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Abstract—This study simultaneously investigates the causal-

ity and dynamic links between international energy trade and 

economic price changes, especially in the Chinese commodity 

market. To get a causal route, it attempts to identify the linear 

and nonlinear causality among commodity prices, equities, and 

the exchange rate in China and the United States (US). Here, we 

adapt multilayer perceptron networks to obtain a nonlinear au-

toregressive model for causality discovery. After comparing 

methods without networks, this study proves that the nonlinear 

causality discovery method using machine learning performs best 

on simulated data. Subsequently, we apply that causality to actu-

al data; we combine the causal routes, particularly from the ma-

chine learning methodology, to investigate the existence of a 

causal direct or indirect relationship among Chinese commodity 

prices, long-term interest rates, stock index, and exchange rates 

in China and the US. The steady-state accuracy of cmlpgranger is 

99%. In most cases, the order of judgment accuracy of causality 

is cmlpgranger > HSICLasso > ARD > LinSVR. The results show 

that Energy trade as an element of the global economic system. 

The Chinese commodity price of energy has an interactive rela-

tionship with the Chinese commodity price of agricultural prod-

ucts. The significant transmission is from the commodity price of 

energy to equities, then to the exchange rate, and, finally, to the 

commodity price of agricultural products. 

Keywords—Chinese commodity price; exchange rate; stock 

markets; machine learning; international energy trade; global 

economic system 

I. INTRODUCTION 

As an essential part of the global industrial chain, the price 
fluctuation of commodities has a tremendous impact on the real 
economy, and the inflation level has a significant effect. The 
supply and demand pattern of commodities has changed dra-
matically since 2020. The COVID-19 pandemic raised energy 
costs, political instability and increased demand for energy [1], 
which led to intense fluctuations in international commodity 
prices. In the post-pandemic era, the evolution of the world 
pandemic situation is out of sync with the economic recovery of 
various countries. Under the pressure of green transformation 
and global development, major developed economies have 
implemented large-scale fiscal stimulus and super-wide mon-
etary policies. At the same time, there have been profound 
changes in the international economic and trade landscape, 
geopolitical factors, extreme climate, and other factors. Global 
supply and demand patterns. Commodities are generally in 
short supply [2]. Under the influence of various complex fac-
tors, it is very important to sort out the causal logic among the 
factors affecting commodity prices and clarify the impact of 
commodity price changes on the macro economy for effec-

tively adjusting policies and overcoming the global economic 
recession. 

China is currently the world's largest consumer country [3]. 
The continued demand for energy, essential raw materials, and 
agricultural products has rapidly increased China’s commodity 
imports. China has become the world’s largest importer of 
commodities such as iron ore, aluminum ore, lead ore, nick-
el-chromium ore, and crude oil [4]. The existing literature in 
2018 includes discussions on factors that affect commodity 
prices. However, the current global indicators mainly consider 
the role of developed countries, but do not consider China's role 
and its impact on China. 

This study also aims to provide a comprehensive analysis 
using the machine learning (ML) approach. Although numer-
ous studies have analyzed the factors and effects of interna-
tional commodities prices, we make full use of the algorithm 
advantages of ML to integrate our findings with those of pre-
vious studies. The majority of applied analyses on this topic 
used the vector autoregressive (VAR) Granger’s tests. Sahlian 
et.al. used the Granger test to establish the causality between 
the market capitalization and financial indicators [5]. In the 
classic linear VAR method, when evaluating the cause of 
Granger, the maximum delay must be stated. When the rela-
tionship between the past of one series and the future of another 
series does not belong to the model category. The method based 
on model in the real world may fail [6-8]. This usually occurs 
when there is a non-linear relationship between the past and 
future of a series. The nonlinear relationship between the past 
and the future can be detected by minimizing assumptions 
about the predicted relationship [9]. For example: Yin Z et al. 
used multiple repetitive neural networks to demonstrate the 
effectiveness of nonlinear random time series models. [10] 
Neural networks can display complex nonlinear and 
non-auxiliary interactions between inputs and outputs. Some 
studies introduced the structural learning framework in mul-
ti-layer sensor (MLP) and Recurrent neural network (RNN). 
This led to Granger's nonlinear causal discovery. However, the 
use of these methods to analyze causal processes between 
multiple variables is particularly rare in the field of economics. 

