
(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 14, No. 8, 2023

591 | P a g e

www.ijacsa.thesai.org

An Ensemble Load Balancing Algorithm to Process

the Multiple Transactions Over Banking

Raghunadha Reddi Dornala

Cloud Architect, USA

Abstract—The banking industry has been transformed by

cloud computing, which has provided scalable and cost-effective

solutions for managing large volumes of transactions. However,

as the number of transactions grow, the need for efficient load-

balancing algorithms to ensure optimal utilization of cloud

resources and improve system performance becomes critical.

This paper proposes an ensemble cloud load-balancing (ECBA)

algorithm specifically designed to process multiple banking

transactions. The proposed algorithm combines the strengths of

several load-balancing techniques to achieve a balanced

distribution of transaction loads in various cloud servers. It

considers factors such as transaction types, server capacities, and

network conditions to make intelligent load distribution

decisions. The algorithm dynamically adapts to changing

workload patterns and optimizes resource allocation by

leveraging machine learning and predictive analytics. A

simulation environment that mimics the banking system's

transaction processing workflow is created to evaluate the

performance of the ensemble load balancing algorithm. Extensive

experiments with various workload scenarios are conducted to

assess the algorithm's effectiveness in load balancing, response

time, resource utilization, and overall system performance. The

results show that the proposed ECBA outperforms traditional

banking load-balancing approaches. It reduces response time,

improves resource utilization, and ensures every server is

adequately funded with a few transactions. The algorithm's

adaptability and scalability make it well-suited for handling

dynamic and fluctuating workloads, thus providing a robust

solution for processing multiple transactions in the banking

sector.

Keywords—Cloud computing; load balancing; ensemble

algorithm; banking; transaction processing; resource utilization;

response time; scalability

I. INTRODUCTION

Load balancing techniques are critical for ensuring
efficient resource utilization and maintaining optimal
performance in cloud computing environments [1] [2]. Cloud
computing provides users with vast computational resources
and services. Still, the dynamic nature of cloud environments,
the variability of workloads, and the scale of resources present
several load-balancing challenges. This section investigates
the issues and challenges associated with cloud computing
load-balancing techniques. Discuss the complexities
introduced by cloud systems' distributed nature, workload
variability, scalability, and fault tolerance and the importance
of ensuring fairness and resource utilization [3].
Understanding these difficulties is critical for developing
effective load-balancing mechanisms in cloud environments.
Cloud computing environments typically comprise several

geographically dispersed data centers or clusters [4].
Managing the load across these disparate resources is a
difficult task. Load-balancing algorithms must consider
network latency, bandwidth constraints, and the availability of
resources across multiple locations. Coordination of workload
distribution and efficient resource utilization in such
environments is a significant challenge [5].

Because of the dynamic nature of user demands, cloud
systems experience highly variable workloads. The load on
cloud resources can fluctuate dramatically, necessitating real-
time load-balancing techniques. Predicting and managing
these workload variations is critical to avoid resource
underutilization or overload situations. Load-balancing
algorithms must consider historical and real-time workload
data to make intelligent workload distribution decisions [6].
Cloud computing is intended to scale horizontally, allowing
for adding or removing resources in response to demand. Load
balancing techniques must be able to adjust workload
distribution as resources scale up or down dynamically [7].

Furthermore, cloud systems are vulnerable to failures and
faults. Load balancers should be fault-tolerant, detecting and
redirecting workloads away from failed or degraded resources
to ensure high availability and reliability. Load-balancing
algorithms should strive for equity and fair resource
distribution among users or applications. Maintaining user
satisfaction and avoiding performance bottlenecks requires
ensuring each user or application receives a fair share of
resources. Balancing workload distribution while considering
workload priorities, user requirements, and resource
constraints, can be difficult.

