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Abstract—Plagiarism is the unacknowledged use of another 

person’s language, information, or writing without crediting the 

source. This manuscript presents an innovative method for 

detecting plagiarism utilizing attention mechanism-based LSTM 

and the DistilBERT model, enhanced by an enriched differential 

evolution (DE) algorithm for pre-training and a focal loss 

function for training. DistilBERT reduces BERT’s size by 40% 

while maintaining 97% of its language comprehension abilities 

and being 60% quicker. Current algorithms utilize positive-

negative pairs to train a two-class classifier that detects 

plagiarism. A positive pair consists of a source sentence and a 

suspicious sentence, while a negative pair comprises two 

dissimilar sentences. Negative pairs typically outnumber positive 

pairs, leading to imbalanced classification and significantly lower 

system performance. To combat this, a training method based on 

a focal loss (FL) is suggested, which carefully learns minority 

class examples. Another addressed issue is the training phase, 

which typically uses gradient-based methods like back-

propagation for the learning process. As a result, the training 

phase has limitations, such as initialization sensitivity. A new DE 

algorithm is proposed to initiate the back-propagation process by 

employing a mutation operator based on clustering. A successful 

cluster for the current DE population is found, and a fresh 

updating approach is used to produce potential solutions. The 

proposed method is assessed using three datasets: SNLI, MSRP, 

and SemEval2014. The model attains excellent results that 

outperform other deep models, conventional, and population-

based models. Ablation studies excluding the proposed DE and 

focal loss from the model confirm the independent positive 

incremental impact of these components on model performance. 

Keywords—Plagiarism detection; LSTM; imbalanced 

classification; DistilBERT; differential evolution; focal loss 

I. INTRODUCTION 

With abundant information available online and powerful 
search engines, plagiarism has become a sensitive issue in 
various domains, including education. Plagiarism usually 
occurs intentionally or unknowingly [1]. In contrast, plagiarism 
techniques have practical uses in fields beyond detecting 
copied content, including retrieval of information [2] where 
some text is given as input and the most relevant matches 
returned. 

Various techniques have been proposed in academic 
publications to address the challenge of detecting plagiarism. 
One prominent approach is the use of text distance methods, 
which aim to quantify the semantic proximity between two 
textual pieces by measuring the distance between them. 
Typically, there are three categories of text distances: length 

distance, distribution distance, and semantic distance [3]. 
Length distance methods assess the resemblance between two 
texts by considering their numerical attributes. Popular 
techniques in this category include Euclidean distance, cosine 
distance, and Manhattan distance [4]. These methods rely on 
the numerical characteristics of the texts to calculate the degree 
of similarity. However, distance-based methods encounter two 
notable limitations. Firstly, they are often suitable only for 
symmetrical problems, which may restrict their applicability in 
certain scenarios. Additionally, using distance measures 
without considering the statistical characteristics of the data 
can be risky, particularly in cases such as question answering 
[5]. Distribution distances, on the other hand, offer an 
alternative approach to estimating the semantic similarity 
between two items by comparing their distributions. 
Techniques like Jensen–Shannon divergence [6] and Kullback–
Leibler divergence [7] are commonly used in this category. 
These methods examine the lexical and semantic similarities 
between texts by analyzing the distributions of words or other 
linguistic features. By capturing the statistical properties of the 
data, distribution distances provide a more nuanced and 
comprehensive understanding of the semantic relationship 
between textual items. By leveraging distribution distances, 
researchers can effectively assess the similarity or dissimilarity 
between texts based on their underlying linguistic 
characteristics. These approaches take into account the broader 
context and semantic information, contributing to more 
accurate plagiarism detection. 

Deep learning approaches have emerged as a powerful 
alternative to earlier methods in various fields, thanks to their 
inherent advantages, such as automated feature extraction [8]. 
Researchers have explored different deep learning architectures 
and techniques to tackle the task of sentence or text similarity 
and representation. One approach presented in [9] involves 
using a recurrent neural network (RNN) with word embeddings 
obtained from GloVe [10]. The RNN processes the words 
within a sentence and generates a representation of the 
sentence. Cosine distance metric [11] is then applied to 
measure the similarity between the sentence representations. In 
[40], a Siamese convolutional neural network (CNN) is 
introduced to capture the contextual information of individual 
words within a sentence. This network simultaneously 
produces a representation of word significance and the 
surrounding terms. By considering the local context, this 
approach aims to enhance the understanding of sentence 
meaning. Another RNN-based approach is presented in [12], 
where the textual data from corresponding words between 
sentence pairs is combined to create an internal representation. 
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This enables the model to capture the relationship between 
words in different sentences, contributing to a more 
comprehensive understanding of semantic similarity. In [13], a 
Long Short-Term Memory (LSTM) network is employed to 
extract high-level semantic information and measure the 
textual similarity between two sentences. The LSTM takes 
unprocessed pairs of sentence and word representations as 
input, allowing it to capture the complex semantic relationships 
within sentences. Attention-based models are also utilized in 
the pursuit of sentence similarity. In [14], an attention-based 
Siamese network is employed to determine the degree of 
similarity in meaning among sentences. The attention 
mechanism enables the model to focus on important elements 
within the sentences, enhancing its ability to capture semantic 
nuances. In [15], two different methods for answer selection 
based on similarity are introduced. One method incorporates a 
single transformer encoder along with embeddings from 
language models such as ELMo [16] and BERT [17]. The 
other method utilizes two pre-trained transformer encoders to 
capture the semantic information. Furthermore, [18] introduces 
the use of two Bidirectional LSTM (BLSTM) networks to 
independently derive sentence embeddings. Additionally, a 
revised data augmentation and loss function technique is 
implemented to address the challenge of imbalanced data 
distribution, which commonly occurs in sentence similarity 
tasks. One significant problem is the handling of imbalanced 
data distribution in plagiarism detection. The current 
algorithms often train two-class classifiers using positive-
negative pairs, where negative pairs outnumber positive pairs. 
This imbalance negatively impacts system performance. 
Another limitation pertains to the training phase, which heavily 
relies on gradient-based methods like back-propagation. 
Although widely used, these methods have their own 
limitations, such as initialization sensitivity. 

