
(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 14, No. 8, 2023

550 | P a g e

www.ijacsa.thesai.org

A Proposed Framework for Context-Aware Semantic

Service Provisioning

Wael Haider
1
, Hatem Abdelkader

2
, Amira Abdelwahab

3

Department of Management Information Systems, Higher Institute of Qualitative Studies, Heliopolis, Cairo 11757, Egypt
1

Department of Information Systems-College of Computers and Information,

Menoufia University, Shibin Al Kawm 32511, Menoufia, Egypt
1, 2, 3

Department of Information Systems-College of Computer Sciences and Information Technology,

King Faisal University, P.O. Box 400, Al-Ahsa 31982, Saudi Arabia
3

Abstract—Web-hosted Internet of Things (IoT) applications

are the next logical step in the recent endeavor by academia and

industry to design and standardize new communication protocols

for smart objects. Context Awareness is defined as the property

of a system that employs context to provide related information

or services to the user, where the relationship is based on the

user's task. Therefore, context-aware service discovery can be

defined as utilizing context information to discover the most

relevant services for the user. Merging context-aware concepts

with the IoT facilitates IoT system developments that depend on

complex environments with many sensors and actuators, user,

and their environment. The main objective of this study is to

design an abstract framework for provisioning smart objects as a

service based on context-aware concepts while considering

constraints of bandwidth, scalability, and performance. The

proposed framework building blocks include data acquisition

and management service and data aggregation, and rules

reasoning. The proposed framework is validated and evaluated

by constructing an IoT network simulation and testing accessing

the service in the traditional method and according to the

proposed framework and comparing the results.

Keywords—Internet of Things (IoT); Web of Things (WoT);
Web of Objects (WoOs); context-awareness; service
provisioning; interoperability; ontology; OWL

I. INTRODUCTION

Every object in our environment, including chairs, gas
meters, electricity meters, curtains, lights, office equipment,
and home appliances, should be transformed into Internet-
connected smart objects to improve a variety of application
domains (e.g., building automation, healthcare services, smart
grids, transportation, and environmental monitoring).

A smart object is defined as an entity that is provided with
a sensor or actuator, a microprocessor, memory, a
communication module, and a power source. The Lowpower
Wireless Personal Area Network (LoWPAN) is a crucial
component of the IoT due to its advantageous features such as
energy efficiency, widespread accessibility, and the ability to
integrate smart objects with the Internet [1].

The IoT has emerged as a transformative force in recent
years, connecting billions of devices worldwide and generating
massive amounts of data. These connected devices have the
potential to drive numerous applications, from smart homes
and healthcare to transportation and industry automation.

However, the sheer volume and diversity of IoT data often
makes it challenging to extract meaningful insights and
enhance user experiences.

One way to address this challenge is by incorporating
context awareness into IoT systems. Context-awareness refers
to the ability of a system to understand and respond to its
environment by considering various contextual factors such as
time, location, and user preferences. By incorporating context
awareness, IoT devices can adapt to their surroundings and
provide personalized experiences to users.

The main contribution in this paper, that we propose a
novel Context Awareness IoT framework that combines the
Context Awareness concept with the IoT concept, considering
performance problems related to limited smart objects
resources.

A. Internet of Things

In 1999, Kevin Ashton introduced the concept of the IoT
while working at the Auto-ID Center at MIT. The research
conducted at this center focused on network radio frequency
identification (RFID) and sensor technologies [2], in which
People and things could provide information about their
current state and their surroundings in a much more efficient
manner [3]

IoT comprises wireless systems that are compact in size
and interconnected with each other. These systems are
equipped with computational capabilities and can transfer data
over a network without the need for human interaction. These
smart objects are identifiable, can be accessed, and can be
programmed locally or remotely via the Internet. They are
designed to monitor or control smart spaces. The
underutilization of the potential of IoT devices in various
domains can be attributed to the limited expressivity and high
heterogeneity of the commonly employed scenario
programming paradigms [4]. IoT plays a vital role in many
domain areas, such as home automation [4], elderly care [5],
[6], home safety [7], energy efficiency, and preservation [8],
[9].

Recently, research has focused on the connectivity of all
physical objects and information environments to the Internet
to enable a user to access and control things from anywhere
and at any time, which coined the term IoT. IoTs enable

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 14, No. 8, 2023

551 | P a g e

www.ijacsa.thesai.org

smaller, less complex devices to do complex tasks by
enhancing their intelligence and connectivity.

IoT is converting smart spaces from hype into reality. IoT
lacks standardization at the application level. IoT devices have
limited computational power and memory [10].

The number of devices connected to the Internet has grown
significantly in recent years. Perceiving reality through
digitizing some parameters of interest can provide a massive
amount of data. This data is then shared across the network
with other devices, applications, and infrastructures. The IoT
paradigm is based on this dynamic and ever-changing world.
To date, countless IoT-based applications have been developed
considering smart Cities, smart roads, and smart industries [9].

