. Ian Goodfellow first 
introduced GANs in 2014 [9]. We will go over our GAN-based 
approach to solving the issue of imbalanced classes within the 
context of Methods section. Another difficult issue that affects 
a wide range of fields, including engineering drawings [10], is 
the under-or over-representation of one or more classes of 
symbols in the diagrams in the dataset [11]. 
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Fig. 1. A part of single line diagram. 

It is logical to presume that construction industries have 
these designs for their on-going projects in a readable 
electronic format that can be edited with cutting-edge software. 
However, many businesses continue to maintain these designs 
as paper copies or in digitized form, particularly for their older 
projects. Therefore, digitizing these drawings in a way that 
makes information extraction simple and accessible, may be 
advantageous [13]. This can make it simple to correct previous 
designs when the plant's components have been replaced over 
time owing to maintenance. As a result, project teams will find 
it simpler to keep track of their instrumentation inventory 
during the building phase and to create a library of up-to-date 
drawings for maintenance during the post-installation phase 
with the help of digitized and updated SLD diagrams. The 
following restrictions are communicated through the 
contextualization and digitization of complicated SLDs: 

A. Size 

According to an estimate in [11], a typical SLD page 
consists of approximately 50 distinct types of shapes including 
symbols, connectors, and text. To depict a specific segment of 
a power system, it may be necessary to utilize anywhere 
between 100 to 500 pages. 

B. Asymmetrical Components 

Apart from the typical challenges of classical machine 
vision such as variations in lighting, scale, and pose, technical 
drawings utilize equipment symbols that conform to different 
standards across various industries. Consequently, assembling 
a precisely labeled dataset that can be employed for symbol 
classification is a complex undertaking, as mentioned in 
reference [14]. It is crucial to have a comprehensive assortment 
of precisely defined symbols that lack symmetry to effectively 
employ advanced deep learning methods for symbol 
recognition. 

C. Connecting Lines 

Connecting lines that indicate the logical and physical 
relation-ships between symbols are abundant and knotted in 
complex SLDs. As a result, it is difficult to apply digitization 
techniques based on thinning [15] or vectorizing [15]. The art-
work for line identification are represented by lines of various 

styles and thicknesses. Furthermore, sophisticated Engineering 
Drawings (EDs) adhere to rule sets for application-based 
connectivity. This means that based on a standard that cannot 
be stated or inferred from the use of the physical lines 
connecting the symbols, two symbols may or may not be 
connected. As a result, contextualization is more difficult to 
implement than when it is applied to simpler drawings, like 
circuit diagrams [16]. This opens up several intriguing options, 
such as incorporating human expert knowledge through 
human-machine inter-action into a potential solution. Another 
avenue would be interactive learning [17]. 

D. Labels 

Symbols, connectors, and other text characters may 
overlap; however, symbols and annotations in a variety of 
scripts and styles are used to distinguish between symbols 
exhibiting comparable characteristics, to indicate connectors, 
and to clarify additional information. Symbols with an overlap 
in drawing sheets are difficult to separate, as demonstrated by 
techniques like those used by Cao et al. [18] and Roy et al. 
[19]. Three further challenges have been identified once all of 
the text elements have been found: As seen in Fig. 1, various 
lengths and sizes are used to represent text strings that describe 
symbols and connectors. Additionally, it can be challenging to 
connect symbols and connectors to their matching text, and 
text interpretation mistakes could lead to some information 
being misunderstood. 

E. Samples with Inconsistent Occurrence 

Inconsistent appearance of symbols within the diagrams is 
another major issue towards digitization. Deep learning models 
perform better with large amounts of samples, while in SLDs, 
symbol frequency is highly imbalanced which creates a class 
imbalance problem due to the dominance of the majority 
classes over the minority classes. Hence, deep learning models 
can be biased towards the majority classes. 

A range of methods, especially from the field of machine 
vision, must be applied to overcome these obstacles. These 
include symbol detection and localization, as well as feature 
extraction. The fact that recent advancements in deep learning 
and machine vision, particularly in the recognition and 
classification of objects, have not been put to the test against 
such challenging real-world situations, must be noted [21]. 

In this article, particularly, the YOLOv8 model for object 
identification and MFCGAN for class balancing are thoroughly 
examined. To extract symbols from drawing images, this study 
aims to use SLDs to create a dataset for model training. The 
dataset contains 22 different classes of symbols various shapes 
and sizes. 

We were unable to locate a study that assesses a significant 
amount of deep learning-based detection algorithms that have 
been particularly designed for the problem do-main of single-
line symbol identification while taking into account key 
variables including Precision, Recall, and F1. 

The following are the main contributions of this study: 

 Symbols in SLD images are classified using YOLOv8, 
the latest variant of YOLO model. 
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 Mixed-quality single-line symbols are synthetically 
generated using MFC-GAN. 

 A GAN-based solution is provided for enhancing the 
quantity of minority classes to handle the class 
imbalance problem; along with an expansion of the 
YOLOv5  training set using newly generated synthetic 
data. 

 We suggested an experimental setup using MFC-GAN 
for creating synthetic images. 

 The accuracy of symbol identification and recognition 
in Single Line Diagrams (SLDs) is enhanced by using a 
YOLOv5-based network for object detection. 

According to experiments, the IoU and performance of the 
model can be enhanced through the use of synthetic image data 
generated using different GANs. 

The remainder of this paper is structured as follows: In 
Section II, we delve into the landscape of existing research 
within the relevant domain, examining both the challenges that 
have been encountered and the solutions that researchers have 
put forth in this realm. Moving forward to Section III, we 
intricately explore the proposed methodology and perform an 
in-depth analysis of the dataset. Moreover, within this section, 
we provide a comprehensive exposition of the detection model. 
The outcomes of our dataset construction and symbol detection 
are meticulously presented in Section IV. Subsequently, we 
engage in a thorough discussion of the results in Section V. 
Lastly, we draw this study to a conclusion in Section VI. 

