
(IJACSA) International Journal of Advanced Computer Science and Applications, 

Vol. 14, No. 8, 2023 

579 | P a g e  

www.ijacsa.thesai.org 

Estimating Probability Values Based on Naïve Bayes 

for Fuzzy Random Regression Model 

Hamijah Mohd Rahman
1
, Nureize Arbaiy

2
, Chuah Chai Wen

3
, Pei-Chun Lin

4
 

Faculty of Computer Science and Information Technology, University Tun Hussein Onn Malaysia, Johor, Malaysia
1, 2, 3

 

Dept. of Information Engineering and Computer Science, Feng Chia University, Taichung, Taiwan
4
 

 

 
Abstract—In the process of treating uncertainties of fuzziness 

and randomness in real regression application, fuzzy random 

regression was introduced to address the limitation of classical 

regression which can only fit precise data. However, there is no 

systematic procedure to identify randomness by means of 

probability theories. Besides, the existing model mostly 

concerned in fuzzy equation without considering the discussion 

on probability equation though random plays a pivotal role in 

fuzzy random regression model. Hence, this paper proposed a 

systematic procedure of Naïve Bayes to estimate the probabilities 

value to overcome randomness. From the result, it shows that the 

accuracy of Naïve Bayes model can be improved by considering 

the probability estimation. 
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I. INTRODUCTION 

Fuzziness and randomness are two uncertainties involved 
in practice of real observation where the statistical data are 
collected from various measurements. Fuzziness comes from 
incomplete information while randomness can be related to 
stochastic variability of all possible outcomes of a situation 
[1]. In mathematical viewpoint, both uncertainties are merged 
to formulate a fuzzy random variable by means of assigning 
probability and fuzzy set theories since possible random 
outcome have to be described by terms of fuzzy set. 

Fuzzy random variable had been studied by many 
researchers over past few decades. The first introduction of 
fuzzy random variable concept had been given by 
Kwarkernaak [2][3]. Since then, different researchers studied 
fuzzy random variable according to different requirements like 
by Puri and Ralescu [4] and Liu and Liu [5]. Considering the 
ability of fuzzy random theories in handling simultaneously 
fuzzy random uncertainties, this approach can be found in 
various applications such as in regression analysis. Nather [6] 
presented fuzzy random variable to deal with regression 
analysis when the statistical has linguistic data. 

In the situation where randomness and fuzziness 
associated in the regression problems, fuzzy random 
regression was introduced as a solution for real life regression 
analysis where the data is not only characterized by 
imprecision and vagueness but there also exist the formalism 
of random variables. Fuzzy random regression based on fuzzy 
random variables with confidence interval was proposed in the 
framework of real regression analysis where there exist 
uncertainties [7]. The implementation of this technique as an 
integral component of regression was successfully in 

achieving the objective to estimate weight in the production of 
oil palm [8].Considering the statistical used content fuzzy 
random information, fuzzy random regression was proposed to 
estimate coefficient in the model setting [9]. In another 
application, fuzzy random was introduced to build an 
improved fuzzy random regression for data preparation by 
using time series data [10][11]. 

Various applications presented fuzzy random concept due 
to its capability in handling factors of fuzziness and 
randomness. However, the existing studies mostly focused on 
fuzzy equation regarded as the concept of possibility, without 
considering the probability equation. Moreover, the models 
are not adequately discussed on how to estimate probability to 
reduce randomness [6][7][11]. To date, probability theory is 
used to model randomness which recorded from dispersion of 
the measured value [9]. Hence, according to abovementioned 
reason, this study is to present a systematic procedure to 
control randomness. This study is concentrated on developing 
a procedure of probability estimation for the fuzzy random 
data. This systematic procedure is important to guide the 
identification of probability estimation in defining the fuzzy 
random data for developing fuzzy random regression model. 

The remainder of this paper is arranged as follow. Some 
preliminaries of uncertainty fuzzy random is covered in 
Section II. Next section discusses the procedure of proposed 
method that is Naïve Bayes to estimate random value for 
fuzzy random regression model. An empirical study is 
provided in Section IV to illustrate the proposed method. 
Finally, Section V discusses the conclusion. 

II. THEORETICAL BACKGROUND 

A. Fuzzy Random 

The fuzzy random variable was introduced to present the 
real situation of uncertainty which comes from vagueness, 
imprecision, randomness etc. [1]-[5]. The concept of fuzzy 
random variable has been applied in several papers which 
combine both fuzzy random uncertainties [18]-[22]. 

Definition 1. Let Y be the fuzzy variable with possibility 
distribution   , the possibility, necessity, and credibility of 
event *   + are given in equation as follows. 