IoT systems face many challenges which make them
exploit the intrinsic potential of IoT devices, such as high
heterogeneity of the devices and protocols, which results in
limited interoperability.

The IoT paradigm has the potential to merge the boundaries
between physical objects and computational devices through
their interconnectivity via the Internet. This interconnectivity
holds the promise of delivering user-centric services that
consider both the user's context and profile information [10].

For example, traditional regulation of classroom
temperature consists of power on the air conditioner set to the
desired temperature and letting the internal thermostat do the
rest. However, a smart IoT system could find the best way to
cool down the classroom temperature based on the integration
of context awareness, ontology, and IoT. For instance, by
combining data from internal thermometers, current time,
online weather services, and the current number of students, it
can decide to just open the window instead of simply turning
on the air conditioner, thus saving energy. Also, the system
will increase and decrease temperature based on the number of
students. Additionally, the same system could automatically
close the air conditioner when there is no person in the
classroom. Therefore, it is required to manage all forms of data
and events that are collected from sensors and devices. For
example, simple events (such as the door being opened) and
activities (such as the professors and students going out of the
classroom) can be translated into context information. It could
be accessed by a service that monitors the classroom (e.g., the
lecture ended) and a notification sent to the person responsible
for this classroom.

B. Context Awareness

Context is defined as information that can be used to
characterize the situation of an entity in context-aware
computing literature. An entity is a person, location, or thing
that is related to the interaction between a user and an
application, including the user and the application [11], [12].

On the other hand, context awareness is defined as the
property of a system that employs context to provide
related information or services to the user, where the
relationship is based on the user's task. Therefore, context-
aware service discovery can be defined as utilizing context
information to discover the most relevant services for the user
[11], [13].

Proposing a service-oriented architecture SOA to abstract
the complexity in the access to smart devices so that the
devices can be viewed as a service (thing as a service). This
will enable the smart system development team to focus only
on their functional requirements instead of device-specific
technical details. Context from the web service perspective:

 From the service requester's perspective, context is
defined as the surrounding environment affecting the
requester's Web services discovery and access.

 From the perspective of the services, context is defined
as the surrounding environment affecting Web services
delivery and execution.

To achieve successful IoT systems, there is a need to
integrate a context awareness system with IoT.

Context-aware solutions face numerous challenges,
including managing the heterogeneous and massive amount of
data generated by IoT devices. Second, how to store and
handle events, as well as infer higher-level activities from a set
of simple events. Finally, use the development framework to
implement applications across multiple domains [14].

The growth of the IoT created a fragmented landscape with
many devices, technologies, and platforms, creating
interoperability issues on many system deployments [15].

Interoperability is one of the most significant barriers to
promoting IoT adoption and innovation.

C. Interoperability

Nowadays the ecosystem of the IoT is currently facing a
lack in terms of interoperability among the various competing
platforms that are presently accessible [16].

Semantic Web (SW) technologies, which consist of an
open set of recommendations for associating data with their
formal meaning, have been demonstrated to be a suitable
means of achieving data interoperability in IoT systems [17].
The reason for using SW technologies is its inference
capabilities over semantically annotated data.

Similar to Semantic Web's vision for the Web of Linked
Data, the literature on deploying Semantic Web technologies to
IoT focuses on semantically annotating data from smart
objects. The most prevalent method for representing semantics
is Resource Description Framework (RDF), which represents
knowledge as triples (subject, predicate, object) (for example,
[TempSensor105, Value, 25] and [TempSensor105, Location,
Lab2]). A set of triples constitutes a graph consisting of
subjects, objects, and predicates. The benefit of RDF and graph
data models is that new knowledge can be inferred from an
existing graph. Using domain knowledge, a system can
comprehend, for instance, that the temperature in Lab 2 is 25
degrees Fahrenheit, which is a transitive property. Web
Ontology Language (OWL), one of the primary languages
(with RDF schema) used to define ontologies on the web, is
frequently used to express domain knowledge to perform the
annotation on intelligent [18]. Recently, there has been a lot of
research into how SW technologies, in particular OWL
ontologies, can be used to improve the IoT field's poor
interoperability [4].

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 14, No. 8, 2023

552 | P a g e

www.ijacsa.thesai.org

Several solutions exist to facilitate interoperability among
diverse IoT platforms and application domains. One such
solution is the Web of Things (WoT) architecture, recently
introduced by the W3C consortium [19].

WoT is a paradigm devised by the World Wide Web
Consortium (W3C) on top of the IoT concept. It provides
standard mechanisms to interact with any type of device from
any automatic system using a descriptive JSON file called
Thing Description [20].

Rule-based programming approaches are suitable for IoT
automation systems due to their simplicity and intuitive use.
One of the most common tools used in programming IoT
scenarios using trigger action rules is IFTTT which has many
limitations, such as low-level abstraction and low
generalization [4], [21].