The surge in oil and food prices over the past decade has 
prompted a large amount of research to focus on the common 
flow of crude oil and agricultural products. Then, some studies 
begin modeling to investigate correlations and connections or 
pathways. On the contrary, some studies provide evidence of 
the neutral relationship structure between crude oil and agri-
cultural products. Based on the research of previous genera-
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tions, the significance and innovation of this study can be 
summarized in the following three points. 

Firstly, we are the first to adopt the ML method instead of 
traditional economic models. The determination of causal re-
lationships in existing literature is mainly based on the as-
sumptions of econometric models. However, most of these 
models explore linear relationships. Based on our research, we 
are the first to use ML to study the causal discovery and rela-
tionship between energy and agricultural futures prices. Using 
ML in this study, we can break the assumptions of the Tradi-
tional economy model and find more nonlinear relationships. In 
addition, compared to other traditional econometric models that 
only estimate one or two parameters, the ML time size Helping 
people study time series in time zones and frequency domains 

Secondly, we have important evidence in studying the re-
lationship between energy prices and agricultural product 
prices. In past research, there has been no consensus on the 
research conclusions, price indicators, and research methods 
for energy and agricultural product prices at different periods. 
Country/Region. This study focuses on the prices of China's 
energy and agricultural futures markets, providing many re-
search conclusions for the literature. 

Finally, this study discussed whether this relationship exists 
and attempted to express causal relationships based on im-
portant financial indicators. Most research on the impact of 
commodity prices focuses on two pairs of relationships. 
However, this study consists of two or more factors of causality 
diagram, thus obtained a comprehensive causal path. The me-
dia focused on Chinese stock market prices and the exchange 
rate between China and the United States. 

The structure of the remaining parts of this article is as 
follows: In Section I, we introduced early research related to 
commodity market reasons or correlations. In Section II, we 
use motivational datasets to evaluate the effectiveness of ma-
chine learning causal discovery methods. After determining the 
cause-finding ability of these methods, we will use it to analyze 
the actual data and get the results in Section III. Finally, Sec-
tion IV summarizes the article. 

II. METHODOLOGY AND DATA 

A. Adapting Neural Networks for Granger Causality 

The Nonlinear Autoregressive Model (NAR) allows XT to 
dynamically evolve based on typical nonlinearity [11]: 

 t t1 tp tx g x , , x e  
   (1) 

where     ti t 2 i t 1 i
x , x , x  

  represents the past of 

sequence i; we assume that the additive noise zero mean t e . 

 In a forecasting setting, the mutual modeling of nonlinear 
functions g typically uses neural networks. Neural networks 
have a long history in predicting NAR using traditional archi-
tectures [12] and the latest deep learning techniques [15]. These 
methods use MLP, where the input 

   t t 1 : t K
x x  

     (2) 

Our main approach is to model each output ig  using a 

separate MLP to easily clarify the impact of input on output. 

We call it component-wise MLP (cMLP) [17]. Set ig  in the 

form of MLP with L−1 layers, and let the vector l H
th R  

denote the values of the m-dimensional lth hidden layer at time 
t. The discovery and research of nonlinear causal relationships 
have become more widespread, for example, M Roso et.al 
(2022) not only focused on theory, but also on how to build 
Python packages to complete testing [18]. 

Definition 1. Time series J is a non-causal relationship of 

time series I if all  t1 tpx , , x   and all tj tjx x  , 

   i t1 tj tp i t1 tj tpg x , , x , , x g x , , x , , x      
 (3) 

that is, ig  is invariant to tjx . 

The parameters of the neural network are given by weights 

W and biases b as each layer,  1 LW W , , W   and 

 1 Lb b , , b  . To compare with the time series VAR model, 

we divided the weight of the first layer into time delays, 

 1 11 1KW W , , W  . The parameter sizes include 1 H pKW R , 

l H HW R  for 1 l L  , l HW R , l Hb R  for l L  

and Lb R . Using this notation, the vector of first layer hid-

den values at time t is given by 

K
1 1k 1
t t k

k 1

σ W x bh 



 
  
 
 


   (4) 

where σ  is an activation function [19]. 

In Equation (4), if the jth column of the first layer weight 

matrix, 1k
:jW , contains zeros for all k, then series j does not 

Granger-cause series i. That is,  t k j
x

  for all k does not affect 

the hidden cell 1
th . So according to the definition 1 output tix

, we can see that ig  divided by tjx  remains unchanged. 