   *   +       ( )     (1) 

   *   +       ( )     (2) 

  *   +  
 

 
(          ( )          ( )) (3) 
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where, 

    Credibility measure 

   = possibility 

   = necessity measure 

Credibility measure is an average of the possibility and the 
necessity measures,    * +  (   * +     * +)  . 
Credibility measure is presented to expand a certain measure 
of possibility and necessity, which is a sound of aggregate of 
two cases. 

Definition 2: Let Y  be a fuzzy variable. Under the 
assumption that the two integrals are finite, the expected value 

of Y  is defined as follows in (7): 

 , -  ∫   *   +   ∫   *   +  
 

  

 

 
 (4) 

 

Following from Equation (4), the expected value of Y
is defined as 

 , -  
        

 
   (5) 

where   (       )   is a triangular fuzzy number and   
is a center value. 

The expected value of the fuzzy variable  ( ) is denoted 
by  , ( )-  for any fuzzy random variable   on  [5]. Thus, 
the expected value of the fuzzy random variable   is defined 
as the mathematical expectation of the random variable 
 , ( )-. 

Definition 3: Let   be a fuzzy random variable defined on 
a probability space (      )  with expected value  . The 
expected value of   is defined in Equation (6) as follows. 

 ,  ∫ ,∫   * ( )   +   
 

 
∫   * ( )  
 

 

 +  -   (  )  (6) 

The variance of   [7] is defined as Equation (7), 
respectively. 

   , -   ,(   ) - (7) 

where    , -  

B. Naïve Bayes 

The Naïve Bayes is a simplification of Bayes Theorem 
which is used as a classification algorithm with an assumption 
of independence among predictors [8]. It is known as ‘Naïve’ 
because it assumes that the presence of input features is 
independent of each other. As the feature of the data points is 
unrelated to any other, therefore, changing of one input feature 
may not affect others [9]. 

The general equation for Bayes [10][11] is given as 
follows: 

 ( | )  
 (   )

 ( )
 
 ( | )  ( )

 ( )
 (8) 

where, 

 ( )   = the probability of   occurring 

 ( )    = the probability of B occurring 

 ( | )   = the probability of A given B 

 ( | )   = the probability of B given A 

 (   ) = the probability of both A and B occurring 

Given   as Hypothesis and   as evidence, the Bayes rules 
derive the probability of a hypothesis given the evidence. The 
rule stated the relationship incorporating  ( ) distribution in 
order to generate  ( | ).  ( ) is the probability of an event 
before getting the evidence. The probability of the event based 
on the current knowledge before an experiment is performed. 
 ( | ) is called the posterior probability which is calculated 
by updating the prior probability after taking into 
consideration new information. Meaning that, the posterior 
probability is the probability of event   occurring given that 
even   has occurred. 

In this study, the Naïve Bayes theorem was proposed to be 
used in estimating probability values in constructing 
confidence intervals for fuzzy random regression model. This 
probability value is representative of randomness in the fuzzy 
random regression model. However, most studies [12] – [17] 
do not clearly describe how to obtain these random values to 
develop fuzzy random regression models. But these random 
values are very necessary to manage data that have random 
and fuzzy uncertainties to create forecasting models. The 
following section describes the proposed procedure for 
estimating probabilities for random values using the Naïve 
Bayes method that will be used to develop a fuzzy random 
regression prediction model. 

III. ESTIMATING PROBABILITIES FOR FUZZY RANDOM 

REGRESSION PROCEDURE 

This section describes the standard procedure to estimate 
probability value in developing confidence interval for Fuzzy 
Random Regression model. The procedure uses Naïve Bayes 
to characterize the random uncertainty. 

The procedure for implementing the proposed method can 
be written in the following to determine the probabilities by 
using Naïve Bayes. 

Step 1 : Suppose    are the fuzzy data. Transform crisp 

data    into fuzzy random data (FRD),  
     

     
  

 
Step 2 : Estimate probabilities for each FRD by using 

Naïve Bayes approach based on Equation (8). The 

fuzzy random data with probabilities can be 

arranged in the format as in Table I. 

TABLE I.  DATA FORMAT FOR FUZZY RANDOM DATA 

Sample Input FRD Pr 

          
    

      

          
    

      

… … … … 
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Step 3 : Calculate the expected value,  ( )  using the 

center of triangular fuzzy variable with 

probability which           The formulation 

to calculate the expected value is shown in 

Equation (9) as follows: 

 ( )        , (  )-        , (  )- (9) 

Step 4 : Calculate variance,    ( ). Define the variance 

of   by using Equation (7). The  ,( (  )  
 , - - should be calculated to obtain the    ( ). 
The calculation to obtain the variance is based on 

equation (10) respectively. 

    ( )   ,( (  )   , -
 -      

 ,( (  )   , -
 -       

(10) 

 

Step 5 : Determine the confidence interval,    of FRD 

using Equation (11) as follows. 