This paper is organized as follows: an introduction is
presented in Section I. Section II illustrates some of the related
works. Section III presents the general architecture of the
proposed framework. Section IV shows the experiments and
results. Section V presents the conclusion and future works.

D. Web of Objects

Web of Objects (WoOs) objectifies and virtualizes real‐
world objects to support intelligent features and provide
Realtime data about the physical world by representing them as
Web resources, which can be accessed using the lightweight
REST-based APIs principles rather than the heavyweight
SOAP-based architecture. Any object with a sensor or actuator,
CPU, memory, communication, and power source is
considered smart. The web is an ideal universal platform for
IoT applications because it uses open standards and can be
accessed from any device. In the web environment, sensors or
actuators can offer their capabilities via a REST-based API
(e.g., URI/lightON and URI/light OFF), which enables objects
to interact dynamically. Service provisioning is the process of
providing smart object services to the web, similar to
traditional web services available on the web. Any web
application that communicates with smart objects via
communication networks and Web standards is referred to as
an IoT application on the web [22].

The smart environment comprises sensors, actuators,
interfaces, and appliances networked together to provide
localized and remote control of the environment. Sensing and
monitoring the environment include temperature, humidity,
light, and motion. Environment control such as heater and fan
ON/OFF control is provided by the actuator having dedicated
hardware interfaces and computing capabilities. Localized
control is provided by Bluetooth and remote access through
WiFi. The RESTful architecture enables interoperability in
Smart space WoOs Architecture.

Semantic ontology helps ubiquitous environments address
key issues like knowledge representation, semantic
interoperability, and service discovery and provides an efficient
platform for building highly responsive and context-aware
interactive applications.

According to the following reasons, information systems'
ability to communicate with smart objects has become more
complicated:

 Many hardware devices rely on proprietary protocols
to perform their functions.

 Many devices have embedded software that remains
constant over their entire lifespan.

 Semantic annotation for the sensors and the services.

 Service discovery and subscription.

 Simultaneous requests.

 Service authorization.

 Web API generation.

II. LITERATURE REVIEW

There have been several studies focused on how to apply
Web paradigms and protocols to service provisioning, such as
Service-Oriented Architecture (SOA), RESTful service
(REST), Semantic-based provisioning, and the WoT.

Sciullo et al. [15] propose a WoT Store, a centralized
repository for managing resources and applications on the
WoT. While the proposed system has several potential
benefits, there are also some limitations and disadvantages to
consider. The WoT Store system may rely heavily on
centralized infrastructure, which can lead to scalability,
reliability, and security challenges. Additionally, the system
may require developers to use a specific set of APIs and
communication protocols, which could limit the flexibility and
interoperability of IoT devices and applications. Nonetheless,
the paper presents a prototype implementation of the WoT
Store system and evaluates its performance in terms of
resource discovery time and application deployment time,
demonstrating the effectiveness of the proposed system for
managing IoT resources and applications on the WoT.

Iqbal et al. [22] propose an interoperable IoT platform that
can be utilized in a smart home system. The proposed platform
employs WoO and cloud architecture. The platform under
consideration offers the capability of achieving interoperability
among a range of legacy home appliances, diverse
communication technologies, and protocols. The platform
facilitates remote control of household appliances and enables
the storage of home data in the cloud for use by diverse service
providers' applications and analytical purposes. The article
proposes potential areas for further research, including the
incorporation of machine learning algorithms, the deployment
of a mobile application, and the creation of a security
framework for the smart home system. The proposed
architecture is extensible to a variety of smart building use
cases, including factories, offices, smart infrastructure, etc.

Ibaseta et al. [23] propose a new methodology for the
monitoring and controlling of energy usage in constructions
through the utilization of WoT technology. The proposed
methodology incorporates diverse building systems and
devices, such as lighting, occupancy sensors, and smart plugs,
through a cloud-based platform that employs web protocols

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 14, No. 8, 2023

553 | P a g e

www.ijacsa.thesai.org

and standards. The present study showcases a suggested
methodology through a case study of a retrofit project
undertaken in an office building. The results indicate that the
proposed approach is both cost-effective and energy-efficient
while also being interoperable and scalable. Furthermore, the
study suggests that this approach can be implemented in real-
world settings.

Reda et al. [4] propose a knowledge-based approach for
home automation systems using IoT devices. The proposed
approach aims to achieve greater expressivity and a higher
level of abstraction needed to build knowledge-enabled and
reasoning-capable home automation systems so that the
potential offered by IoT devices can be fully exploited. The
paper demonstrates the feasibility and efficiency of the
proposed approach in a simulated house environment, and it
contributes to the development of home automation systems by
providing a new approach that uses web standards and public
ontologies to implement well-defined reasoning without the
need for ad hoc control programs or ontologies. The paper also
suggests several future works, including investigating the
scalability of the proposed approach, evaluating it in a real-life
setting, comparing it with other existing approaches, extending
it to support more advanced reasoning capabilities, and
developing a user-friendly interface for configuring and
managing the proposed approach.