B. Creating Benchmark Datasets 

1) Group1: Lorenz-96 model: We use these two methods 

to detect Granger's causal network from P's simulated Lo-

renz-96 data. Find the impact of many attributes in different 

ways [11]. 

The continuous dynamics of the P Vilorenz model will be 
obtained from the following styles. 

      
ti

tit i 1 t i 2 t i 1

dx
x x x x F

dt
  

   
 (5) 

where    t 1 t p 1
x x

 
 , t0 tpx x ,   t1t p 1

x x


  and F is a 

mandatory constant that determines the degree of nonlinearity 
and chaos in the set. 
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2) Group2: Nonstationary data: Due to the fact that most 

of the attributes we want to check are not smooth in practice, 

we will add trends to the Lorenz-96 P dimension data to ob-

tain the data. The second set of extended Dickey Fuller (AD-

Fuller) checks can be used to test the unit root directory within 

a single variable process in the presence of sequence relation-

ships. We use ADFuller to test whether the data is stable. 

 t t 1 I 0Trend Trend Trend Trend / I  
 (6) 

Here, tϵ (0, I), I is the length of features and Trend is linear. 

As shown in Table Ⅰ, we take P as 5 and obtain the results of 
two datasets with P values: 

TABLE I. ADFULLER TEST OF DATA (CALCULATED BY AUTHORS) 

Group1 Adfuller P_Value  Group2 Adfuller P_Value  

1X  6.641034e-22 stationary 1X +Trend 0.689549 Nonstationary 

2X  5.266443e-18 stationary 2X +Trend 0.716672 Nonstationary 

3X  5.218544e-10 stationary 3X +Trend 0.700451 Nonstationary 

4X  3.249791e-14 stationary 4X +Trend 0.706434 Nonstationary 

5X  8.472980e-12 stationary 5X +Trend 0.797429 Nonstationary 

C. Comparing Models for Granger Causality 

We compare four methods on different numbers of features 
using stationary and nonstationary data. The four methods are 
LinSVR2, automatic relevance determination (ARD), HSI-
CLasso, and CMLP-Granger. 

The basic support vector regression (SVR) concepts are 
introduced by Schӧlkopf and Smola; Linear SVR (LinSVR) is a 
special case of SVR with a linear axis. Huang and Cai improved 
SVR and used these methods to select features. The advantage 
of LinSVR is that due to the small complexity of the model, the 

results are easy to interpret. However, it cannot recognize 
nonlinear relationships that typically occur in real data. 

ARD was proposed by MacKay based on the Bayes model, 
which effectively selects relevant features through preliminary 
training. Evaluate initial hyperparameters by maximizing the 
probability in the data. This process is called evidence aug-
mentation, or maximizing the second type of likelihood. Wipf 
and Nagarajan [20] applied the ARD method to prune large 
numbers of irrelevant features, leading to a sparse explanatory 
subset and demonstrating that the ARD prior maintains ad-
vantages compared to conventional priors in feature selection. 

TABLE II. RESULTS OF DIFFERENT METHODS (CALCULATED BY AUTHORS.) 

Methods x_num 
Stationary Nonstationary 

Accuracy Accuracy 

ARD 5 100% 60% 

HSICLasso 5 100% 60% 

LinSVR 5 76% 60% 

cmlpgranger 5 80% 72% 

ARD 15 56% 76% 

HSICLasso 15 92% 67% 

LinSVR 15 80% 80% 

cmlpgranger 15 100% 97% 

ARD 35 63% 64% 

HSICLasso 35 96% 85% 

LinSVR 35 63% 63% 

cmlpgranger 35 99% 98% 

ARD 50 59% 59% 

HSICLasso 50 98% 90% 

LinSVR 50 58% 58% 

cmlpgranger 50 99% 97% 

ARD 100 56% 55% 

HSICLasso 100 98% 85% 

LinSVR 100 54% 54% 

cmlpgranger 100 98% 97% 
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Freidling et al. [21] improved the least absolute shrinkage 
and selection operator (Lasso) method on feature selection by 
integrating Lasso and particular kernel functions with ker-
nel-based independence measures such as the Hilbert–Schmidt 
independence criterion (HSIC). Compared to the former Lasso 
methods, the HSICLasso can capture nonlinear dependency 
with a clear statistical interpretation and deal with 
high-dimensional feature selection scenarios in which the 
number of training samples is smaller than that of features. 