In the fast-paced world of banking and finance, effective
transaction management is critical for ensuring customer
satisfaction, operational stability, and data security.
Traditional load-balancing algorithms frequently fall short of
distributing workloads evenly across resources, owing to the
increasing reliance on digital transactions and the ever-
increasing volume of data. This paper proposes an innovative
ensemble load-balancing algorithm designed to optimize
banking transaction processing. The proposed algorithm aims
to improve system performance, ensure resource utilization,
and provide a seamless customer experience by combining the
strengths of multiple load-balancing techniques. The banking
sector is critical to global economic activity, processing a wide
range of transactions daily. As more customers use digital
banking services, there is a greater need for seamless and
quick transaction processing. Banks rely heavily on
information technology systems and networks to meet these

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 14, No. 8, 2023

592 | P a g e

www.ijacsa.thesai.org

demands, making efficient load balancing critical for ensuring
optimal performance.

The organization of this paper is as follows. Section II
explains various cloud models applied on multiple datasets to
analyze the performance. Section III describes the weighted
Round Robin algorithm in the banking sector. Section IV
presents the adaptive load balancing and its functionalities.
The fifth section explains the proposed combined approach
and its functionalities. Section VI gives the performance
metrics used in this paper. Section VII shows the comparative
performances of various existing and proposed algorithms.
The final section provides the conclusion of the overall
research work.

II. LITERATURE SURVEY

X. Wei et al. [8] introduced the popularity-based position
technique that maps data components and edge servers to
retrieve the virtual coordinate in the plane. The proposed
model performance is improved to tackle the load balancing
between edge servers via offloading. Experiments show that
the proposed model effectively reduces the average path
length for data access, and load-balancing techniques provide
better options for overloaded servers. T. Liu et al. [9]
introduced the novel Q-networks that will allocate resources
using resource computation. The main objective of novel q-
networks used to decrease the latency over a long time. The
performance of Novel q-networks shows better performance
in terms of performance. S. Nath et al. [10] proposed an
automated scheduling model that incorporates Deep
Reinforcement Learning (DRL) and the Deep Deterministic
Policy Gradient (DDPG) method. The DDPG extracts
optimized models to develop multi-cell MEC systems by
leveraging cooperation among neighboring MEC servers.
When compared to DDPG, the existing model produced better
results. J. Zhang et al. [11] discussed several comparative
performances based on the security and privacy threats that
edge computing can address. This work primarily focused on
discussing various issues and factors that aid in developing
several edge computing applications. The study also provides
solutions for several privacy and security issues based on
edge-related paradigms. T. Li et al. [12] introduced privacy
grouping issues that reduce problems in edge clouds and thus
reduce edge cloud maintenance. The grouping techniques
carefully developed the optimized goal for two models such as
tree-based hierarchical (TBH) and graph-based interconnected
(GBI) edge clouds. The proposed model obtained better
outcomes on two benchmark data sets. B. Pourghebleh et al.
[13] introduced the meta-heuristic model that solves the VM
unification issue compared with the existing models based on
the influential factors. E. H. Houssein et al. [14] introduced a
different model belongs to task scheduling that classifies the
cloud applications based on the scheduling issues which is one
or multiple objectives. S. K. Mishra et al. [15] proposed an
iterative approach that optimized the metrics such as latency
and energy consumption and unloading the work and
associated VM for the execution of the task. If the particular
edge center is not ready to provide the resources, the user's
request will send to the other cloud system. B. Alankar et al.
[16] developed a combined approach that solves various issues
in load balancing based on HAProxy, clusters in VM, and