Gochhayat et al. [10] propose LISA Lightweight Context-
Aware IoT Service Architecture for managing and efficiently
managing and delivering push-based services in an IoT
environment designed to minimize the overhead of
communication and processing while using context
information such as device capabilities, user preferences, and
environmental conditions to provide personalized and efficient
IoT services. LISA filters and forwards the most important and
relevant services to the users by understanding their context.
The paper evaluates the scalability of LISA through
simulations that test its ability to handle many IoT devices and
services. The results show that LISA can scale efficiently to
support many devices and services while maintaining
acceptable levels of performance. However, the paper also
acknowledges some limitations of LISA, such as limited
support for complex services and limited scalability with
centralized deployment.

Krati et al. [24] discuss the challenges of maintaining
excellent air quality in indoor environments. It proposes a
context aware IoT system that collects data, predicts ventilation
conditions, and provides the end user with alerts and
recommendations. Through a smartphone application, the
system notifies the end-user of contextual information
regarding the indoor environment and current ventilation
conditions. The system can also provide the end-user with
recommendations on improving ventilation and reducing
indoor pollutant levels, such as opening windows, installing air
purifiers, and modifying the HVAC system. Using the
ventilation rate calculated with the aid of interior CO2
concentration, multilevel logistic regression is used to define
indoor ventilation states using ventilation rate. K-NN
classification technique to predict ambient ventilation.

Xue et al. [25] examine the advancement of context-aware
information fusion technology in the context of smart libraries,
employing IoT situational awareness. This paper presents a
comprehensive examination of the present status of smart
libraries and context-aware technology while also conducting
an analysis of the implementation of context-aware technology
within smart libraries. This paper presents a conceptual
framework for implementing a smart library, which leverages
context awareness to enhance its services. It further proposes
integrating context-aware services within smart libraries to
optimize user experiences and improve overall functionality.
The aforementioned findings propose potential avenues for
future research in this field. These include the advancement of
more precise algorithms for context-aware information fusion,
the investigation of alternative IoT technologies, and the
resolution of ethical and privacy issues. In general, the paper
emphasizes the potential of the IoT situational awareness
technology in improving the efficacy and efficiency of
intelligent libraries.

Kim et al. [26] present a middleware architecture for a
context-aware system in a smart home environment. To infer
high-level contexts from available low-level contexts, the
proposed architecture incorporates a profile-applied improved
rule-based reasoning algorithm. The context is modeled using
OWL and ontology. The experimental result demonstrates that
the middleware provides more accurate and quicker reasoning
results than the conventional rule-based method. In addition,
the context-aware service is also selected using a rule-based
algorithm, allowing the service to be readily expanded by
adding new service rules to the service rule base.

In this paper, a Service-Oriented Context-Aware
Middleware (SOCAM) architecture is proposed for developing
and prototyping context-aware services in pervasive computing
environments. To develop context-aware services, architecture
provides efficient support for acquiring, discovering,
interpreting, and accessing diverse contexts. In addition, the
paper proposes a formal context model based on Web
Ontology Language and ontology to address issues such as
semantic representation, context reasoning, context
classification, and dependency. The context model and
middleware architecture are described, as well as the
prototype's performance in a smart home environment [27].

III. PROPOSED FRAMEWORK

IoT service provisioning techniques must take into
consideration how to provide service consumers with complete
data, including sensor data as well as its context and don't
overwhelm the consumer with repeated information.

In addition, the rapid growth of IoT services available to
users will result in a significant increase in information
overload and network resource consumption. The exponential
growth in the number of services available presents a challenge
in selecting and providing the appropriate service from the vast
array of required services. Therefore, to locate the most
pertinent service, it is essential to construct an accurate query
that considers the consumer's context.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 14, No. 8, 2023

554 | P a g e

www.ijacsa.thesai.org

In this section, we present our proposed service
provisioning framework called CSSP, Fig. 1 presents the
proposed framework, and we will discuss how to overcome the
problems related to integrating IoT and Context-aware systems
in a scalable manner which will be described in detail in the
following sections.

A. Data Acquisition and Management Service

This layer is the core layer of the framework which is
responsible for all operations related to collecting sensor data
and storing it locally. This layer has many data collection
mechanisms to overcome the limitation of IoT sensors. The
purpose of this layer is to hide the details of data collection and
protocols used from users; user may be a web developer or

mobile developer who interacts with sensors as a virtual object.
Our methodology for collecting sensors data is based on three
levels:

 Collect sensor data using the suitable protocol and
according to the user role (Fig. 2 shows accessing
sensor value through CoAP protocol in the Cooja
simulator from a web browser).

 Annotate sensor data with context using ontology. For
example, Fig. 3 shows how to model the value of
temperature using context aware. There are many
methods to represent RDF, such as Triples, Shorthand
notation, and XML notation, showing the use of
Shorthand notation code to model sensor values.

Fig. 1. The proposed framework (CSSP).