The unequal distribution of positive (plagiarized) and 
negative (non-plagiarized) cases pose a major obstacle in 
plagiarism detection. Failing to tackle this issue can result in a 
notable decline in performance. Approaches to tackle 
imbalanced class distribution can be categorized into two main 
types: the methods of the algorithm level and the data level. 
Data-level approaches aim to rectify the imbalanced 
distribution of classes by leveraging techniques such as over-
sampling and under-sampling. One approach to address class 
imbalance is through the use of techniques such as the 
Synthetic Minority Oversampling Technique (SMOTE) [19], 
which creates instances by interpolating between adjacent 
minority examples. Another technique, NearMiss [20], 
involves under-sampling majority examples using the nearest 
neighbor algorithm. Over-sampling approaches might result in 
an overfitting problem, whereas applying under-sampling 
methods might lead to losing some helpful information about 
the dominant class. Algorithmic methods amplify the influence 
of the minority class based on techniques like ensemble 
learning [21], cost-sensitive learning [22], and decision 
threshold adjustment [23]. In the cost-sensitive approaches, 
various costs are assigned for misclassifications of different 
classes (higher costs for minority samples). The classification 
issue is framed as an optimization problem that seeks to 
minimize the total cost. Ensemble techniques train multiple 
classifiers and fuse the obtained results to reach a final 

decision. Threshold adjustment approaches involve training a 
classifier and then modifying the threshold for classification 
during testing. Imbalanced classification has also been 
addressed using deep learning techniques [22, 24]. The study 
[25] develops a method to learn distinguishing features in 
unbalanced data while preserving inter-cluster and interclass 
margins. In [26] the author proposes a strategy that bootstraps 
convolutional network data into balance for each mini-batch. 

Neural network methods, including deep networks, are 
usually based on gradient-based methods, including back-
propagation, to find the appropriate network weights. 
Regrettably, these techniques are prone to be influenced by the 
initialization of parameters and may converge to suboptimal 
solutions. The quality of a neural network can be more 
significantly influenced by the initial weights than by the 
network structure and training samples [27]. Meta-heuristic 
algorithms, including differential evolution (DE) [28], have 
been proposed as a solution to address these issues and have 
demonstrated their effectiveness in optimizing the performance 
of the model [29, 30]. 

Differential Evolution (DE) is a robust method successfully 
utilized in various optimization tasks [31, 32]. It comprises 
three primary steps: mutation to create an additional candidate 
solution using scaling differences between solutions, crossover 
to integrate the produced solution with the initial solution, and 
selection to select the optimal solution for the subsequent 
iteration. The mutation operator is particularly important [33]. 

This article describes an original approach to plagiarism 
detection that employs a DE algorithm and attention-based 
LSTM model. The proposed model contains a feed-forward 
network to estimate the similarity degree between sentences 
and two LSTMs for source and suspicious sentences. The 
model is trained using pairs of sentences, including positive 
pairs with two similar sentences and negative pairs with two 
dissimilar sentences. DistilBERT word embedding is utilized, 
which can reduce BERT‟s size by 40% while maintaining 97% 
of its language comprehension abilities and being 60% quicker. 
The proposed DE algorithm utilizes clustering for weight 
initialization, aiming to detect an area in the exploration 
domain suitable for initiating the back-propagation (BP) 
algorithm. The best-performing solution from the top-
performing cluster is selected as the starting point for the 
mutation operator, and a new approach for generating potential 
solutions is employed. Additionally, the proposed algorithm 
incorporates FL to address class imbalance. The model is 
assessed on SNLI, MSRP, and SemEval2014 datasets, 
demonstrating superior performance compared to other 
methods. 