cloud servers. Results show that the proposed model obtained
better performance regarding load balancing metrics. A. A.
Abdelltif et al. [17] proposed the SDN-based load balancing
that reduces the high usage of resources and decreases the
computation time. The proposed model executes the program
on top of the SDN model and controls the tasks. The manager
in this model maintains the transmission messages, maintains
hosting pools, and checks the load status at peak time. M. A.
Mukwevho et al. [18] presented a comparative survey of work
on fault tolerance applications used in the cloud environment.
A better future model is required to improve the proposed
approach's performance. B. Cao et al. [19] detected the
replacement issue by using the edge servers (ESs) in the IoV
to design various objectives used to deploy the applications
and measure the task loading, energy usage, deployment
expenses, etc. The proposed model also solves the ES
deployment issue. B. Lin et al. [20] introduced the GA-DPSO
combined with the genetic approach that optimizes data
transmission based on the proposed flow. GA-DPSO is the
combined domains such as edge computing and cloud
computing. S. Yang et al. [21] proposed that the issue belongs
to VNFs on the combined platform and analyzed the VM
traffic present in the VMs. It is an integrated approach that
uses various technologies that help improve the detection of
abnormal traffic in cloud servers and reduce the traffic by
controlling the user's requests. J. Zhang et al. [22] introduced
the model deployed in a cloud server with an advanced
domain called vehicular networks. Several high-potential
models, such as fiber-wireless (FiWi), improve the vehicular
edge computing networks (VECNs), analyze the task loading,
and measure the vehicle's delay. The proposed model obtained
superior results compared with existing approaches.

III. WEIGHTED ROUND ROBIN ALGORITHM FOR BANKING

TRANSACTIONS

Maintaining unlimited banking transactions requires
practical load-balancing algorithms that guarantee the network
can handle many transactions without complex resources. The
Weighted Round Robin (WRR) algorithm is a scheduling
technique commonly used in banking systems to allocate
resources for processing transactions. It aims to provide
fairness and efficient utilization of resources based on
predefined weights assigned to each transaction type. Here's
an explanation of the WRR algorithm using equations:

A. Define Inputs

N: Number of transaction types.

W[i]: Weight assigned to each transaction type i, where i
ranges from 1 to N.

Calculate the Weighted Round Robin Quantum (Q):

Calculate the total weight sum (TW) as the sum of all
transaction weights:

 [] [] [] (1)

Set the Quantum (Q) as the least common multiple (LCM)
of all transaction weights:

 ([] [] []) (2)

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 14, No. 8, 2023

593 | P a g e

www.ijacsa.thesai.org

B. Initialize Variables

Current_quantum: The current quantum being processed
initially set to 0.

Current_transaction_type: The index of the currently
selected transaction type initially set to 0.

C. Transaction Scheduling

 Iterate through the transactions in a loop:

 For each transaction, perform the following steps:

o Increment the current_quantum by 1.

o If current_quantum is equal to or exceeds the
Quantum (Q), perform the following steps:

o Reset current_quantum to 0.

o Move to the next transaction type by incrementing
current_transaction_type by 1.

o If current_transaction_type exceeds the maximum
index (N), set current_transaction_type back to 1.

o Select the transaction type indicated by
current_transaction_type for processing.

Output: The output of the WRR algorithm is the sequence
of transaction types selected for processing, based on their
assigned weights and the calculated quantum.

The Weighted Round Robin algorithm ensures that
transactions with higher weights receive a proportionally
higher share of the available processing resources. By defining
appropriate weights for each transaction type, the algorithm
can be customized to prioritize certain types of transactions or
balance the workload across different transaction types.

IV. ADAPTIVE LOAD BALANCING (ALB) FOR BANKING

TRANSACTIONS IN CLOUD COMPUTING

ALB mainly focuses on transactions made by the users in
the cloud server, which involves several distributed workload
among multiple servers to advance performance and shows
effective transactions. Here are the steps and equations
involved in adaptive load balancing:

1) Measure server performance: The first step is to collect

data on the performance of each server in the cloud

environment. This can include metrics such as CPU

utilization, memory usage, network bandwidth, and response

time.

2) Determine the load balancing algorithm: Choose an

appropriate load balancing algorithm based on the specific

requirements of banking transactions. Some commonly used

algorithms include round-robin, least connections, weighted

round-robin, and least response time.