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 14, No. 8, 2023

555 | P a g e

www.ijacsa.thesai.org

Fig. 2. Accessing CoAP sensor value.

Fig. 3. Temperature sensor value representation using RDF Graph.

The example in Listing. 1 show how to use shorthand
notation to model sensor data.

Listing. 1. Sensors reading representation using RDF

 Save the generated data in a triple store. This
component starts working through the system admin
when the admin wants to add a sensor. The admin fills
in some data about the sensor, and the component
generates an abstract service template according to the
specified protocol. The admin customizes the service,
such as customizing the result format or any metadata
about the result, and how to read the data from pin id,
etc.

The service itself is described using an ontology. Every
detail about the service is described, such as URL, Endpoints,
data format, category, location, etc. Admin can start, stop, and
remove any service in the framework at any time. After the
admin creates, customizes, and describes the service, the
service will be added to the server to allow access to sensor
data based on identified mechanism.

In our view of data Acquisition of sensors, it depends on
the used protocol, the role of the user, and the status of data
(Realtime data or cashed instant data).

We can view the data generated from IoT sensors as the
following:

 Object Data Realtime

 Object Data Scheduler

 Object Data Subscribe

@prefix so: <http://cssp.com/sensor#> .
so:Temp101 hasValue 20

so:Temp101 hasTimestamp 2022-12-10T15:31:00Z"^^xsd:dateTime

so:Temp101 hasLocation Room101

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 14, No. 8, 2023

556 | P a g e

www.ijacsa.thesai.org

All these components depend on ontology to describe IoT
devices.

1) Object data realtime: This is the simplest and most

direct way to access sensor data which is used by Realtime

role users. Based on the type of IoT device, it offers GET

operation in case of getting data from the device, else if the

device is an actuator, it will have GET and POST operations,

Also Mapping of CoAP [28] URI requests to standard web

requests.

Data generated from sensors or written to actuators are not
meaningful without a description, so we use ontology to
describe the context of sensor values such as location, time,
and available people.

After the description of sensor data, we add this data to
triple store locally and the most recent value to a cache server
which can be used by other users who are not concerned with
instant data from sensors.

This role is very important in cases of emergencies where
milliseconds can be important for patients or the elderly, so we
must decrease the request count on sensors for any user.

2) Object data scheduler: This is one of the most

important components of the framework and is commonly

used by many types of users. This mechanism works with the

normal users of the system.

There are many task queues to distribute task requests and
categorize task queues for every type of sensor. First, it checks
the cash server to see if available recent data is present. If ok, it
will return and delete the request. Else, the request will be
added to the suitable task queue. After the worker gets the
value, the component describes the value, and it is to tribble-
store and adds the value to the cache server Scheduler
threshold settings are configured using system admin.

3) Object data subscribe: This mechanic is frequently

used for monitoring purposes, and it uses different protocols,

such as Message Queuing Telemetry Transport MQTT [28] to

allow the user to subscribe to a collection of sensor value

changes. The layer also adds context data to the value returned

and adds it to the tribble store and cache server.

B. Data Aggregation and Rules Reasoning

In the Data Acquisition and Management Service layer, the
data is distributed on edges and have duplicates in the data
aggregation layer. The framework will do the following:

 Save Stream to Store

 Reasoning Task

 Retrieve Historical Data

1) Save stream to store: In this phase, First, the system

checks sensors data and stores only incoming new unique data

and ignores repeated values. The service receives only new

values to reduce the size of the data. Secondly, extracted

common data from ontology was done on the local edges. In

this phase, we complete the data of the sensor. We extract

metadata or minimize to reduce used bandwidth used to

transfer sensor data from edges to a data store. Finally, the IoT

value will be stored in the triple store database.

2) Reasoning task: In his phase, we define rules which

can be used to infer new knowledge from sensor data. Any

rules engine base can be used, such as SWRL rules. When any

activity is detected based on rules, sensors, and context data,

action is taken and also described and saved in the RDF triple

store. The following example in Listing. 2 demonstrates an

example of the SWRL rule to regulate air conditioners in a

classroom based on current readings from temperature

sensors, the number of persons in the same room, and the state

of the window.

In this example, hasNumberOfStudents, hasTemperature,
and hasWindowState are individual properties that represent
the number of students in the classroom, the temperature in the
room, and the state of the window (open or closed),
respectively. hasAirConditionerState and
hasTemperatureSetting are individual properties that represent
the state of the air conditioning system (on or off) and the
temperature setting, respectively. The SWRL rules in this
example take into account the number of students in the room,
the temperature in the room, and the state of the window to
determine the appropriate state and temperature setting for the
air conditioning system. For example, if there are less than 10
students in the room and the temperature is above 25°C, the air
conditioning system will be turned on and set to cool the room
down to 24°C. On the other hand, if the window is open, the air
conditioning system will be turned off regardless of the number
of students or temperature.