In 2021, Alex Tank, Ian Covert et al. [22] use time series 
normal neural network Model selection framework of Granger 
nonlinear causality. These researchers applied the multi-layer 
sensor module (cMLP) and the long run and short run memory 
architecture of the module. (cLSTM) includes related sparsity, 
which promotes penalties for network inbound weight, thus 
selecting Granger demonstrated the construction of Granger 
causality diagram, which is the correct basis for linear and 
nonlinear settings. 

In Table Ⅱ, the results can be summarized into three points. 
(1) In most cases, the order of judgment accuracy of causality is 
cmlpgranger > HSICLasso > ARD > LinSVR. (2) The per-
formance of cmlpgranger varies with the number of factors. 
When the number of distinguishing factors is greater than 5, it 
is far better than other methods. (3) cmlpgranger also performs 
well for nonstationary data. When the data are nonstationary, 
the accuracy of the method in judging causality is significantly 
higher than that of other models. 

III. RESULTS 

Through simulated data, proved cmlpgranger in nonlinear 
nonstationary has good capability of causal relationships found 
in the data. Therefore, we determine the cause and effect of the 
actual data of the Chinese futures market by integrating the 
results of several causality methods. Specifically, we want to 
ascertain how the relationship between the commodity prices of 
energy affects that of agricultural products and its specific 
impact path. 

In order to assess the causal relationship of commodity 
prices, we have adopted from the Ministry of Commerce of 
China's commodity price index (CCPI) international commod-
ity prices. Financial indicators covering the stock market, bond 
market, futures market, interest rate, credit market, and foreign 
exchange market are extracted from the Wind Economic Da-
tabase as financial market factors affecting commodities prices. 
All data begin from June 2006 to October 2021 monthly. The 
nomenclature of indicators is shown in Table Ⅲ. 

Finally, for each method, we obtain a causality matrix, 

where i, ja  in the matrix equal to 1 indicates that the jth factor 

is the cause of the ith factor. Otherwise, there is no apparent 
causality between the two elements. To acquire accurate re-
sults, we synthesize the conclusions of the models that perform 
well on the simulation dataset. Table Ⅳ shows the causality 
result confirmed by cmlpgranger. Table Ⅴ shows the causality 
result proved through the HSICLasso and ARD methods. 

TABLE III. NOMENCLATURE (CALCULATED BY AUTHORS.) 

Full Name Abbreviation Full Name Abbreviation 

China commodity price index_ Total index CCPI_T S&P 500 index SP500 

China commodity price index_ Energy CCPI_E CSI 500 Index CSI500 

China commodity price index_ Non-ferrous metals CCPI_M US discount rate US_DR 

China commodity price index_Agricultural products CCPI_A CN discount rate CN_DR 

The US dollar/RMB exchange rate USDCNY US10-year Treasury yield US_TB10Y 

The Dollar index DI CN10-year Treasury yield CN_TB10Y 

TABLE IV. CAUSALITY RESULTS OF THE CMLPGRANGER METHOD (CALCULATED BY AUTHORS.) 

Cmlpgranger CCPI_E CCPI_M CCPI_A US_TB10Y USDCNY DI CSI500 SP500 CN_TB10Y 

CCPI_E 1 1 0 0 1 0 0 0 0 

CCPI_M 0 1 0 0 0 0 0 1 0 

CCPI_A 0 0 0 0 0 0 0 1 0 

US_TB10Y 0 1 0 0 0 0 0 0 0 

USDCNY 0 0 0 0 0 0 0 0 0 

DI 0 0 0 0 1 1 0 0 0 

CSI500 1 0 0 0 1 0 1 1 0 

SP500 0 1 0 0 0 0 0 1 0 

CN_TB10Y 0 1 0 0 0 0 0 0 1 
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TABLE V. INTERSECTION OF CAUSALITY RESULTS OF THE HSICLASSO AND ARD METHODS (CALCULATED BY AUTHORS.) 