3) Define the criteria for load balancing: Establish the

criteria for load balancing decisions. This can include

thresholds for server utilization, response time, or other

performance metrics. For example, if a server's CPU

utilization exceeds a certain threshold, it may be considered

overloaded.

4) Calculate server weights: If using a weighted load

balancing algorithm, assign weights to each server based on its

capacity and performance characteristics. This allows for more

fine-grained control over the distribution of the workload.

5) Monitor server performance: Continuously monitor the

performance of each server in the cloud environment. This can

be done using monitoring tools or by collecting real-time

performance metrics.

6) Evaluate server conditions: Compare the performance

metrics of each server against the defined criteria for load

balancing. If a server exceeds the thresholds or is

underutilized, it may be a candidate for load redistribution.

7) Calculate the load factor: Calculate the load factor for

each server based on its current workload and capacity. The

load factor can be calculated using various equations, such as:

 (3)

This equation gives a normalized value between 0 and 1,
representing the relative load on each server.

8) Make load balancing decisions: Based on the load

factors and the chosen load balancing algorithm, make

decisions on redistributing the workload. This involves

determining which server should receive new requests or

reassigning existing requests from overloaded servers to

underutilized ones.

9) Redirect requests: Implement the load balancing

decisions by redirecting incoming requests to the selected

servers. This can be achieved through DNS-based load

balancing, where the DNS server maps the domain name to

the IP address of the appropriate server.

10) Monitor and adjust: Continuously monitor the system

performance and reevaluate load balancing decisions as the

workload and server conditions change. Adjust the load

balancing parameters, such as thresholds or weights, if

necessary, to further optimize performance.

V. WEIGHTED ROUND ROBIN ALGORITHM COMBINED

WITH ADAPTIVE LOAD BALANCING IN CLOUD BANKING

APPLICATION

Cloud computing has transformed how businesses operate
in today's digital age, and the banking sector is no exception.
Cloud banking applications take advantage of cloud
infrastructure's scalability, flexibility, and cost-effectiveness to
provide customers with efficient and dependable services.
However, as the number of users and transactions grow,
ensuring optimal performance and load balancing becomes
increasingly essential for the smooth operation of these
applications. The WRR algorithm and Adaptive Load
Balancing techniques can be used to address this challenge.
This effective combination provides improved resource
allocation, faster response times, and more efficient use of
cloud resources.

WRR is a load-balancing algorithm that cyclically
distributes incoming requests across multiple servers. Each
server is given a weight that corresponds to its processing

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 14, No. 8, 2023

594 | P a g e

www.ijacsa.thesai.org

capacity. The algorithm considers these weights during load-
balancing and distributes requests proportionally to each
server. The WRR algorithm ensures that the workload is
distributed relatively by assigning higher weights to more
powerful servers, preventing any individual server from
becoming overwhelmed.

The WRR algorithm is supplemented by Adaptive Load
Balancing, which continuously monitors system performance
metrics such as CPU utilization, memory usage, network
traffic, and response times. The load balancer dynamically
adjusts the weights assigned to each server based on these
metrics. If a server begins to experience increased workloads
or performance degradation, the load balancer can reduce its
weight, redirecting traffic to other servers with lower
workloads. If a server's performance or load improves, its
importance can be increased, allowing it to handle more
requests (see Fig. 1).

Fig. 1. Proposed architecture.

Combining the WRR algorithm with Adaptive Load
Balancing in a cloud banking application provides numerous
benefits. For starters, it ensures that each server is used to its
full potential, avoiding bottlenecks and improving overall
system performance. Second, it enables the application to
adapt to changing traffic patterns and allocate resources
dynamically based on real-time conditions, resulting in faster
response times and a better user experience. Finally, it
improves the application's scalability by allowing additional
servers to be easily added or removed from the pool without
disrupting the load-balancing mechanism.