3) Retrieve historical data: Cause we have a triple store,

we can run the system in two methods:

 REST API: this is a simple method and can be used by
any developer to call API for getting device data by its
id and during a specific period.

 SPARQL Query: this is the standard language used to
query from triple store TDB and which will be
important in the case of a query for historical data in
the TDB.

C. Client Side

The client-side layer is the layer responsible for collecting
context data and sending this context with the service request,
for example, when the user in a smart home environment wants
to turn on the air conditioner, and there are many types of
contexts information that can be sent with requests such as the
room of the user (location), current temperature from internet
service, number of users in the rooms, and preferred
temperature from user profile.

D. Load Balancer

The load balancer layer is an optional layer in our
framework according to the application size and number of
users. This layer is responsible for receiving a request, then
finding an available server and routes the request to this server.
Load balancers, including physical appliances, software
instances, or a combination of the two.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 14, No. 8, 2023

557 | P a g e

www.ijacsa.thesai.org

Listing. 2. the SWRL rule example to regulate air conditioners in classroom

E. Environment

This layer is responsible for the IoT environment we want
to monitor and control locally or through the Internet, which
has sensors and actuators. This layer needs to use a gateway
such as Arduino and Raspberry Pi to control various digital or
analog devices.

IV. EXPERIMENTS

To confirm the proposed framework's effectiveness, an
experiment has been applied to evaluate the response time in
the case of traditional requests and in the case of our
framework. We build a simple IoT network in a Cooja
simulator [29] and test simultaneous requests for the sensors,
then measure and compare the performance of requests for the
traditional request and our framework.

1) Dataset: The environment used to generate these

datasets was Contiki 3.0 OS (Ubuntu 18.04 Based) in a

virtualization environment (VMware application). The device

used for generating datasets is a laptop with a Core I5

processor and 8 GB Ram (2 GB for the virtual machine). The

Cooja simulator was used to build a simulation of an IoT

network.

We built a Python application to simulate the request of the
huge simulation for a sensor in case of a CoAP request and
proposed HTTP request (500 requests simultaneously) and then
saved the details of requests and responses in a CSV file. In the
case of a CoAP request, the log file will contain the following
attributes: request id, start time, end time, response time, status,
and value. In the case of the proposed HTTP, we added an
attribute to indicate the source of data, which will be physical
sensor data or from a cache server. Two data sets for CoAP and
HTTP are generated.

2) Results and discussion: Based on the simulation

results, it is observed that an increased number of CoAP

requests to the sensor resulted in a significant exponential

increase in response time. This effect can be attributed to the

absence of scheduling or caching mechanisms, as the direct

access of sensor values contributed to longer response times.

A sample of requests and their corresponding response times

are illustrated in Table I (Sample of CoAP Requests Dataset)

and Table II (Sample of Proposed HTTP Requests Dataset).

TABLE I. SAMPLE OF COAP REQUESTS DATASET

Request Number Response Time

145 1.9

404 2.6

147 3.8

474 4.6

48 6.9

281 7.9

70 8.9

442 9.9

419 10.5

41 14.9

112 16.9

78 17.9

126 18.8

289 19.9

204 20.9

346 21.9

475 22.2

98 31.9

250 32.8

TABLE II. SAMPLE OF PROPOSED HTTP REQUESTS DATASET

* C: Cached * R: Realtime

Request ID Response Time Value Type

73 0.11 240 C

132 0.15 240 C

347 0.14 76 C

1 0.72 240 R

38 2.16 240 C

364 3.37 122 C

252 4.74 122 C

95 7.13 122 C

10 15.53 54 L

hasNumberOfStudents(?classroom, ?numStudents) ∧ hasTemperature(?classroom, ?temp) ∧ hasWindowState(?window, ?state)

→ hasAirConditionerState(?aircon, ?airconState)

∧ lessThan(?numStudents, 10) ∧ greaterThan(?temp, 25) ∧ equal(?state, closed)

→ hasAirConditionerState(?aircon, on)

∧ hasTemperatureSetting(?aircon, 24) ∧ greaterThanOrEqualTo(?numStudents, 10)

∧ lessThanOrEqualTo(?numStudents, 20) ∧ greaterThan(?temp, 25) ∧ equal(?state, closed)

→ hasAirConditionerState(?aircon, on)

∧ hasTemperatureSetting(?aircon, 23) ∧ greaterThan(?numStudents, 20) ∧ greaterThan(?temp, 25) ∧ equal(?state, closed)

→ hasAirConditionerState(?aircon, on) ∧ hasTemperatureSetting(?aircon, 22)

∧ equal(?state, open)

→ hasAirConditionerState(?aircon, off)

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 14, No. 8, 2023

558 | P a g e

www.ijacsa.thesai.org

Fig. 4. CoAP response time.

In the traditional approach, the results from our analysis
showed that approximately 32% of the requests failed due to
this lack of optimization and huge simultaneous requests to the
same sensor. The processing time for all requests is 47
seconds. Fig. 4 shows a graph representing the sensors direct
access performance through the CoAP protocol.