II. RELATED WORK 

This section covers recent accomplishments made by the 
research community in this domain. We discuss single-line 
engineering drawings, different deep learning techniques used 
for digitizing the engineering drawings, later we present GANs 
and discuss the general architecture and recent advancements 
made to improve the performance of GANs. 

A. Single Line Diagrams 

In various papers, including [1-4], the problem of 
recognizing and grouping symbols present in single-line 
diagrams (SLD) has been raised. The challenge of digitizing 
SLD, where the aim is to summarize the link between the 
numerous symbols, served as the inspiration for several of 
these works. The study in [22] provides an overview of 
numerous strategies created to digitize ED. In earlier research, 
including [23-26], symbols were recognized using classifiers 
that were traditionally based on machine learning and fed 
hand-crafted characteristics. 

SLD digitization has notably drawn a lot of business 
interest due to the wide range of applications that may be made 
from a digital output, such as security evaluation, graphic 
simulations, or data analytics [27]. There are certain strategies 
developed expressly to handle the digitization of SLDs in the 
literature. More than 30 years ago, Furuta et al. [48] and Ishii et 
al. [28] published research on developing software to enable 
fully automated P&ID digitization. These techniques are 
currently ineffective due to incompatibility with hardware and 
software requirements. About ten years later, Howie et al. [29, 

30] suggested a semi-automatic technique for localizing 
symbols of interest using the templates of the symbols as input. 
Gellaboina et al.'s [49] description of the most recent method 
for symbol identification uses an iterative learning strategy 
based on recurrent training of a neural network (NN) with the 
Hopfield model. This method was developed to pinpoint the 
most frequently occurring symbols in the artwork that also 
displayed a prototype pattern. Deep learning models were 
utilized [31] to build one-line diagrams automatically while 
generating core power systems. 

B. Symbol Detection Using YOLO 

Object detection can identify the sort of object present in an 
image or video and pin-point its location at the same time. In 
photos and videos, object detection expresses the location 
information as X and Y coordinate values. Additionally, the 
width and height values—which represent the object's size—
are utilized as label information. Typically, the width and 
height data are expressed as bounding boxes using the X and Y 
coordinates. 

Recent studies have employed deep neural networks to 
perform symbol spotting. For instance, researchers in [34] 
employed the YOLO 32, [33] model to identify symbols in 
floor plan diagrams. In another study [10], symbol detection 
was reformulated as a semantic segmentation problem, which 
led to the development of a pixel-level approach for symbol 
detection. Researchers are using YOLO for the goal of symbol 
recognition and classification as a result of the one-stage 
detection method's growing popularity and success [11]. To do 
this, the authors of [12] suggested transforming a construction 
image into a region adjacency network, where each node 
represented a connected component in the image. These nodes 
were then categorized using a YOLO. The YOLO and CNN-
based technique was put forth in [13] and used to categorize 
symbols in [14]. 

Recent research has confirmed the effectiveness of YOLO 
variants in detecting complicated engineering components [35]. 
For instance, one-line symbols in substation diagrams were 
localized and categorized using YOLOv3. The model correctly 
identified 97% of the symbols. YOLO algorithms 
demonstrated encouraging results in detecting the symbols in 
electrical circuits despite the lack of suitable datasets [20]. 
Additionally, YOLO variations were used to accurately 
classify hand-drawn electric symbols with a 95% accuracy 
[11]. To the best of our knowledge, the work detailed here is 
the first attempt at localizing and matching symbols in a zero-
shot method despite the very extensive literature that already 
exists in this field. 

Since 2012, two primary types of deep learning-based 
object detection models have emerged: one-stage detectors and 
two-stage detectors, as described in research [32]. 
Understanding the concepts of region proposal and 
classification is essential to comprehend the distinction 
between the two categories. Region proposal refers to an 
algorithm that quickly identifies possible object locations, 
while classification is the process of categorizing objects based 
on their specific type. Although two-stage detectors are better 
at accurately detecting objects, their slow prediction time 
restricts their real-time detection ability. To address this issue, 
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one-stage detectors have been proposed that perform both 
classification and region proposal simultaneously, resulting in 
faster object detection. The one-stage detector is a technique 
that produces results by simultaneously executing classification 
and region proposal. 

As depicted in Fig. 2, upon inputting the image to the 
model, the Convolutional Layer is employed to extract its 
features and perform classification. Simultaneously, a region 
proposal is conducted to generate the output. Models like 
YOLO, RetinaNet, RefineDet, etc. are good examples [37]. 

 
Fig. 2. One-stage model for object detection. 

One of these one-stage detectors is YOLO, which 
integrates the region proposal and classification stages into a 
single operation. This means that it predicts the position and 
type of an object simultaneously by treating the bounding box 
and class probability as a single problem. YOLO divides the 
image into grids of a predetermined size to forecast the 
bounding box for each grid, and then trains the bounding-box 
confidence score and grid cell class score, as mentioned in 
reference [38]. 

The YOLO processing procedure is depicted in Fig. 2. 
First, an SxS grid area is created from the input image. The 
number of bounding boxes anticipated in each grid cell is equal 
to the number of bounding boxes that correspond to the area 
where an object is located. This can be denoted as (x, y, w, h), 
where (x, y) denotes the center point coordinates of the 
bounding box, and (w, h) denote its width and height. 

Second, the confidence, which stands for the box's 
dependability and is determined similarly to Equation (1). The 
IoU (Intersection over Union) is used to determine it by 
computing the ratio of the overlapping area between the 
predicted and ground truth bounding boxes divided by the 
probability Pr(Object), which represents the likelihood of an 
object being present in the grid. 

pred
Pr(Object) × IoU

truth
  (1) 

The probability of C classes is then determined for each 
grid and Equation (2) is shown. 

pred
(Classi | Object)  (2) 

In this instance, what is strange is that YOLO does not 
classify the number of classes (background) as an input to a 
neural network model, although the existing Object detection 
does [38]. YOLO divides the input image into grids in this 
manner, performing classification and bounding box 
calculations for each grid at the same time. 