   ,( ( )     ( ))  

( ( )     ( ))-   

(11) 

 

Step6 : Estimate coefficient based on confidence interval 

in Step 5. The coefficient can be obtained using 

the following linear programming.  

    ( ̃)  ∑( ̃ 
  

 

   

 ̃ 
 ) 

           

 ̃ 
   ̃ 

  

 ̃  ∑  ̃  ,     

 

   

    -    ,       - 

                  

(12) 

 

The fuzzy random regression [7] prediction model was 
introduced with the advantage of handling data that had dual 
uncertainties namely fuzziness and randomness. Although this 
model is good for handling uncertainties, there are constraints 
for the industry to apply this model in the real world if there is 
no complete method specially to transform normal data into an 
acceptable form of data by this model. Then the standard 
method that has been tested has been introduced [18] – [20]. 
However, some of them focus on methods of managing fuzzy 
data only. Thus, this study specializes in the development of 
standard procedures for determining random value for the 
development of fuzzy random models. 

IV. NUMERICAL EXPERIMENT 

In this section, a numerical experiment has demonstrated 
to visualize how the probabilities are estimated using proposed 
procedure in order to handle randomness. The fuzzy random 
input and output data are taken from [7] in Table II and Table 
III, respectively. 

Table II shows the fuzzy random input data with two 
attributes (     ) . Each attribute has four samples which 

divided into center, left and right (       ).  Table III shows 
the fuzzy random output data with four samples of attribute   

and divided into (       ).   

TABLE II.  FUZZY RANDOM INPUT DATA  

Sample   
FRD1 FRD2 

                

1     3 2 4 4 3 5 

2     6 4 8 8 6 10 

3     12 10 14 14 12 16 

4     14 12 16 16 14 18 

Sample   
FRD1 FRD2 

                

1     2 1 3 4 3 5 

2     3 2 4 4 3 5 

3     12 10 16 14 12 16 

4     18 16 20 21 20 22 

TABLE III.  FUZZY RANDOM OUTPUT DATA 

Sample   
FRD1 FRD2 

                

1    14 10 16 18 16 20 

2    17 16 18 20 18 22 

3    22 20 24 26 24 28 

4    32 30 34 36 32 40 

By using the values in fuzzy random data, the probabilities 
for each value can be determined. Using calculation in 
Equation (8), the probabilities for each fuzzy random data are 
estimated. 

 ( | )  
 ( | )  ( )

 ( )
 

Assuming each feature variable is independent of the rest, 
calculate the probability of each separate feature given of each 
class. First step is finding the prior probability of each class in 
    Given sample    has four variables (               ). 
Each variable has one event occur. In mathematical, the 

probability can be represented as  (   )  
 

 
      which 

mean the occurring event happening is likely one time by 
considering the total of potential outcome. Thus, the prior 
probability of each class in    is as follows. 

 (   )  
 

 
      

 (   )  
 

 
      

 (   )  
 

 
       (13) 

 (   )  
 

 
      

Following the calculation in Equation (13), find 
probabilities for input    and output  . The result for each 
probability is tabulated in Table IV and Table V, respectively. 
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Table IV and Table V show the probabilities for fuzzy 
random input and output data. The probabilities for FRD1, 
    are determined using calculation in (13), with value 0.25. 
Note that, probability is counted by          . Therefore, 
the probability value for FRD2,    is 0.75. These probabilities 
are used to calculate the expected value  ( ) using the center 
of triangular fuzzy variable as in Equation (9). Based on these 
values of   ( ) , variance    ( )  can be calculated using 
Equation (10). The results for  ( ) and     ( )  are tabulated 
in Table VI respectively. 

TABLE IV.  FUZZY RANDOM DATA WITH PROBABILITIES FOR INPUT DATA 

Sample 

 
   

 

FRD1 

 
FRD 2 

 

                        

1     3 2 4      4 3 5      

2     6 4 8      8 6 10      

3     12 10 14      14 12 16      

4     14 12 16      16 14 18      

Sample 

 
   

 

FRD1 

 
FRD 2 

 

                        

1     2 1 3      4 3 5      

2     3 2 4      4 3 5      

3     12 10 16      14 12 16      

4     18 16 20      21 20 22      

TABLE V.  FUZZY RANDOM DATA WITH PROBABILITIES FOR OUTPUT 

DATA 

Sample 

 
  

 

FRD1 

 
FRD 2 

 

                        

1    14 10 16      18 16 20      

2    17 16 18      20 18 22      

3    22 20 24      26 24 28      

4    32 30 34      36 32 40      

Table VI shows the value of expectation and variance for 
the input output fuzzy random data. The expectation and 
variance values are used to find confidence interval by using 
Equation (11). The results are tabulated in Table VII. 