The implementation of scheduling and caching mechanisms
as well as a time threshold established in the system
configuration affect the response time in our proposed
prototype. As per this threshold, the initial request may
experience a relatively longer latency, but subsequent requests
are expected to have faster and more consistent response times.

In the proposed approach, the results from our analysis
show that the simulation conducted with this prototype
revealed a failure rate of 0%. Additionally, the data analysis in
the table indicates that a significant portion of sensor data is
obtained from the cache server. Consequently, most responses
were delivered within an acceptable timeframe, ensuring
efficient and reliable system performance. The processing time
for all requests is 16 seconds. Fig. 5 shows a graph
representing the sensors access performance through the
proposed framework based on the HTTP protocol.

Fig. 5. Poposed HTTP response time.

Fig. 6. Performance comparison of CoAP and proposed HTTP.

Fig. 6 shows a graph representing a comparison of
performance according to response time to the CoAP protocol
(traditional direct access) and HTTP protocol (Proposed
framework).

V. CONCLUSION AND FUTURE WORKS

This paper proposes a context-aware semantic service
provisioning framework. The framework focuses on producing
solutions for many problems by providing smart devices as
smart objects in standard web environments and facilitating the
development of any category of IoT application.

The framework was organized to solve many network
problems such as bandwidth, scalability, limited resources of
smart devices, semantic annotation, and reasoning.

The proposed framework is validated and evaluated by
testing accessing the service in the traditional CoAP protocol
and according to the proposed framework and comparing the
results. The evaluation shows that the proposed framework
increases performance and decreases failed requests.

In the future, we will try to test this framework in a real
environment, and we will try to increase the performance.

REFERENCES

[1] S. N. Han and N. Crespi, “Semantic service provisioning for smart
objects: Integrating IoT applications into the web,” Future Generation
Computer Systems, vol. 76, pp. 180–197, Nov. 2017, doi:
10.1016/J.FUTURE.2016.12.037.

[2] K. Avila, P. Sanmartin, D. Jabba, and M. Jimeno, “Applications Based
on Service-Oriented Architecture (SOA) in the Field of Home
Healthcare,” Sensors (Basel), vol. 17, no. 8, Aug. 2017, doi:
10.3390/S17081703.

[3] Kevin Ashton, “That „internet of things‟ thing,” RFID journal, vol. 22,
no. 7, 2009.

[4] R. Reda et al., “Supporting Smart Home Scenarios Using OWL and
SWRL Rules,” Sensors (Basel), vol. 22, no. 11, Jun. 2022, doi:
10.3390/S22114131.

[5] S. Y. Y. Tun, S. Madanian, and F. Mirza, “Internet of things (IoT)
applications for elderly care: a reflective review,” Aging Clin Exp Res,
vol. 33, no. 4, pp. 855–867, Apr. 2021, doi: 10.1007/S40520-020-01545-
9/TABLES/4.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 14, No. 8, 2023

559 | P a g e

www.ijacsa.thesai.org

[6] A. S. Salama and A. M. Eassa, “IOT AND CLOUD BASED
BLOCKCHAIN MODEL FOR COVID-19 INFECTION SPREAD
CONTROL,” J Theor Appl Inf Technol, vol. 15, no. 1, 2022, Accessed:
Aug. 22, 2023. [Online]. Available: www.jatit.org

[7] Taryudi, D. B. Adriano, and W. A. Ciptoning Budi, “Iot-based
Integrated Home Security and Monitoring System,” J Phys Conf Ser,
vol. 1140, no. 1, p. 012006, Dec. 2018, doi: 10.1088/1742-
6596/1140/1/012006.

[8] V. Marinakis and H. Doukas, “An Advanced IoT-based System for
Intelligent Energy Management in Buildings,” Sensors (Basel), vol. 18,
no. 2, Feb. 2018, doi: 10.3390/S18020610.

[9] M. Lombardi, F. Pascale, and D. Santaniello, “Internet of Things: A
General Overview between Architectures, Protocols and Applications,”
Information 2021, Vol. 12, Page 87, vol. 12, no. 2, p. 87, Feb. 2021, doi:
10.3390/INFO12020087.

[10] S. P. Gochhayat et al., “LISA: Lightweight context-aware IoT service
architecture,” J Clean Prod, vol. 212, pp. 1345–1356, Mar. 2019, doi:
10.1016/J.JCLEPRO.2018.12.096.

[11] V. Ponce and B. Abdulrazak, “Context-Aware End-User Development
Review,” Applied Sciences 2022, Vol. 12, Page 479, vol. 12, no. 1, p.
479, Jan. 2022, doi: 10.3390/APP12010479.

[12] G. D. Abowd, A. K. Dey, P. J. Brown, N. Davies, M. Smith, and P.
Steggles, “Towards a better understanding of context and context-
awareness,” Lecture Notes in Computer Science (including subseries
Lecture Notes in Artificial Intelligence and Lecture Notes in
Bioinformatics), vol. 1707, pp. 304–307, 1999, doi: 10.1007/3-540-
48157-5_29/COVER.