C. Synthetic Data Generation Using GANs 

Several studies in the past decade have explored the 
challenge of identifying symbols in architectural floor plans. 
To overcome the scarcity of training data available for neural 
networks, the authors recommended employing a Generative 
Adversarial Network (GAN) to generate synthetic training 
data. 

Ian Goodfellow first introduced generative adversarial 
networks (GAN) in 2014. (Goodfellow et al., 2014). These are 
regarded as generative models that can produce original 
content. The Generator (G) and the Discriminator (D) are two 
competing models (such as CNNs, neural networks, etc.) that 
make up GANs [39]. The discriminator is a classifier that gets 
input from both the generator and the training set (genuine 
content). (Fake input). The discriminator will learn how to 
differentiate between real input samples and bogus input 
samples during the training phase. However, the generator is 
trained to provide samples that accurately reflect the 
fundamental properties of the original data. (Replicating 
original content). The GAN model is shown in Fig. 3. 

 

Fig. 3. Architecture of generative adversarial networks. 

Equation (3) demonstrates that the value function is 
employed to perform adversarial training of both models G and 
D. 

minD maxG V(D, G) = Ex~pdata(x)[logD(x)] + Ez~pz 

(z)[log(1 − D(G(z)))]  (3) 

Where x is a sample from the real training data, Pdata (x) is 
the probability distribution over the real data, the probability 
distribution over the noise vector z is referred to as Pz, and the 
outcome of the generator function G (or generated images) is 
denoted as G(z). GANs are at the forefront of image generation 
quality, as per [39]. 

GANs have been effectively used to solve a variety of 
issues, including speech synthesis, segmentation, and image 
production [40]. They have also been successfully used in 
recent years to address issues with class imbalance. The class 
mismatch is widespread throughout numerous industries, 
including banking, security, and health [6]. The issue arises 
when one or more classes are unequally or excessively 
represented in the dataset. When dealing with imbalanced 
datasets, a conventional supervised learning algorithm tends to 
favor the majority class [41]. 

By including conditional probabilities in the value function, 
supervised GANs offer an improvement over the basic GAN 
architecture. This gives the user more control over the samples 
that are created and introduces the diversity that is required to 
supplement synthetic input data for datasets with class 
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imbalance. Examples of this kind are AC-GAN [10], CGAN 
[9], and vanilla GAN [8]; even though the literature 
demonstrates that these models, particularly in extreme 
situations, can be significantly impacted by class disparity [11]. 

III. RESEARCH METHODOLOGIES 

We present our method for recognizing the end-to-end 
symbols from intricate engineering drawings in Section III A. 
The dataset utilized for the tests will be covered in detail in the 
subsection that follows. Data exploration and pre-processing 
will be part of this. The specifics of our suggested approach to 
dealing with a class imbalance in these drawings are provided 
in Section IV. 

Machine learning is commonly used to classify symbols 
and texts. Fig. 4 shows a conceptual model for digitizing 
engineering drawings that includes the essential phases. Such a 
framework will be extremely useful in fields where schematics 
can be turned into knowledge. 

We determine the characteristics and variety of the created 
minority samples for our image-generating experiment after 
each run. In classification studies, we add created minority 
samples from trained models to the training data. (MFCGAN). 
The classification performances on the minority classes are 
then provided after a YOLO classifier has been trained on the 
expanded dataset. 

A. Overview of Symbol Detection Framework 

We first look for the areas of an engineering diagram that 
might contain interesting symbols and attempt to extract all the 
components from drawing. The next step is to locate and count 
the interesting symbols that originate from these zones of 
interest. The vast array of shapes and structures that these 
symbols emerge in drawings is the task's main problem. 
Furthermore, as stated in Section I, we cannot anticipate 
identical depictions of a specific component on all drawings. 
Additionally, there are a great number of different components 
and elements that are frequently used in these diagrams. As a 
result, it is not viable to use a fully supervised technique, 
training thoroughly to recognize and classifying every single 
type of object that could be seen in such images. 

Information about the symbols that appear in an 
engineering drawing can be found in a variety of ways, 
including: 

1) A table of legends listing the names of the components 

represented by the different symbols. 

2) A table with numbers that represent the index of a 

component and the name of the object it represents. 

3) There is no tabular data linking the names of objects to 

the appropriate diagrams. 

In the current study, we focus on the first form of drawing, 
in which the component name and drawing image are both 
provided. We go into great detail on the various parts of the 
suggested framework in the sections that follow. 

 
Fig. 4. Schematic of model for digitization of SLDs. 

B. Summary of SLD Dataset 

For the study in this paper, we chose to employ Single Line 
Diagrams (SLDs), as shown in Fig. 1. The engineering partner 
gave a set of 800 sheets for review. These diagrams contain a 
variety of symbols of varied sizes and dissimilar 
(asymmetrical) nature, as shown in Fig. 5. 

The dataset is suitable for evaluation because the SLDs 
have a variety of attributes. The numerous electrical system 
components and connectivity information can be seen 
schematically represented on the SLD sheets. It is a 
representation of electrical apparatus and power flow 
movement, frequently in the form of symbols (represented as 
various kinds of lines). 

In many industries, these diagrams can be found as paper 
documents or digital photographs. Evaluating and analyzing 
these materials requires a lot of experience, knowledge, and 
time [15]. Furthermore, misreading these publications can have 
disastrous repercussions. For instance, if an engineer needs to 
modify a wire in an electrical system after installation, they 
must first verify the associated SLD diagram and decide what 
safety precautions to take. Therefore, it's important to 
comprehend these designs correctly. 

 

Fig. 5. Example of asymmetrical symbols found in SLDs. 
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The original data's big SLD sheets are 7500x5250 pixels in 
size. To expedite training, we divided the sheet into a 6x4 grid, 
resulting in 24 patches of sub-images that were minuscule in 
comparison to the original images (1250×1300). 

The data generated by the annotation is kept in a file that 
corresponds to the 22 different classes. The width and height of 
the symbols that the bounding boxes enclose, as well as the 
center x and y values of the bounding boxes, were recorded as 
data. The collection of 800 images includes 12,500 samples, 
which represent 22 different types of symbols. The initial 
sample is severely imbalanced, as shown in Fig. 6. 