VI. PERFORMANCE METRICS

Load balancing is a critical technique in cloud computing
to distribute workloads across multiple servers or resources to
optimize performance and ensure efficient resource utilization.
The effectiveness of load-balancing algorithms is assessed
using a variety of performance metrics. Here is some common
load balancing performance metrics along with their
equations:

1) Response Time (RT): It measures the time taken by a

server to respond to a client request. Lower response time

indicates better performance.

 ()

Where the time of the last response is received, is the
time of the first request sent, and is the waiting time in the
queue.

Example: If a client sends a request at time Ts = 10s, the
last response is received at time Tf = 15s, and the waiting time
in the queue is = 2s, then the response time would be RT =
(15 - 10) + 2 = 7s.

2) Throughput (TH): It represents the number of requests

processed per unit of time. Higher throughput indicates better

performance.

Example: If a server processes 1000 requests in 10
minutes, then the throughput would be TH = 1000 / (10 * 60)
= 1.67 requests/s.

3) Utilization (U): It measures the extent to which a

server or resource is utilized. It is often represented as a

percentage. Higher utilization indicates efficient resource

usage.

Example: If a server is busy for eight hours (28,800
seconds) out of a total of 24 hours (86,400 seconds), then the
utilization would be U = (28,800 / 86,400) * 100 = 33.33%.

4) Queue length (QL): It represents the number of

requests waiting in the queue for processing. Lower queue

length indicates better performance.

Where λ is the arrival rate of requests (requests per unit of
time) and W is the average waiting time in the queue.

Example: If the arrival rate is λ = 10 requests per second
and the average waiting time in the queue is W = 5 seconds,
then the queue length would be QL = 10 * 5 = 50 requests.

5) Server load (SL): It measures the amount of work

being processed by a server or resource. It is often represented

as a percentage. Lower server load indicates better

performance.

Where C is the average number of requests being
processed by the server and T is the total capacity of the server
(maximum number of requests it can handle in a given time
period).

Example: If the average number of requests being
processed by the server is C = 30 and the total capacity of the
server is T = 50, then the server load would be SL = (30 / 50)
* 100 = 60%.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 14, No. 8, 2023

595 | P a g e

www.ijacsa.thesai.org

VII. EXPERIMENTAL RESULTS

Experiments were conducted using the cloud banking
application developed using Python. The proposed integrated
load balancing is implemented at the client and server sides.
The comparative performance shows that the proposed model
obtained better results. The performance of existing and
proposed models was observed on 1k, 5k, and 10k
transactions at a time. The existing model's round-robin (RR),
Least Connection (LC), and Adaptive Load Balancing (ABL)
compared with ECBA.

TABLE I. COMPARATIVE PERFORMANCES IN TERMS OF FOLLOWING

METRICS FOR 1K TRANSACTIONS

Metrics RR LC ALB ECBA

Response time (Sec) 22 20 18 15.1

TH(R/S) 16.7 18.9 20.1 22.9

U (%) 70.7 72.9 75.3 80.3

QL (%) 60 55.6 52.1 49.1

SL (%) 70.8 66.7 63.1 59.3

In banking sector, daily multiple number of transactions
will take place online. To process the large transactions an
ECBA model obtain high results for 1k transactions given in
Table I and graph shown in Fig. 2.

Fig. 2. Comparative performances in terms of following metrics for 1k
transactions.

TABLE II. COMPARATIVE PERFORMANCES IN TERMS OF FOLLOWING

METRICS FOR 5K TRANSACTIONS

Metrics RR LC ALB ECBA

Response time (Sec) 34 31.2 28 25.1

TH(R/S) 27.7 29.9 33.1 36.9

U (%) 75.7 77.4 79.2 83.3

QL (%) 69 65.6 61.1 55.1

SL (%) 80.8 66.7 63.1 59.3

Table II and Fig. 3 show the comparative performances of
existing and proposed approaches based on given parameters.
The overall transactions analyzed by the model are 5k. The
high performance is achieved by ECBA and low performance
is achieved by RR.