The main contributions of the article are as follows: 1) The 
article introduces a new DE algorithm that initiates the back-
propagation process by employing a mutation operator based 
on clustering. This approach helps overcome limitations 
associated with initialization sensitivity, which is a common 
issue in gradient-based methods used during the training phase, 
2) The article addresses the challenge of imbalanced class 
distribution in plagiarism detection, where negative pairs 
outnumber positive pairs. The proposed training method based 
on focal loss enables the model to better learn from minority 
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class examples, leading to improved system performance, 3) 
The article introduces the DistilBERT model that can reduce 
the size of BERT. This reduction in size leads to improved 
efficiency, making the model 60% quicker compared to the 
original BERT model, and 4) Ablation studies are conducted to 
evaluate the individual contributions of the DE algorithm and 
focal loss. The results confirm that these components have an 
independent positive incremental impact on the model's 
performance. 

The article's residual parts are structured as follows. Section 
II provides a number of contextual information, whereas 
Section III outlines the proposed method for identifying 
plagiarism. Section IV gives the prediction of the study made. 
In Section V, the results of the experiments are presented, and 
Section VI summarizes the paper. 

II. DIFFERENTIAL EVOLUTION 

Differential evolution [28] has effectively optimized 
various problems [35, 36]. DE starts with an initial population, 
usually drawn from a random distribution, and comprises three 
primary operations: mutation, crossover, and selection. The 
mutation operation generates a mutant vector as 

 ⃗      ⃗         ⃗       ⃗      (1) 

where  ⃗    ,  ⃗      and  ⃗   are three randomly chosen 

candidate solutions from the available population, and   shows 
a factor scaling. 

Crossover incorporates the mutant and target vectors. A 
well-known crossover operator is a binomial crossover, which 
does this as 

       {
                                   

                                                           
 (2) 

Where    denotes the rate of crossover, and       is a 
number chosen randomly from the set            , where   is 
the dimensionality of a candidate solution. 

Lastly, the selection operator elects the superior solution 
from the target and trial vectors. 

III. PROPOSED APPROACH 

The overall structure of the suggested method is displayed 
in Fig. 1. As seen, it comprises three main stages, pre-
processing, word embedding, and prediction. First, redundant 
words and symbols are removed from the sentences. Next, the 
embedding vector of each word is obtained using BERT, and 
ultimately, the model predicts the similarity between the two 
sentences. The proposed model incorporates a clustering-based 
differential evolution algorithm to find the initial seeds of the 
network weights while using focal loss to handle class 
imbalance. 

A. Pre-Processing 

Data pre-processing is a crucial aspect of any NLP system 
as the fundamental characters, words, and sentences extracted 
in this phase are forwarded to the subsequent stages. 
Consequently, they considerably impact the outcome. 
Conversely, an unsuitable pre-processing technique can 
decrease the model's performance [37]. Common stop-word 
elimination and stemming techniques are used in the approach. 

Stop words are part of sentences that can be regarded as 
overhead. The most common stop words are articles, 
prepositions, pronouns, etc. They should thus be removed as 
they cannot function as keywords in text mining applications 
[38] and decrease the number of dimensions in the term space 

Stemming is employed to determine the base form of a 
word. For instance, the terms „watch‟, „watched‟, „watching‟, 
„watcher‟, etc., can all be reduced to the stem word "watch" by 
stemming. Stemming reduces ambiguity, decreases the number 
of words, and minimizes time and memory requirements [37].

 

Fig. 1. Architecture of the suggested model as a whole. 
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IV. PREDICTION 

The prediction model comprises two attention-based LSTM 
networks as extractors of the embeddings of the source and 
suspicious sentences and a feed-forward network as a predictor 
of the similarity of the two sentences. Given       
              and                      as the sentence of 
the suspicious and source, where    and    denote the  -th word 
in the suspicious and source sentences, respectively.      and 
     are restricted to   and   words due to the length limitation 
in BLSTM (in the work,      ).      and      are nourished 
separately into an LSTM network. These sentences 
embeddings are computed using the mechanism of attention, as 

     ∑   
 
        

 (3) 

And 

     ∑   
 
        

 (4) 

where the  -th hidden vectors are represented in the 

BLSTM by      
   ⃖     

   ⃗     
  and      

   ⃖     
   ⃗     

 , 

and the  -th attention weight for every section is shown  in the 
BLSTM by             , computed as 

   
   

∑  
   

   

 (5) 

And 

   
   

∑  
   

   

 (6) 

With 

               
      (7) 

And 

               
      (8) 

where    ,    ,    and    are the weight matrices and 
biases to the attention mechanisms. The fully-connected 
network‟s input is the connection of the     ,      and        
       as shown in Fig. 1. The dataset used for training consists 
of positive and negative pairs, where positive pairs contain a 
source sentence and a copied sentence and negative pairs 
comprise a source sentence and a different sentence. 

The model has two training phases, pre-training and fine-
tuning. In pre-training, an appropriate starting configuration is 
found. The weights obtained in pre-training are then the initial 
weights of the fine-tuning phase. In the pre-training phase, the 
enhanced differential evolution algorithm is employed. 

A. Pre-Training 

At this stage, the weights of the LSTM, attention 
mechanism, and feed-forward neural network are initialized. 
For this, an enhanced differential evolution method is 
introduced, boosted by a clustering scheme and a novel fitness 
function. 