A deep learning model needs to be fully annotated to be 
ready for training. To do this, we used the LabelBox program 
to annotate the set of SLD photos, as shown in Fig. 7. Twenty 
two different symbols in the total collection were annotated. 
Using the LabelBox tool to record the classes of the associated 
symbols and their locations is a simple approach for annotating 
a diagram. 

In some instances, the distinctions between the symbols can 
be very significant. For instance, the dataset contains 1340 
instances of generator symbols but only 99 and 117 instances 
of each disconnect and load symbol. Although delta and 
capacitor are present in the sample more than 800 times each, 
inductor and voltmeter are only present 203 and 212 times 
respectively. Three symbols that were significantly 
underrepresented overall were not included in the first trial (i.e. 
appears only once or twice in split sets). 

 
Fig. 6. Sample distribution in the original SLD dataset. 

 
Fig. 7. An SLD annotated using labeling tool. 

C. Symbol Detection 

The YOLO approach was favored due to two key reasons. 
Firstly, it has a simple architecture that enables the prediction 
of multiple bounding boxes and class probabilities 
simultaneously using a single convolutional neural network. 
Secondly, YOLO is known for its high speed in comparison to 
other object detection techniques, which is essential for 
practical use in testing SLDs that contain an average of 50 
engineering symbols. 

1) YOLOv8 architecture: At the time this paper was being 

written, Ultralytics was actively working on YOLOv8 as they 

addressed community concerns and added new features. Glenn 

Jocher, the creator of YOLOv8, also discussed the developer-

friendly features of YOLOv8 [54]. YOLOv8 comes with a 

CLI that enables training a model easier, in contrast to other 

models where chores are separated across numerous 

executable Python files. The addition of new convolutional 

layers and YOLOv8's Anchor Free Detection are further 

features of the software. 

Since they may represent the distribution of the boxes from 
the target benchmark but not the distribution of the custom 
dataset, anchor boxes were a notoriously difficult component 
of older YOLO models. YOLOv8 is an anchor-free model, in 
contrast. In other words, rather than predicting an object's 
offset from a known anchor box, it predicts the object's center 
directly. To expedite Non-Maximum Suppression (NMS), a 
challenging post-processing procedure that sorts through 
candidate detection following inference, anchor-free detection 
decreases the number of box predictions [51, 55]. 

Using Equation (4), the bounding box's position is 
determined: 

   
 

P x,y *             
             (4) 

According to Equation (4), x and y denote the yth bounding 
rectangle of the xth grid. The probability value assigned to the 

yth bounding box of the xth grid is ∪. If the yth bounding box 

contains an object, then Px,y is assigned a value of 1; 
otherwise, it is assigned a value of 0. The IoU between the 
predicted class and the actual ground truth is referred to as the 
IoUgroundtruth, and a greater IoU typically corresponds to 
more accurate predicted bounding boxes. 

The bounding box, categorization, and confidence loss 
functions are combined to form the YOLOv8 loss function. 
The total loss function of the YOLOv8 is represented by 
Equation (5) [42]: 

loss
YOLOv5 = lossboundingbox + lossclassification + 

lossconfidence 
(5) 

The stem's primary construction block, C2f, took the place 
of C3, and the first 6x6 conv is now a 3x3. Below is a diagram 
summarizing the module, where "f" represents the number of 
features, "e" represents the rate of growth, and CBS is a block 
made up of a conv, a BatchNorm, and a SiLU later. All of the 
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bottleneck's outputs are concatenated in C2f. C3 merely 
utilized the output of the previous bottleneck. 

The first conv's kernel size was changed from 2x2 to 3x3, 
but the bottleneck remains the same as in YOLOv8. We might 
infer from this data that YOLOv8 is beginning to return to the 
ResNet block that was established in 2015. Features are 
directly concatenated in the neck without being forced to have 
the same channel dimensions. By doing this, the parameters 
count and tensor size as a whole are decreasing. YOLOv8 
enhances photos while you're training online. The model views 
a slightly different variety of the images it has been given at 
each epoch. 

2) Multi-fake class generation: Class imbalance has been a 

subject of extensive research, and various techniques have 

been developed, ranging from simple data augmentation and 

sampling to more sophisticated approaches like GAN [56]. In 

this study, we are utilizing MFC-GAN to generate more 

classes to handle the imbalance problem.  

 

Our goal is to adopt a method similar to the MFC-GAN 

approach introduced in [57] to tackle the problem of class 

imbalance in the dataset of engineering symbols, specifically 

at the classification level. 

The very little and occasionally subtle differences between 
the various classes of symbols led to the selection of this 
paradigm. We may train the discriminator using the MFC-
GAN model to categorize both actual and false symbols, 
which allows for more precise discrimination across cases, as 
seen in Fig. 8. 

By conditioning the generator on attribute labels, control 
generation was accomplished. Numerous studies involving 
various sample sizes in the minority classes, notably the goatee 
and eyeglass classes, were conducted. The MFC-GAN model 
is trained from scratch for each run, and samples are created 
following the end of the training. 

 

Fig. 8. Framework design for multi-fake class GAN. 

The discriminator network for this study is built with four 
convolutional layers with two-stride spacing and uses batch 
normalization in between layers. Leaky ReLu with an alpha of 
0.2 is used to activate all convolution layers, and the Sigmoid 
function is employed as the activation function in the final 
layer. 

The classifier model generates a 2xN soft-max output for N 
classes and shares the discriminator layers with it. The 
generator is constructed using five transpose convolution layers 

with a stride of two and one linear layer. All the layers except 
the last one are activated using Leaky ReLu, and the final layer 
is activated using a sigmoid function. Batch normalization is 
applied between adjacent layers. 

The generator of the GAN model takes a noise vector with 
a size of 100 as input along with symbol label encoding, which 
is similar to the input of most GAN models. The label 
encoding is important for class-specific generation, which is a 
significant aspect of our experiment. 