Fig. 3. Comparative performances in terms of following metrics for 5k

transactions.

VIII. CONCLUSION

In ECBA, the WRR can balance the workload among
multiple servers or instances in a cloud banking application to
ensure efficient handling of customer requests. The server
weights can assign memory capacity and network bandwidth
based on the processing power. WRR can optimize resource
utilization and prevent server overloading by allocating
requests proportionally to the weights of the servers. Another
technique used in cloud environments is adaptive load
balancing (ALB), which dynamically adjusts the load-
balancing algorithm based on real-time conditions. It
continuously monitors server and network traffic performance
and makes modifications to guarantee the best possible
utilization of resources. ALB can assist in automatically
modifying the load balancing algorithm in the context of a
cloud banking application based on factors such as server
response times, server availability, or network congestion. For
example, suppose a server has long response times or is
temporarily unavailable. In that case, ALB can route incoming
requests to other available servers with lower loads, ensuring
consistent performance and minimizing service disruptions.
The combination of WRR and ALB can improve a cloud
banking application's performance, scalability, and fault
tolerance, ensuring efficient resource utilization and optimal
customer experience. It enables the application to handle
varying workloads while maintaining high availability,
allowing dynamic adaptation to changing conditions. In the
future, an ensemble load-balancing approach combined with
security would be developed to achieve better performance.

0

10

20

30

40

50

60

70

80

90

Response

time (Sec)

TH(R/S) U (%) QL (%) SL (%)

RR LC ALB ECBA

0

10

20

30

40

50

60

70

80

90

Response

time (Sec)

TH(R/S) U (%) QL (%) SL (%)

RR LC ALB ECBA

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 14, No. 8, 2023

596 | P a g e

www.ijacsa.thesai.org

REFERENCES

[1] Kumar, P.; Kumar, R. Issues and challenges of load balancing
techniques in cloud computing: A survey. ACM Comput. Surv. (CSUR)
2019, 51, 1–35.

[2] Princess, G.A.P.; Radhamani, A. A Hybrid Meta-Heuristic for Optimal
Load Balancing in Cloud Computing. J. Grid Comput. 2021, 19, 1–22.

[3] Elmagzoub, M.A.; Syed, D.; Shaikh, A.; Islam, N.; Alghamdi, A.;
Rizwan, S. A Survey of Swarm Intelligence Based Load Balancing
Techniques in Cloud Computing Environment. Electronics 2021, 10,
2718. https://doi.org/10.3390/electronics10212718.

[4] Mishra, S.K.; Sahoo, B.; Parida, P.P. Load balancing in cloud
computing: A big picture. J. King Saud Univ.-Comput. Inf. Sci. 2020,
32, 149–158.

[5] Junaid, M.; Sohail, A.; Ahmed, A.; Baz, A.; Khan, I.A.; Alhakami, H. A
hybrid model for load balancing in cloud using file type formatting.
IEEE Access 2020, 8, 118135–118155.

[6] Shahid, M.A.; Islam, N.; Alam, M.M.; Mazliham, M.S.; Musa, S.
Towards Resilient Method: An exhaustive survey of fault tolerance
methods in the cloud computing environment. Comput. Sci. Rev. 2021,
40, 100398.

[7] A. Kishor, R. Niyogi, A. T. Chronopoulos and A. Y. Zomaya, "Latency
and Energy-Aware Load Balancing in Cloud Data Centers: A
Bargaining Game Based Approach," in IEEE Transactions on Cloud
Computing, vol. 11, no. 1, pp. 927-941, 1 Jan.-March 2023, doi:
10.1109/TCC.2021.3121481.

[8] X. Wei and Y. Wang, "Popularity-Based Data Placement With Load
Balancing in Edge Computing," in IEEE Transactions on Cloud
Computing, vol. 11, no. 1, pp. 397-411, 1 Jan.-March 2023, doi:
10.1109/TCC.2021.3096467.