[13] S. A. Z. Hassan and A. M. Eassa, “A Proposed Architecture for Smart
Home Systems Based on IoT, Context-awareness and Cloud
Computing,” International Journal of Advanced Computer Science and
Applications, vol. 13, no. 6, pp. 89–96, Autumn 2022, doi:
10.14569/IJACSA.2022.0130612.

[14] M. Elkady, A. Elkorany, and A. Allam, “ACAIOT: A framework for
adaptable context-aware IoT applications,” International Journal of
Intelligent Engineering and Systems, vol. 13, no. 4, pp. 271–282, 2020,
doi: 10.22266/IJIES2020.0831.24.

[15] L. Sciullo, L. Gigli, A. Trotta, and M. Di Felice, “WoT Store: Managing
resources and applications on the web of things,” Internet of Things, vol.
9, p. 100164, Mar. 2020, doi: 10.1016/J.IOT.2020.100164.

[16] J. Lanza, L. Sánchez, D. Gómez, J. R. Santana, and P. Sotres, “A
Semantic-Enabled Platform for Realizing an Interoperable Web of
Things,” Sensors (Basel), vol. 19, no. 4, Feb. 2019, doi:
10.3390/S19040869.

[17] D. Andročec, M. Novak, and D. Oreški, “Using Semantic Web for
Internet of Things Interoperability,” Int J Semant Web Inf Syst, vol. 14,
no. 4, pp. 147–171, Oct. 2018, doi: 10.4018/IJSWIS.2018100108.

[18] F. Z. Amara, M. Hemam, M. Djezzar, and M. Maimour, “Semantic Web
Technologies for Internet of Things Semantic Interoperability,” Lecture
Notes in Networks and Systems, vol. 357 LNNS, pp. 133–143, 2022,
doi: 10.1007/978-3-030-91738-8_13/COVER.

[19] “Solution for IoT Interoperability - W3C Web of Things (WoT).”
https://www.w3.org/2020/04/pressrelease-wot-rec.html.en (accessed
Apr. 01, 2023).

[20] S. Murawat et al., “WoT Communication Protocol Security and Privacy
Issues,” International Journal of Advanced Computer Science and
Applications, vol. 11, no. 3, pp. 155–161, 2020, doi:
10.14569/IJACSA.2020.0110319.

[21] “IFTTT - Connect Your Apps.” https://ifttt.com/ (accessed Dec. 18,
2022).

[22] A. Iqbal et al., “Interoperable Internet-of-Things platform for smart
home system using Web-of-Objects and cloud,” Sustain Cities Soc, vol.
38, pp. 636–646, Apr. 2018, doi: 10.1016/J.SCS.2018.01.044.

[23] D. Ibaseta et al., “Monitoring and control of energy consumption in
buildings using WoT: A novel approach for smart retrofit,” Sustain
Cities Soc, vol. 65, p. 102637, Feb. 2021, doi:
10.1016/J.SCS.2020.102637.

[24] K. Rastogi, D. Lohani, and D. Acharya, “Context-Aware Monitoring and
Control of Ventilation Rate in Indoor Environments Using Internet of
Things,” IEEE Internet Things J, vol. 8, no. 11, pp. 9257–9267, Jun.
2021, doi: 10.1109/JIOT.2021.3057919.

[25] X. Chen and Q. Hao, “Research on Internet of Things Context-Aware
Information Fusion Technology for Smart Libraries,” Sci Program, vol.
2022, 2022, doi: 10.1155/2022/5282932.

[26] H. W. Kim, M. R. Hoque, H. Seo, and S. H. Yang, “Development of
middleware architecture to realize context-aware service in smart home
environment,” Computer Science and Information Systems, vol. 13, no.
2, pp. 427–452, Jun. 2016, doi: 10.2298/CSIS150701010H.

[27] T. Gu, H. K. Pung, and D. Q. Zhang, “A service‐oriented middleware
for building context ‐ aware services, ” Journal of Network and
Computer Applications, vol. 28, no. 1, pp. 1–18, Jan. 2005, doi:
10.1016/J.JNCA.2004.06.002.

[28] S. Bansal and D. Kumar, “IoT Ecosystem: A Survey on Devices,
Gateways, Operating Systems, Middleware and Communication,” Int J
Wirel Inf Netw, vol. 27, no. 3, pp. 340–364, Sep. 2020, doi:
10.1007/S10776-020-00483-7/FIGURES/7.

[29] G. Oikonomou, S. Duquennoy, A. Elsts, J. Eriksson, Y. Tanaka, and N.
Tsiftes, “The Contiki-NG open source operating system for next
generation IoT devices,” SoftwareX, vol. 18, p. 101089, Jun. 2022, doi:
10.1016/J.SOFTX.2022.101089.