The generator produces a 64x64 image of greyscale 
symbols. A batch size of 100 and a learning rate of 0.001 were 
used, which were selected through experimentation. Both the 
discriminator and the generator employed spectral 
normalization. Eq. (6), (7), and (8) will be used to train the 
suggested model. 

Ls=E[logP(S=real|Xreal)]+E[logP(S=fake|Xfake)]    (6) 

Lcd=E[logP(C=c|Xreal)]+E[logP(C′ =c′|Xfake)]   (7) 

Lcg=E[logP(C=c|Xreal)]+E[logP(C=c|Xfake)]   (8) 

Where Ls denotes the chance that the sample is real or 
fraudulent and is used to determine the sampling loss. The 
losses for classification of both the generator and discriminator 
are calculated using Lcd and Lcg. The set of created images is 
called Xfake, and Xreal represents the training data. 

3) Architecture of YOLOv5: In this study, the YOLOv5 

algorithm was utilized, which is one of the most recent 

variations of the YOLO algorithm [44]. This algorithm is a 

speedy and effective system for identifying objects and 

locating them instantly. Since the symbols present in SLDs 

have a high degree of similarity, rapid detection is also 

necessary, which the YOLOv5 algorithm can fulfill. The 

system was built using the PyTorch deep learning framework, 

which has excellent detection performance and has simplified 

the process of training and testing specialized datasets. The 

YOLOv5 algorithm comprises three components: the head, the 

neck, and the backbone [45]. 

For our investigation, we opted to utilize the YOLOv5 
detection model because of its straightforwardness and 
transparency. YOLOv5 created CSPDarknet, which formed the 
core of the network [58], by combining Darknet with the cross-
stage partial network (CSPNet) [43]. CSPNet addresses the 
issue of recurrent gradient information in large-scale 
backbones by integrating gradient changes into the feature 
map, which decreases the model's parameters and FLOPS 
(floating-point operations per second). This ensures inference 
speed and accuracy while also reducing model size, which is 
crucial for accurate and speedy recognition of sperm cells. 
Furthermore, the YOLOv5 incorporates a path aggregation 
network (PANet) [59] as its neck to improve information flow. 
PANet employs a novel feature pyramid network (FPN) 
architecture with an enhanced bottom-up method-ology to 
increase low-level feature propagation. Adaptive feature 
sharing connects the feature grid to each feature level, ensuring 
that the downstream subnetwork receives meaningful data from 
every feature level. In addition, PANet enhances precise 
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localization signals at lower levels, considerably improving the 
object's location accuracy. The head of YOLOv5, the YOLO 
layer, generates three different sizes of feature maps to enable 
multi-scale prediction, allowing the YOLO model to handle 
small, medium, and large objects [58]. 

The CSPNet provides the framework for this algorithm. 
Because of the simplified model of CSPNet, fewer 
hyperparameters and FLOPS are produced, and the 
disappearing and ballooning gradient issues caused by complex 
neural networks are addressed. These enhancements improve 
the effectiveness and accuracy of object recognition inference. 
CSPNet has various features, including multiple convolutional 
layers, three convolutions in four CSP blocks, and spatial 
pyramid sharing. The CSPNet is responsible for extracting 
features from an input image, pooling and convolving that data 
to create a feature map. Consequently, in YOLOv5, the 
backbone serves as a feature generator [60]. 

The neck or core segment of YOLOv5 is referred to as the 
PANet. Its main function is to collect all the features obtained 
from the backbone, maintain them, and send them to the deeper 
layers to perform feature fusions. These feature fusions are 
then passed on to the head for object recognition, allowing the 
output layer to be aware of the high-level characteristics. 

 
Fig. 9. Network architecture of YOLOv5 model. 

The YOLOv5's head is responsible for identifying objects. 
It places bounding boxes and a class probability score around 
the target item, which is determined by 1x1 convolutions. The 
overall architecture of YOLOv5 is depicted in Fig. 9. 

The position of the bounding box is established using 
Equation (9): 

  
 
 = P x,y *             

            (9) 

Equation (9) demonstrates that the yth bounding box of the 
xth grid is defined by x and y. The yth bounding box of the xth 
grid has probability value. Px,y equals 1 when a subject is 
present within yth bounding box; otherwise, it is equal to 0. 
The IoUgroundtruth is the IoU that exists among the predicted 
class and the actual data. Higher IoUs are related to more 
accurate predicted bounding boxes. 

The loss function of YOLOv5 is produced by merging the 
bounding box, classification, and confidence loss functions. 

The combined loss function of YOLOv5 is shown in Equation 
(10) [46]. 

loss
YOLOv5 = lossbounding box + lossclassi f ication + 

losscon f idence   (10) 

Equation (11) is used to determine the lossboundingbox. 

lossbounding box = λif      
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]  (11) 

Equation (11) uses h' and w' to denote the width and height 
of the target item, while xa and ya denote the coordinates of the 
target object in an image. Lastly, the indicator function (λif) 
shows whether the bounding box contains the target object. 

The lossclassification method is shown in equation (12): 

lossclassi f ication  = λclassification      
       

      
 

  CЄc1 La (c) log 

(LLa(c))    (12) 

lossconfidence is determined using Equation (13): 

lossconfidence  = λconfidence     
       

      
          

(ci - cl)
2
 + λg     

   

    
      

          
(ci - cl)

2  
(13) 

In Equations (12) and (13) show the symbols that represent 
confidence and signify the category loss coefficient λ, 
classification loss coefficient, and confidence score. 

IV. RESULTS AND EXPERIMENTS 

This section can be separated into two experiments and 
should present a clear and accurate depiction of the 
experimental findings, their analysis, and the conclusions that 
can be drawn from the experiments. 

There were two experiments done. The initial test was 
created to assess a complete method for identifying symbols in 
engineering drawings. In this context, the aim is to enhance the 
overall efficiency of analyzing a collection of drawings by 
detecting and identifying symbols, which is an important task 
as symbols make up a significant portion of these drawings. 
This can aid in completing other tasks, such as detecting text, 
pipelines, etc. The second experiment is different from the first, 
as it concentrates on using GAN-based methods to deal with 
the problem of class imbalance. 