1) Clustering-based differential evolution: A clustering-

based mutation and updating scheme is employed in the 

enhanced DE algorithm to improve the optimization 

performance. 

The suggested mutation operator, which takes inspiration 
from [39] pinpoints a propitious area in the search space. The 
k-means clustering technique is used to partition the current 
population   into   clusters, each defining a distinct section of 
the search space. From [2, N], a random integer is chosen to 
depict the clusters number. The cluster with the lowest mean 
fitness of its samples is the best cluster after clustering. 

The suggested mutation based on clustering is described as 
follows: 

    
 

         ⃗             ⃗       ⃗       ⃗      (9) 

where           ⃗   is the most acceptable solution in the 

promising region, and  ⃗     and  ⃗     are two randomly 

determined solutions from the available population. It should 
be noted that wing is not always the population‟s most 
acceptable solution. The procedure of the mutation on the basis 
of the clustering is implemented   times. 

When   new solutions have been provoked through 
clustering-based mutation, the current population is updated. 
The steps are as follows: 

• Selection: Generate   individuals randomly as the 
starting points of k-means; 

• Generation: Generate the solutions of the  by applying 

clustering-based mutation as the collection     ; 

• Replacement: Choose   solutions at random and 
determine as  ; 

• Update: The best   solutions from the          
determined as the   . The novel population is 
afterwards calculated as               

2) Encoding strategy: The primary structure of the 

proposed model includes two LSTM networks along with their 

attention mechanisms and a feed-forward network. As 

illustrated in Fig. 2, all weights and bias terms are arranged 

into a vector to form a candidate solution in the proposed DE 

algorithm. 

3) Fitness function: To calculate the quality of a candidate 

solution, the fitness function is as 

        
 

∑      ̃  
  

   

 (10) 

Where   is the number of training examples,    and 
 ̃  show the  -th target and output predicted by the model, 
respectively. 

B. Focal Loss 

The plagiarism problem is defined as a two-class 
classification problem based on positive and negative classes. 
As an imbalanced problem, with few samples in the negative 
class, focal loss (FL) [34] is used to address this. 

FL is a modification of binary cross-entropy (CE) that 
focuses training on harder (i.e., minority class) samples 
[40].CE is defined as 

   {
                               

                      
 (11) 
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where            is the actual class label, and           
is the predicted probability of the model for the class with 
target      . The probability is 

   {
                         
                

 (12) 

and hence 

                           (13) 

FL tends to add a modulating component to cross-entropy 
loss, leading to 

                  
           (14) 

Where γ > 0 (if      , then FL is similar to CE loss), and 
          is the inverse class frequency.

 

Fig. 2. Encoding strategy in the proposed algorithm. 

V. RESULTS 

A. Datasets 

In the tests, the following three benchmark datasets are 
utilized: 

• SNLI: the Stanford Natural Language Inference (SNLI) 
corpus [41] is a large dataset consisting of pairs of 
labelled sentences with three classes, including 
contradiction, entailment, and semantic independence. 
It comprises 550,152 sentence pairs for training and 
10,000 pairs of sentences each for testing and 
validation. 

• MSRP: A rephrasing set of data from Internet news 
articles called the Microsoft Research Paraphrase 
Corpus (MSRP) [42], divided into training and testing, 
with pairs of positive and negative sentences by several 
experts. Of the whole collection, about 67% of 
paraphrases are present. The test and training datasets 
have 1,726 and 4,076 examples, respectively, out of 
which 1,147 and 2,753 are paraphrases, respectively. 

• SemEval2014: the Semantic Evaluation Database 
(SemEval) [13] is a widely-used benchmark for 
evaluating STS, presented in various versions. The 
Compositional Knowledge (SICK) dataset [43] from 
2014 is employed to assess the semantic similarity of 

sentences. The dataset includes 10,000 sentence pairs, 
distributed as 4,500 pairs for training, 500 for 
validation, and 5,000 for testing. 

B. Model Performance 

The algorithm is compared to seven deep learning methods, 
namely RNN  [9], Siamese CNN+LSTM  [44] , CA-RNN [14], 
AttSiaBiLSTM  [13], LSTM+FNN+attention  [14], CETE  
[15] and STS-AM [18]. The results are given in Tables I, II and 
III for SNLI, MSRP, and SemEval2014, correspondingly. For 
the suggested approach, outcomes are presented based on 
accidental weight initialization, the use of FL, and the full 
proposed model. The proposed model demonstrates superior 
performance compared to other models, including CETE, the 
best-performing competitor, across all metrics for SNLI. The 
error rate is reduced by over 50% and 54% in the two primary 
metrics, F-measure and G-means. Comparing the proposed 
model with Proposed+random weights and Proposed+random 
weights+FL, the mistake percentage is reduced by around 67%, 
highlighting the significance of improved DE and FL 
methodologies. The proposed model achieved the most 
significant improvement for the MSRP dataset, followed by the 
CETE algorithm. The error rate improvement for this dataset is 
about 27.41% and 26.69% for both the F-measure and G-
means criteria, respectively. In the SemEval2014 dataset, the 
proposed method reduces the classification mistake by over 
18% and 37% compared to CETE and STS-AM, respectively. 