HSICLasso&ARD CCPI_E CCPI_M CCPI_A US_TB10Y USDCNY DI CSI500 SP500 CN_TB10Y 

CCPI_E 1 1 0 0 0 1 0 0 0 

CCPI_M 0 1 1 0 1 1 0 0 0 

CCPI_A 0 0 1 0 1 1 0 0 0 

US_TB10Y 0 1 1 1 0 0 0 0 0 

USDCNY 0 0 1 0 1 1 0 0 1 

DI 0 0 0 0 0 1 1 0 1 

CSI500 1 0 0 0 0 0 1 0 0 

SP500 0 0 0 0 0 0 0 0 0 

CN_TB10Y 0 0 0 0 0 0 0 0 0 

Combining the results of the two methods, we can use Fig. 1 
to show the relationship between futures market prices and 
other economic indicators. The bold black line shows the causal 
relationship, which is proved by three methods (cmlpgranger, 
HSICLasso, and ARD). The black line indicates the causal 
relationship, which is proved by two methods (HSICLasso and 
ARD). The red dotted line shows the causal relationship proved 
by cmlpgranger method, which can be indirectly verified by the 
other two methods. The arrow points from cause to result. 

 

Fig. 1. Causality routes (Calculated by authors.). 

Thus, we can conclude that the CCPI_E and CCPI_A have 
an interactive relationship. The Chinese commodity price of 
energy will affect the CSI500, thereby affecting the dollar 
index. The similar conclusion given by Shabir et. al. show that 
the impact of oil prices and exchange rate on stock prices exists 
and varies across bullish, bearish, and normal states of the stock 
market [23]. [23] The dollar index will also affect the exchange 
rate between China and the US and eventually transmit to the 
China commodity price of agricultural products. Conversely, 
the China commodity price of agricultural products will affect 
the China commodity price of non-ferrous metals and finally 
transmit to energy prices. 

Other researchers have also investigated the conclusion that 
CCPI_E affects the direction of CCPI_A, and analyzed the 
relationship between oil prices. Food (agricultural product 
prices) and exchange rates, as oil prices are transmitted to the 
local agricultural market through exchange rates. Nazlioglu and 
Soytas conducted a study on global oil and agricultural prices, 
explaining the relative strength of the US dollar [24]. Awartani 
et al. pointed out that the oil market is the main source and risk 
transfer for stocks, euro/dollar exchange rates, precious metals, 
and agricultural products [25]. In our results, we observe the 
evidence favoring this argument with respect to Chinese 
commodity prices. 

IV. CONCLUSIONS 

In this study, we use monthly data from the Chinese finan-
cial market from June 2006 to October 2021 to investigate the 
causal route between the commodity prices of energy and ag-
ricultural products. Unlike traditional econometric models, we 
apply the ML method for the first time to examine this issue. 
Using these methods, we find that the energy commodity price 
is vital. It can affect equities changes represented by the CSI 
500 Index, thus affecting the exchange rate between China and 
the US and eventually causing changes in the prices of agri-
cultural products. In comparison with previous studies, we find 
a correlation between the energy commodity price and agri-
cultural products but emphasize indirect media in causality. 

The conclusions drawn in this study led to further consid-
erations. First, we should remain alert to changes in energy 
commodity prices. Since the commodity price of energy is 
likely to affect the Chinese capital market price. Second, the 
exchange rate influences the commodity prices of different 
varieties in China, indicating China is still highly dependent on 
foreign countries in terms of the import of products involved in 
the commodity market. In 2022, under the general environment 
of long-term inflation in the US, the exchange rate between 
China and the United States breaking 7, the stalemate in the 
Russia–Ukraine war, and the continued slowdown in global 
economic growth, the price of China’s futures market will also 
be volatile under the influence of the strong US dollar. Third, 
based on the results, most causal paths reflect that the prices of 
various commodities in China or the prices of China’s capital 
markets are always affected. Still, there is no obvious path to 
show the impact of China’s factors on American financial 



(IJACSA) International Journal of Advanced Computer Science and Applications, 

Vol. 14, No. 8, 2023 

880 | P a g e  

www.ijacsa.thesai.org 

indicators. This suggests that there is still a long way to go to 
improve the Chinese commodity market. 

But there is still much work to be done. First, causality may 
change over time. While we consider the beginning year of 
COVID-19, the actual time when significant economic changes 
will occur is 2-3 years after COVID-19, not 2021. As new data 
becomes available, we should pay attention to these changes. 
Second, more research is needed to prove the effectiveness of 
machine learning methods in doing causal discovery. 

Supplementary Materials: The following supporting in-
formation can be downloaded at: www.mdpi.com/xxx/s1, 
Fig. 1. Causality routes; Table Ⅰ: ADFuller test of data; Table Ⅱ: 
Results of different methods; Table Ⅲ: Nomenclature; Table 
Ⅳ: Causality results of the cmlpgranger method; Table Ⅴ: 
Intersection of causality results of the HSICLasso and ARD 
methods. 
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