A. Symbol Detection Using YOLOv8 

The SLD sheets in our dataset had a size of about 
7500x5250 pixels. To avoid using computationally expensive 
training data, the SLDs were divided into 24 patches by 
multiplying their original width by 6 and their original height 
by 4. The resulting patch size was approximately 1250×1300 
pixels. The annotations for the entire SLD were used to retrieve 
data for each patch's annotations, as described in the preceding 
section. 

Symbols that spanned multiple patches were excluded from 
the training phase. After extensive testing, the third version of 
the YOLO framework was selected as it showed better 
detection rates for small objects compared to the previous 
versions. It should be emphasized that, when compared to the 
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entire image size, the technical symbols in our dataset are 
relatively small. 

To conduct the experiment, the researchers utilized a recent 
version of YOLO architecture. Initially, they configured the 
total number of classes to be 22 in all three YOLO layers, and 
then adjusted the number of filters to 3 (referred to as Classno 
5), where Classno represents the complete number of classes 
present in the dataset. 

The dataset was divided into two sets: training set with 640 
SLDs and test set with 160 SLDs, with a ratio of approximately 
80:20. A pre-trained YOLO network was used and fine-tuned 
on our dataset by adjusting all layers. YOLO was implemented 
using PyTorch. To enhance object detection for various object 
sizes, it was observed that changing the input size during 
training is effective [47]. In this study, the network input size 
was modified to 416x416 after every 10 batches, and the 
training stopped after 10,000 batches. The learning rate was 
0.001, and the batch size was 64. 

During the testing phase, the model input size was 
increased from 416×416 to 2400×2400. This enabled us to 
perform symbol detection on the original SLD images instead 
of integrating detection from the SLD patches, thereby 
simplifying the symbol detection process for an entire SLD 
diagram in one step. To evaluate the model, we experimentally 
set the Intersection over Union (IoU) threshold to 0.5 and 
compared the detected symbols with the ground truth. A 
Python-based front-end was developed utilizing OpenCV and 
other libraries to analyze and display manual errors. 

B. Training Evaluation of YOLOv8 

1) Computer hardware configuration: GPU computing is 

a preferred choice for processing deep learning on a PC [50], 

and therefore, strong hardware support is required for deep 

learning networks. The training and generation processes were 

conducted on a GPU workstation that ran on Linux, CUDA 

11.1, Python 3.8, and PyTorch 1.8.0, and was equipped with 

an Nvidia A40 4 48 GB GPU. 

C. YOLOv8 Detection Results 

The training phase produced an accuracy of 96%, while the 
testing phase produced an accuracy of 95.9%, with 11987 out 
of 12500 symbols in the test set correctly detected and 
recognized. The loss matrix for the training and validation sets  
indicates that the most of the instances of the classes were 
identified and detected accurately, indicating that symbols with 
sufficient training instances were correctly identified. An 
example output from the proposed methods is shown in Fig. 
10, with different symbols highlighted in different colors. 

In this case, the identified symbols were labeled with 
numbers, and the labels predicted by the models were noted 
down to compare them with the actual labels later. These 
symbols comprised various electrical components like 
switches, generators, motor, re-lays, inductors, as well as 
input/output labels such as "label_to" and "label_from". 

Table I in the paper contains details about the number of 
symbols in both the training and testing datasets, with columns 
labeled "No. of Training Samples" and "No. of Testing 

Samples". It also displays the accuracy achieved for each class 
in the testing set, along with the number of symbols that were 
correctly identified, listed under "Correctly Detected Samples" 
or "Class Accuracy". 

 
Fig. 10. Symbol detection using YOLOv8. 

TABLE I. YOLOV8 DETECTION RESULTS BASED ON ORIGINAL SLD 

DATASET 

Symbols 
No. of Training 

Samples 

No. of Testing 

Samples 

Class 

Accuracy 

Fuse 400 80 100% 

Circuit Breaker 300 52 100% 

Drawout 

Circuit Breaker 
600 190 99% 

Capacitor 601 20 99% 

Generator 940 400 100% 

Transformer 305 50 97% 

Voltmeter 182 20 94% 

Ammeter 550 190 100% 

Disconnect 89 10 94% 

Switch 501 115 100% 

OCB 509 290 100% 

C.T 309 80 100% 

Ground 515 140 100% 

Diode 310 30 98% 

Drawout Fuse 679 110 100% 

Inductor 185 18 98% 

The results of the study show that most instances (11987 
out of 12500) were accurately detected and identified. Fig. 10 
displays different symbols from various SLD diagrams and 
how they can be accurately recognized regardless of their 
orientation. Some symbols, such as transformers, OCB, C.T, 
ground, and delta components, have various orientations, but 
the suggested approach can correctly detect and identify them. 
Even in situations where the text overlaps, resistors and ground 
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symbols are accurately detected, demonstrating the approach's 
resilience to innate visual issues, at least in this context, as 
opposed to conventional methods. 

The round-shaped motor symbol in the testing set was 
misclassified as a generator symbol in all five instances due to 
their similarity. It is expected that increasing the number of 
training examples for this symbol, as well as other symbols in 
the majority class (such as switch, relay, C.T, inductor, 
voltmeter, load, etc.), would improve their detection rates. 

To conclude, based on the results presented in Table I, it 
can be inferred that the detection rate for the symbols load, 
resistor, and motor was very low. This could be attributed to 
the fact that there were only a few training samples for these 
symbols. The complexity of the problem notwithstanding, the 
average accuracy of the remaining 22 symbols in the dataset 
was above 95%, which is a positive result, although these 
symbols were excluded. 

D. MFC-GAN for Sample Generation and Symbol Detection 

The purpose of this study is to evaluate a GAN-based 
model that can tackle the class imbalance problem in the 
dataset, which is a classification problem as opposed to a 
recognition task like in the first experiment. The main aim of 
this experiment is to utilize the MFC-GAN model to generate 
more symbols, which can then be added to the training set to 
improve classification accuracy. 