TABLE I.  COMPARATIVE PERFORMANCE OF DEEP LEARNING MODELS ON THE SNLI DATASET. THE PERFORMANCE METRICS ARE REPRESENTED IN 

FRACTIONS, MULTIPLIED BY 10^(-3), FOR CONCISE PRESENTATION 

Model Accuracy2 Recall2 Precision2 F-measure2 G-means2 

RNN [9] 687×     594×     540×     566×     661×     

Siamese CNN+LSTM [44] 850×     763×     792×     777×     826×     

CA-RNN [14] 790×     667×     704×     685×     754×     

AttSiaBiLSTM [13] 695×     569×     554×     561×     658×     

LSTM+FNN+attention [14] 818×     781×     715×     747×     809×     

CETE  [15] 874×     855×     795×     824×     870×     

STS-AM [18] 756×     625×     650×     637×     718×     

Proposed+random weights 808×     777×     698× 735× 801× 

Proposed+random weights+FL 815×     784×     708× 744× 808× 

Proposed 930×     920×     881× 900× 927× 
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TABLE II.  COMPARATIVE PERFORMANCE OF DEEP LEARNING MODELS ON THE MSRP DATASET. THE PERFORMANCE METRICS ARE REPRESENTED IN 

FRACTIONS, MULTIPLIED BY 10^(-3), FOR CONCISE PRESENTATION 

Model Accuracy2 Recall2 Precision2 F-measure2 G-means2 

RNN [9] 853×     922×     866×     893×     812×     

Siamese CNN+LSTM [44] 863×     916×     882×     899×     833×     

CA-RNN [14] 880×     928×     896×     912×     854×     

AttSiaBiLSTM [13] 874×     927×     889×     908×     845×     

LSTM+FNN+attention [14] 889×     917×     916×     916×     873×     

CETE  [15] 916×     949×     926×     937×     898×     

STS-AM [18] 899×     940×     910×     925×     876×     

Proposed+random weights 875×     908×     905×     906×     858×     

Proposed+randomweights+FL 895×     926×     917×     921×     879×     

Proposed 937×     961×     946×     953×     925×     

TABLE III.  COMPARATIVE PERFORMANCE OF DEEP LEARNING MODELS ON THE SEMEVAL2014 DATASET. THE PERFORMANCE METRICS ARE REPRESENTED IN 

FRACTIONS, MULTIPLIED BY 10^(-3), FOR CONCISE PRESENTATION 

Model Accuracy2 Recall2 Precision2 F-measure2 G-means2 

RNN [9] 809×     822×     963×     887×     750×     

Siamese CNN+LSTM [44] 775×     787×     958×     864×     720×     

CA-RNN [14] 811×     826×     961×     888×     742×     

AttSiaBiLSTM [13] 799×     816×     957×     881×     720×     

LSTM+FNN+attention [14] 733×     746×     949×     835×     670×     

CETE  [15] 854×     868×     969×     916×     791×     

STS-AM [18] 823×     834×     966×     895×     768×     

Proposed +random weights 839×     855×     964×     906×     766×     

Proposed +random weights+FL 849×     863×     967×     912×     783×     

Proposed 876×     884×     977×        928×     838×     

C. Comparison with other Metaheuristics 

The enhanced DE algorithm is contrasted with several 
metaheuristic optimization algorithms in the subsequent 
experiment. Different metaheuristics are used to obtain the 
initial model parameters while keeping the same as the other 
model components, i.e., pre-processing, word embedding, 
LSTM and network structure, and loss function. Eight different 
algorithms, namely (standard) DE [45], FA [46], BA [47], 
COA [48], ABC [49], GWO [50], WOA [51], and SSA [52], 
are used. The obtained results are reported in Tables IV, V and 
VI for the SNLI, MSRP, and SemEval2014 datasets, 
respectively. For the SNLI dataset, the suggested model 
reduces error by about 44% compared to the standard DE. It 
clearly shows that the proposed model has a substantial ability 
compared to the standard one. Also, DE offers more acceptable 
results than other algorithms, including ABC, GWO, and BAT. 
There is a minor improvement for the other two datasets, so the 
error rate for MSRP and SemEval2014 is reduced by around 
19.17% and 8.82%, respectively. 