Table VII shows the confidence interval result for fuzzy 
random input and output data. In this study, the confidence 
interval was considered as one-sigma confidence (   ) 
interval of each fuzzy random variable. The combination of 
expectation and variance of fuzzy random variable was 
induced to define the confidence-interval-based-inclusion [7]. 
Based on this confidence interval, a fuzzy random regression 
model can be formulated using mathematical linear 
programming as in Equation (12) in order to define 
coefficient. 

TABLE VI.  EXPECTATION AND VARIANCE OF THE DATA 

     ,        ,       ,    

1 3.75 0.5729 3.5 1.2031 16.2 10.6688 

2 7.5 2.2917 3.75 0.5729 17.6 1.8113 

3 13.5 2.2917 13.63 3.467 24.8 4.8125 

4 15.5 2.2917 20.35 3.7138 34.4 4.8125 

TABLE VII.  CONFIDENCE INTERVAL FOR FUZZY RANDOM INPUT OUTPUT 

DATA 

i         

1 [3.177, 4.323] [2.297, 4.703] [5.531, 26.869] 

2 [5.208, 9.792] [3.177, 4.323] [15.789, 19.411] 

3 [11.208, 15.792] [10.158, 17.092] [19.988, 29.613] 

4 [13.208, 17.792] [16.536, 23.964] [29.588, 39.213] 

    ( ̃)  ∑( ̃ 
  

 

   

 ̃ 
 ) 

           

 ̃ 
   ̃ 

  

 ̃  ∑ ̃  ,     

 

   

    -    ,       - 

                  

    (  
    

 )  (  
    

 )  

  
     

   

3*  
 +2*  

 <=3.177075; 

6*  
 +4*  

 <=5.208325; 

12*  
 +10*  

 <=11.208333; 

14*  
 +12*  

 <=13.208333; 

3*  
 +5*  

 >=4.322925; 

6*  
 +10*  

 >=9.791675; 

12*  
 +16*  

 >=15.791667; 

14*  
 +18*  

 >=17.791667; 

  
 >=0;   

 >=0; 

  
 >=0;   

 >=0;   (14) 

The linear programming of the fuzzy random regression 
was applied to the dataset as shown in Equation (14). This 
linear programming is performed to generate the coefficient 
value as tabulated in Table VIII respectively. 
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TABLE VIII.  COEFFICIENT OF THE FUZZY RANDOM INPUT OUTPUT DATA 

Item 
Coefficient 

Width 
A1 A2 

  0.00 0.943 0.79 

   0.00 1.044 0.113 

   0.00 1.052 0.073 

The coefficient result for the fuzzy random input output 
data as tabulated in Table VIII shows the values estimated 
from fuzzy random regression. The attribute which has larger 
coefficient value is more significant to the total evaluation. In 
this result, it shows that the evaluation of attributes    and    
indicate the    is significant to the total evaluation due to its 
higher coefficient. The model had a wider coefficient width 
because of the consideration of the confidence interval in its 
evaluation. The width in this evaluation plays an important 
role, as it reflects natural human judgment. 

A greater breadth denotes the evaluation's ability to 
capture more data while using fuzzy judgments. Mean Square 
Error (MSE) can be defined using the estimated coefficient 
obtained from the fuzzy random regression and the model in 
Equation (14).  In Table IX, the mean squared error (MSE) is 
calculated to compare the outcomes of the existing approach 
and the suggested method. 

TABLE IX.  MSE RESULT 

Watada [7] Naïve Bayes 

196.6845 193.8861 

Table IX shows the MSE result using Naïve Bayes 
approach as compared with current method by Watada et al., 
[7]. In comparison study, the testing data derived from 
proposed method have a close majority of the expectation and 
variance result when compare to [7]. As the majority of the 
expectation and variance have been captured, therefore, both 
confidence intervals from testing and current model are quite 
similar. The evaluation of MSE was considered using current 
model and testing. From the result shown in Table IX, MSE of 
the proposed model is smaller than the other. This MSE 
implies that the prediction error can be reduced significantly. 

The outcomes of the experiment demonstrate that the 
suggested approach is highly accurate at estimating the 
expectation, variance, and confidence interval of the data. 
Additionally, it is more accurate than the present technique 
and has a lower MSE, proving its superiority. These findings 
imply that the suggested approach can estimate probability 
and circumvent data unpredictability. 

V. CONCLUSION 

In this paper, a procedure based on Naïve Bayes is 
proposed to treat data which contain uncertainty known as 
fuzzy random data. The uncertainty data of randomness was 
handled by implementing the Naïve Bayes method to estimate 
probability. As to demonstrate the potential application of 
proposed method for accessing estimation, an experimental 
study using fuzzy random data is illustrated and the results are 
compared with the result of current method. The result shows 
that the proposed method has majority close of the 

expectation, variance and confidence interval. Further, it also 
has better MSE result than the current method. The result 
demonstrated that the proposed model is capable to estimate 
probability and overcome randomness of the data. 
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