Experiment 2 made use of a dataset that was very similar to 
the one utilized in Experiment 1, with all symbols being 
resized to 64x64 grayscale images. The problem was framed as 
a supervised learning task, where the goal was to learn a 
function f(x) that maps a given engineering symbol instance 
(xi) to its corresponding class (yi). In this case, the 22 symbols 
in the dataset were represented as a discrete set of classes 
denoted as Y, where yi belongs to Y. The dataset suffered from 
severe class imbalance, as previously mentioned, with some 
instances such as the angle choke valve being present in less 
than 0.01% of the dataset. 

In this experiment, the MFC-GAN model was employed in 
two stages, namely the GAN training stage and the 
classification stage for this experiment. The purpose was to 
address the issue of class imbalance in the dataset. The MFC-
GAN model was initially trained using all the samples in the 
dataset, with a focus on the symbols with the least 
representation. These symbols included fuse, circuit breaker, 
drawout circuit breaker, capacitor, generator, transformer, 
voltmeter, ammeter, disconnect, and switch. The numbers of 
occurrences of these symbols in the training set were 48, 344, 
790, 1340, 821, 355, 212, 740, 99, and 616 respectively. The 
model underwent training only once on this dataset, and the 
generated samples were obtained after the training. To improve 
the learning of minority instance structure while training, the 
less represented classes were resampled. 

Using the MFC-GAN model trained on the least 
represented symbols in the dataset, symbols from the minority 
class were generated. Eight symbols with the least 
representation were selected. To create a balanced dataset, 80% 
of the original dataset was used for training, and the remaining 
20% was kept for testing. The artificially generated symbols 

were added to the training set, providing more than 4,000 
additional synthetic samples for each minority class. This 
allowed the dataset to be rebalanced by increasing the 
prevalence of the least represented symbols. 

Our goal is to evaluate the effectiveness of the synthesized 
symbols by comparing the performance of a classification 
model trained before and after the inclusion of these sym-bols 
in the training set. 

The experiment employed a four-layer CNN classification 
model, consisting of three convolution layers with 32, 64, and 
128 outputs, respectively. The kernel sizes for these layers 
were 3x3, 2x2, and max-pooling. The fourth layer was a fully 
connected layer with 256 units, which represented the 22 
symbol classes, and fed into a 22-way Soft-max out-put. The 
model was trained using SGD with 64 batches and a learning 
rate of 0.001. The model's classification performance was 
assessed using standard measures like true positive rate, 
balanced accuracy, G-mean, and F1-Score, with the aim of 
comparing the model's performance before and after 
incorporating the generated symbols into the training dataset. 

1) Results: Fig. 11 displays a comparison between the 

original symbols in the diagram and the symbols generated by 

the MFC-GAN model.  

 

Fig. 11. Original SLD samples compared with MFC-GAN generated samples. 

The comparison between the MFC-GAN generated 
symbols and the original symbols of the diagram is depicted in 
Fig. 11. The generated symbols by MFC-GAN were found to 
be more accurate and precise compared to symbols generated 
by other methods. The generated samples had clear symbol 
traits and distinct categories formed in each instance. 
Moreover, these high-quality samples resulted in an improved 
performance of the classifier. For example, Table III shows 
that for the angle disconnect, which had only 99 instances of 
the class, the accuracy improved from 0 to 94%. Similarly, 
seven out of eight minority classes demonstrated similar 
improvements. However, the MFC-GAN model did not 
improve the baseline in the load and inductor classes. It was 
observed that certain symbols such as OCB, capacitor, 
voltmeter, and ammeter exhibited significant similarity despite 
being uniquely generated, which hindered the classifier's 
ability to classify the load and inductor classes. This 



((IJACSA) International Journal of Advanced Computer Science and Applications, 

Vol. 14, No. 8, 2023 

53 | P a g e  

www.ijacsa.thesai.org 

observation was further supported by the low precision data in 
Table III for these classes. 

 
Fig. 12. Sample distribution in MFC-GAN generated dataset. 

In this study, MFC-GAN models were able to produce 
occurrences of minority classes that were significantly 
underrepresented in the dataset, as demonstrated in Fig. 12. 
Both subjective and objective methods were used to evaluate 
the generated samples, including an assessment of the 
classifier's performance before and after incorporating the 
samples into the training sets. The results showed an 
improvement in performance across several commonly used 
evaluation parameters. However, it should be acknowledged 
that the class imbalance issue can only be addressed to some 
extent by MFC-GAN, and other strategies may need to be 
explored and utilized. 

The study categorizes the outcome of classification 
predictions into four groups based on the relationship between 
the predicted output and the actual value: True Positive (TP), 
True Negative (TN), False Positive (FP), and False Negative 
(FN). To assess the efficacy of defect detection, the study 
calculates the precision, recall, and F1 score of the model for 
different types of faults. Precision rate, which measures the 
accuracy of detection findings, is computed by dividing the 
number of symbols expected to be positive by the total number 
of symbols predicted to be positive. Recall rate, which gauges 
the thoroughness of detection findings, is calculated by 
dividing the number of samples expected to be positive by the 
total number of samples that actually have a positive value. 
Precision and recall are given in Equations (14) and (15): 

Precision = 
  

       
  (14) 

Recall = 
  

       
   (15) 

To evaluate classification problems, it is essential to take 
into account both the accuracy of identification and the 
completeness of detection. The model is evaluated using the F1 
score, which considers both precision and recall. Equations 
(16) and (17) express accuracy as the number of symbols that 
are correctly identified. 

F1-score = 
 

 

         
   

 

      

 = 
                    

                  
  (16) 

Accuracy =
 

 

         
   

 

      

 = 
                     

                  
s (17) 

The results of the detection data are shown in Table II. The 
attributes represent the actual class, and each row represents 
the predicted category. The total number of symbols for each 
category is calculated by adding up the numbers in each 
column. The predicted category and the total number of 
predicted symbols for that category are shown in each row. Our 
proposed method can accurately detect the majority of single 
line-based engineering symbols. In this study, the precision of 
symbol detection for all types is over 95%, the average recall 
rate is 93.67%, and the F1 score is above 0.9. The average 
frame detection time is 0.074 seconds, while the average recall 
and precision rates are 90.67% and 0.074 seconds, 
respectively. 