D. Word Embeddings 

Word embedding is a crucial component of In-depth 
learning-based models since the input is read as a vector, and if 
the embedding is erroneous, the model might be misled. This 
study used the DistilBERT model as a word embedding, one of 
the most recent embedding models. Five more-word 
embeddings are used to compare various word embeddings to 
the model: One-Hot encoding One-Hot encoding [53], CBOW, 
Skip-gram [54], GloVe [10] ,and FastText [55]. One-Hot 

encoding is a crucial step in changing the collected data 
variables fed to In-depth learning methods, enhancing the 
accuracy of predictions and classifications. It generates a 
binary feature for every class, and each sample‟s feature is 
given a value of 1 corresponding to its original class. Skip-
gram and CBOW are techniques that transform a word into its 
corresponding representation vector using neural networks. 
The GloVe is a method for aggregating global word-word co-
occurrence data from a corpus. The Skip-gram paradigm is 
expanded by the word embedding technique known as 
FastText. This approach encodes each word as an n-gram of 
letters rather than learning word vectors. The outcomes of this 
experiment can be found in Tables VII, VIII and IX for the 
SNLI, MSRP, and SemEval2014 datasets, respectively. The 
worst-performing word embedding method was One Hot 
encoding. In the MSRP dataset, the proposed model showed an 
improvement of approximately 85.81% and 83.51% for the two 
criteria, F-measure and G-means, respectively. Skip-gram and 
CBOW operate nearly similarly across the three datasets 
because of similar architecture, which is superior to the Glove 
model. FastText performs better than other models but poorly 
on BERT. The error rate is reduced by more than 18%, 15%, 
and 24% for the SNLI, MSRP, and SemEval2014 datasets, 
respectively, when utilizing BERT instead of FastText. 

E. Loss Functions 

Finally, to justify the selection of focal loss in the approach, 
the comparison is made with four other loss functions, namely 
weighted cross-entropy (WCE) [56], balanced cross-entropy 
(BCE) [57], Dice loss (DL) [58], and Tversky loss (TL) [59]. 
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The results of these experiments are given in Tables X, XI and 
XII for the SNLI, MSRP, and SemEval2014 datasets, 
respectively. The use of focal loss gives the best results for all 
measures on the SNLI and MSRP datasets and yields the best 
G-means results for all three datasets. The results of this 
experiment are given in Tables X, XI and XII for the SNLI, 
MSRP, and SemEval2014 datasets, respectively. Generally 
speaking, the reduction of FL error compared to TL for SNLI 
and MSRP datasets is about 19% and 27%. However, these 
two functions are slightly different in the SemEval2014 
dataset, so the improvement rate for this dataset is about 12%. 

F. Examples 

A qualitative example is provided to demonstrate the 
important contributions of both the improved DE algorithm 
and the use of FL in the approach. The source sentence "Two 
people are kickboxing, and spectators are watching" from the 
SemEval2014 dataset is used for this purpose.  Fig. 3 gives the 
results of the top five sentences retrieved by the BPD model 
with random weight initialization and focal loss, without FL, 
and the full approach. As is apparent, the full model extracts 
suspicious sentences most similar to the source sentence, while 
the other two models retrieve these only in the lower rankings. 

TABLE IV.  COMPARATIVE PERFORMANCE OF METAHEURISTIC ALGORITHMS ON THE SNLI DATASET. THE PERFORMANCE METRICS ARE REPRESENTED IN 

FRACTIONS, MULTIPLIED BY 10^(-3), FOR CONCISE PRESENTATION 

Algorithm Accuracy1 Recall1 Precision1 F-measure1 G-means1 

DE 897×     889×     824×     855×     895×     

FA 864×     803×     801×     802×     848×     

BA 876×     850×     801×     825×     870×     

COA 860×     811×     787×     799×     847×     

ABC 885×     869×     809×     838×     881×     

GWO 842×     780×     763×     771×     826×     

WOA 883×     832×     828×     830×     870×     

SSA 863×     820×     789×     804×     852×     

TABLE V.  COMPARATIVE PERFORMANCE OF METAHEURISTIC ALGORITHMS ON THE MSRP DATASET. THE PERFORMANCE METRICS ARE REPRESENTED IN 

FRACTIONS, MULTIPLIED BY 10^(-3), FOR CONCISE PRESENTATION 

Algorithm Accuracy2 Recall2 Precision2 F-measure2 G-means2 

DE 925×     959×     930×     944×     906×     

FA 897×     942×     908×     925×     874×     

BA 910×     944×     922×     933×     892×     

COA 902×     936×     918×     927×     884×     

ABC 899×     946×     906×     926×     873×     

GWO 884×     926×     902×     914×     861×     

WOA 901×     938×     915×     926×     881×     

SSA 890×     929×     908×     918×     869×     

TABLE VI.  COMPARATIVE PERFORMANCE OF METAHEURISTIC ALGORITHMS ON THE SEMEVAL2014 DATASET. THE PERFORMANCE METRICS ARE 

REPRESENTED IN FRACTIONS, MULTIPLIED BY 10^(-3), FOR CONCISE PRESENTATION 

Algorithm Accuracy1 Recall1 Precision1 F-measure1 G-means1 

DE 864×     873×     975×     921×     822×     

FA 854×     865×     972×     915×     807×     

BA 860×     869×     973×     918×     814×     

COA 856×     867×     971×     916×     805×     

ABC 851×     863×     970×     913×     796×     

GWO 848×     857×     972×     911×     805×     

WOA 844×     856×     969×     909×     788×     

SSA 843×     857×     966×     908×     777×     

TABLE VII.  COMPARATIVE PERFORMANCE OF WORD EMBEDDINGS ON THE SNLI DATASET. THE PERFORMANCE METRICS ARE REPRESENTED IN FRACTIONS, 
MULTIPLIED BY 10^(-3), FOR CONCISE PRESENTATION 