[9] T. Liu, S. Ni, X. Li, Y. Zhu, L. Kong and Y. Yang, "Deep
Reinforcement Learning Based Approach for Online Service Placement
and Computation Resource Allocation in Edge Computing," in IEEE
Transactions on Mobile Computing, vol. 22, no. 7, pp. 3870-3881, 1
July 2023, doi: 10.1109/TMC.2022.3148254.

[10] S. Nath and J. Wu, "Deep reinforcement learning for dynamic
computation offloading and resource allocation in cache-assisted mobile
edge computing systems", Intell. Converged Netw., vol. 1, no. 2, pp.
181-198, 2020.

[11] J. Zhang, B. Chen, Y. Zhao, X. Cheng and F. Hu, "Data security and
privacy-preserving in edge computing paradigm: Survey and open
issues", IEEE Access, vol. 6, pp. 18209-18237, 2018.

[12] T. Li et al., "Privacy-preserving participant grouping for mobile social
sensing over edge clouds", IEEE Trans. Netw. Sci. Eng., vol. 8, no. 2,
pp. 865-880, 2021.

[13] B. Pourghebleh, A. A. Anvigh, A. R. Ramtin, and B. Mohammadi, "The
importance of nature-inspired meta-heuristic algorithms for solving
virtual machine consolidation problem in cloud environments," Cluster
Comput., vol. 24, pp. 2673–2696, May 2021.

[14] E. H. Houssein, A. G. Gad, Y. M. Wazery, and P. N. Suganthan, "Task
scheduling in cloud computing based on meta-heuristics: Review,
taxonomy, open challenges, and future trends," Swarm Evol. Comput.,
vol. 62, Apr. 2021, Art. no. 100841.

[15] S. K. Mishra, D. Puthal, B. Sahoo, S. Sharma, Z. Xue, and A. Y.
Zomaya, "Energy-efficient deployment of edge dataenters for mobile
clouds in sustainable IoT," IEEE Access, vol. 6, pp. 56587–56597, 2018.

[16] B. Alankar, G. Sharma, H. Kaur, R. Valverde, and V. Chang,
"Experimental setup for investigating the efficient load balancing
algorithms on virtual cloud," Sensors, vol. 20, no. 24, p. 7342, Dec.
2020.

[17] A. A. Abdelltif, E. Ahmed, A. T. Fong, A. Gani, and M. Imran, "SDN-
based load balancing service for cloud servers," IEEE Commun.Mag.,
vol. 56, no. 8, pp. 106–111, Aug. 2018.

[18] M. A. Mukwevho and T. Celik, "Toward a smart cloud: A review of
fault-tolerance methods in cloud systems," IEEE Trans. Services
Comput., vol. 14, no. 2, pp. 589–605, Mar. 2021.

[19] B. Cao, S. Fan, J. Zhao, S. Tian, Z. Zheng, Y. Yan, and P. Yang,
"Largescale many-objective deployment optimization of edge servers,"
IEEE Trans. Intell. Transp. Syst., vol. 22, no. 6, pp. 3841–3849, Jun.
2021.

[20] B. Lin et al., "A time-driven data placement strategy for a scientific
workflow combining edge computing and cloud computing", IEEE
Trans. Ind. Informat., vol. 15, no. 7, pp. 4254-4265, Jul. 2019.

[21] S. Yang, F. Li, S. Trajanovski, X. Chen, Y. Wang and X. Fu, "Delay-
aware virtual network function placement and routing in edge clouds",
IEEE Trans. Mobile Comput., vol. 20, no. 2, pp. 445-459, Feb. 2021.

[22] J. Zhang, H. Guo, J. Liu and Y. Zhang, "Task offloading in vehicular
edge computing networks: A load-balancing solution", IEEE Trans. Veh.
Technol, vol. 69, no. 2, pp. 2092-2104, Feb. 2020.