TABLE II. SYMBOLS GENERATED USING MFC-GAN 

Symbol 

Name 
Symbol 

Original 

Instances 
Generated Instances 

Fuse  480 2380 

Circuit 

Breaker 
 344 2400 

Drawout 

Circuit 
Breaker 

 790 1800 

Capacitor  821 2011 

Generator  1340 2219 

Transformer  355 2200 

Voltmeter  212 2587 

Ammeter  740 2500 

Disconnect  99 1900 

Switch  616 1800 

OCB  799 1800 

C.T  389 2178 

Ground  655 2100 

Diode  340 2291 

Drawout 

Fuse 
 589 2408 

Inductor  203 1790 

Delta  840 1990 

    

Resistor  700 2455 

Air Circuit 

Breaker 
 780 1870 

Iron-core 

Inductor 
 750 1950 

Load  117 1701 

Motor  541 1870 
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V. DISCUSSION 

This section may be divided into two subsections which 
provide comparisons and conclusive remarks on the 
experiments. 

A. Comparison with Different Data Augmentation 

Techniques 

Table II displays the frequency of the different classes in 
both datasets. After generating synthetic SLD images using 
MFC-GAN, it can be observed that the new samples are 
approximately balanced. However, to address the issue of class 
imbalance, the original dataset could be improved by including 
additional distinct and separate photos. 

TABLE III. YOLOV5 CLASSIFICATION PERFORMANCE OF SYMBOLS ON 

AUGMENTED DATASET 

Metric 

S
w
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h
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G
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L
o
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d
 

In
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F
u

se
 

R
e
si

st
o
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Precision 1.00 1.00 0.85 0.89 1.00 1.00 1.00 1.00 

Recall 0.94 0.89 0.92 1.00 1.00 0.90 0.91 0.87 

F1-score 0.89 0.94 0.91 0.95 0.88 0.90 0.92 0.91 

Accuracy 1.00 0.98 0.99 1.00 1.00 1.00 1.00 1.00 

We conducted an experiment to test the accuracy and 
performance of YOLOv8 in various conditions and 
configurations using 800 images, and an example of the 
detection results can be seen in Fig. 13. The accuracy testing 
and performance of the experiment using images from our 
datasets are displayed in Table IV. YOLOv5 is generally more 
accurate than its recent version. Group 2, which is the 
augmented dataset, had the highest average accuracy of 96% 
when using YOLOv5, with only five detection errors. YOLO's 
performance can be improved by utilizing a large dataset that 
includes both real and synthetic images generated by GANs. 
When a deep learning-based method is trained on a small and 
insufficient dataset, it may result in overfitting and difficulties 
in mapping the object [52]. Adding noise or generating fake 
images during training can make the process of learning the 
input image from the output image easier, reducing general 
errors, and enhancing the training component [53]. Thus, to 
improve item identification accuracy, it is necessary to include 
synthetic images in addition to actual photographs. 

B. Missed Detection 

Table V presents the outcomes of the evaluation of the 
model on the SLD components dataset, revealing that there 
were a total of 52 instances where the SLD components were 
either absent or wrongly classified as some other symbols. Out 
of these occurrences, eight symbols were misclassified, while 
the remaining 46 symbols were not detected entirely. This 
issue can be attributed in part to the nature of some drawings, 
where symbols are nearly completely obscured by text and 
comments. The Intersection over Union (IOU) metric in Table 
V confirms that these missed symbols have a zero IOU, 
indicating that they were not detected by the model. 

TABLE IV. COMPARISON OF YOLOV8 AND YOLOV5 CLASS ACCURACY 

Dataset Accuracy Wrong Detection Missed Detection 

Original 95% 8 46 

Augmented 96.3% 3 2 

 
Fig. 13. Symbols detected in augmented dataset. 

After conducting a visual inspection of the data in Table V, 
some symbols were found to be mislabeled. Specifically, when 
reviewing the results for the switch representation, it was 
observed that the algorithm had predicted the correct class for 
symbols with an incorrect label. However, for some symbols, 
the algorithm had predicted the wrong class label. 

TABLE V. SYMBOLS MISSED OR OVERLOOKED BY THE CLASSIFIERS 

Class 

No of S ample 
Occurrence 

Predicted 
Sample Class IOU 

Y
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v
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Y
O

L
O

v
5
 

Disconnect 2 5 Switch Ground 0.50 0.91 

Load 1 3 - Fuse 0.56 1.00 

Inductor 2 4 - - - 0.00 

Voltmeter - 16 - - - 0.00 

Diode - 10 - - - 0.00 

Circuit 

Breaker 
- 8 - - - 0.00 

VI. CONCLUSION AND FUTURE RECOMMENDATION 

In this study, we proposed a system for analyzing and 
processing complex engineering drawings. Our approach 
achieved more than 96% accuracy in recognizing symbols on 
the drawings, based on extensive testing on a large collection 
of SLD sheets provided by an industry partner. We utilized 
advanced bounding-box detection techniques, which 
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demonstrated high accuracy in identifying symbols from 22 
different categories, despite some of these symbols having only 
minor differences. To address class imbalance in the symbol 
dataset, we suggested a GAN-based model. Our experiments 
showed that our system could generate realistic engineering 
symbols, and adding this synthetic data to the training set 
improved classification accuracy. According to the 
experimental results, the proposed GAN model was capable of 
learning from a smaller amount of training in-stances. 

The subsequent emphasis of this study will be on the 
application of GANs to the creation of symbols in a schematic 
environment. In future development, an integrated system will 
be created using the recommended methods to enable thorough 
analysis and processing of technical diagrams like SLD. This 
approach will make it much easier to per-form additional tasks 
such as line detection or text localization. Furthermore, future 
work will involve combining Explainable AI (XAI) and other 
GAN methods such as WGAN, CycleGAN, PCCGAN, and 
StyleGAN with other detection techniques. 
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