Word embedding Accuracy2 Recall2 Precision2 F-measure2 G-means1 

One-Hot encoding 650×     473×     489×     481×     592×     

CBOW 856×     779×     796×     787×     835×     

Skip-gram 871×     817×     808×     812×     857×     

GloVe 845×     798×     762×     780×     833×     

FastText 905×     861×     861×     861×     893×     

BERT 912×     892×     910×     886×     902×     
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TABLE VIII.  COMPARATIVE PERFORMANCE OF WORD EMBEDDINGS ON THE MSRP DATASET. THE PERFORMANCE METRICS ARE REPRESENTED IN FRACTIONS, 
MULTIPLIED BY 10^(-3), FOR CONCISE PRESENTATION 

Word embedding Accuracy2 Recall2 Precision2 F-measure2 G-means1 

One-Hot encoding 604×     659×     721×     689×     571×     

CBOW 802×     840×     859×     849×     781×     

Skip-gram 830×     856×     884×     870×     816×     

GloVe 781×     824×     844×     834×     758×     

FastText 864×     880×     913×     896×     857×     

BERT 912×     900×     922×     910×     913×     

TABLE IX.  COMPARATIVE PERFORMANCE OF WORD EMBEDDINGS ON THE SEMEVAL2014 DATASET. THE PERFORMANCE METRICS ARE REPRESENTED IN 

FRACTIONS, MULTIPLIED BY 10^(-3), FOR CONCISE PRESENTATION 

Word embedding Accuracy2 Recall2 Precision2 F-measure2 G-means1 

One-Hot encoding 504×     529×     875×     659×     367×     

CBOW 749×     768×     946×     848×     659×     

Skip-gram 758×     773×     951×     853×     686×     

GloVe 697×     715×     936×     811×     606×     

FastText 812×     826×     961×     888×     742×     

BERT 842×     862×     970×     901×     763×     

TABLE X.  COMPARATIVE PERFORMANCE OF LOSS FUNCTION ON THE SNLI DATASET. THE PERFORMANCE METRICS ARE REPRESENTED IN FRACTIONS, 
MULTIPLIED BY 10^(-3), FOR CONCISE PRESENTATION 

Loss function Accuracy2 Recall2 Precision2 F-measure2 G-means1 

WCE 871×     856×     788×     821×     868×     

BCE 895×     874×     828×     850×     890×     

DL 915×     885×     870×     877×     908×     

TL 905×     880×     848×     864×     899×     

TABLE XI.  COMPARATIVE PERFORMANCE OF LOSS FUNCTION ON THE MSRP DATASET. THE PERFORMANCE METRICS ARE REPRESENTED IN FRACTIONS, 
MULTIPLIED BY 10^(-3), FOR CONCISE PRESENTATION 

Loss function Accuracy1 Recall1 Precision1 F-measure1 G-means2 

WCE 861×     906×     887×     896×     836×     

BCE 883×     923×     903×     913×     861×     

DL 915×     943×     930×     936×     899×     

TL 899×     933×     917×     925×     881×     

TABLE XII.  COMPARATIVE PERFORMANCE OF LOSS FUNCTION ON THE SEMEVAL2014 DATASET. THE PERFORMANCE METRICS ARE REPRESENTED IN 

FRACTIONS, MULTIPLIED BY 10^(-3), FOR CONCISE PRESENTATION 

Loss function Accuracy3 Recall3 Precision3 F-measure3 G-means3 

WCE 876×     904×     957×     930×     736×     

BCE 875×     899×     960×     928×     754×     

DL 877×     890×     972×     929×     815×     

TL 876×     895×     966×     929×     784×     

 

Fig. 3. Top-ranked suspicious sentences for source sentence “Two people are kickboxing, and spectators are watching.” Words that appear in the source sentence 

are bolded. 
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G. Discussion 

The article presented an innovative approach to plagiarism 
detection by using an attention mechanism-based LSTM and 
the DistilBERT model. The utilization of the DistilBERT 
model is particularly notable as it reduces the size of the 
original BERT model by 40% while maintaining 97% of its 
language comprehension capabilities and increasing the speed 
by 60%. Two novel approaches were introduced to enhance the 
overall performance of the system. First, a focal loss function 
was used to address the issue of imbalanced classification, 
which often occurs when negative pairs significantly 
outnumber positive pairs. Second, an enriched DE algorithm 
was introduced to address the limitations associated with 
traditional gradient-based learning methods, such as 
initialization sensitivity. The approach was evaluated on three 
benchmark datasets: SNLI, MSRP, and SemEval2014, and it 
outperformed other deep models and conventional and 
population-based models. The effectiveness of the DE 
algorithm and the focal loss function was further validated 
through ablation studies. 

While the study exhibits considerable promise, there are a 
few potential limitations: 

• The study indeed leverages benchmark datasets that 
provide reliable standards for performance evaluation. 
They serve as a crucial starting point for developing and 
refining the model, and their use enables the results to 
be compared directly with other models that have also 
been evaluated using these datasets. However, these 
datasets, although comprehensive and widely used, may 
not fully encapsulate the full diversity and complexity 
of real-world plagiarism scenarios. Real-world 
plagiarism can be exceptionally intricate, involving 
subtle paraphrasing, strategic insertion of synonyms, 
reordering of sentences, or blending of original and 
copied material, among other tactics. These practices 
can often deceive conventional plagiarism detection 
tools, requiring models that can comprehend and 
identify such complex forms of plagiarism. 
Furthermore, these benchmark datasets might lack 
certain forms of plagiarism seen in specific fields or 
cultures. Plagiarism, after all, can differ greatly across 
different academic disciplines, professional fields, and 
cultural contexts. For instance, the plagiarism practices 
in a literature research paper could be entirely different 
from those in a technical report in engineering. Lastly, 
the real-world plagiarism scenarios are continually 
evolving, influenced by the advancement of technology 
and changes in writing and copying techniques. The 
dynamic and constantly changing nature of real-world 
plagiarism can present a challenge that these static, 
fixed datasets may not be fully equipped to address. 

• The incorporation of DistilBERT is indeed a step 
forward in reducing the model's size and enhancing its 
operational speed, owing to its design that maintains 
substantial language comprehension capabilities while 
being considerably smaller and faster than the original 
BERT model. This makes the model more feasible for 
applications that demand quicker processing times and 

limited memory capacities. However, even with these 
benefits, the combined system that also includes the 
attention mechanism-based LSTM and the enriched DE 
algorithm may still have significant computational 
demands. The LSTM component, known for its ability 
to remember long-term dependencies in sequence data, 
can be computationally intensive, particularly for longer 
sequences or larger datasets. The recurrent nature of 
LSTMs, where outputs from one step are fed as inputs 
to the next, makes parallelization of computations 
difficult, potentially slowing down the training process. 
On the other hand, the DE algorithm, while providing 
an innovative solution to the limitation of sensitivity to 
initialization inherent in gradient-based training 
methods, adds another layer of complexity to the 
system. The operations involved in differential 
evolution, such as mutation, recombination, and 
selection, while aiding the optimization process, also 
contribute to the computational burden. Moreover, the 
system must be trained on multiple iterations to 
effectively learn from the data, and each iteration 
involves processing the entire dataset. The 
computational demands can, therefore, escalate with the 
volume of data, length of sequences, and complexity of 
the tasks at hand. In the real world, these requirements 
could translate to higher memory and processing power 
requirements, extended training times, and increased 
energy consumption. They could also limit the system's 
deployability on devices with limited computational 
capabilities, such as mobile devices or low-end personal 
computers. Therefore, while the use of DistilBERT, 
LSTM, and the DE algorithm offers various advantages, 
further work could be directed towards optimizing the 
system to make it more efficient and less resource-
intensive. 

Finally, future works that can be considered are as follows: 

• Investigating the model's performance on other 
languages beyond those in the current datasets could be 
beneficial, potentially leading to the development of a 
more universally applicable plagiarism detection tool. 

• It would be valuable to test the model in real-world 
scenarios, such as academic papers or professional 
reports, to further assess its effectiveness and 
robustness. 

• There may be scope to optimize the DE algorithm 
further for this specific use case. Tuning the parameters 
of the mutation operator based on the characteristics of 
the plagiarism detection task could potentially enhance 
the system's performance. 

• Exploring the use of other pre-trained language models, 
including GPT-3 and T5, and compare their 
performance with DistilBERT. Comparing the 
capabilities of multiple pre-trained language models 
such as GPT-3 and T5 for plagiarism detection tasks 
could provide valuable insights into the suitability of 
these models for this application. GPT-3 is a 
transformer-based language model trained on a massive 
corpus of diverse texts and has shown impressive 
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results in a variety of natural language processing tasks. 
T5, on the other hand, is a text-to-text transformer that 
can be fine-tuned for different tasks, including text 
classification and sequence labeling. 

VI. CONCLUSION 

Plagiarism is the unacknowledged use of another 
individual's language, information, or writing without crediting 
the source. An innovative model was introduced to detect 
plagiarism based on DistilBERT word embeddings, an LSTM 
approach with an attention mechanism, and an enhanced DE 
algorithm used for pre-training the networks. To address the 
issue of inherent class imbalance, focal loss was employed. 
The enhanced DE algorithm groups the present population to 
pinpoint a potential area within the search space and integrates 
a novel update mechanism. DistilBERT can improve the 
performance of BERT by 40% and 97% in terms of size, 
language comprehension abilities, and speed, respectively. 
Extensive experiments on three datasets confirm the approach 
to yield excellent performance, outperforming various 
plagiarism detection approaches. The DE algorithm is superior 
to several other meta-heuristic methods. In forthcoming 
studies, the plan is to utilize the technique on several deep 
models, and an investigation of a version of the algorithm that 
can handle multiple objectives is underway. 
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