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Abstract—The use of submarine cables as underwater 

transmission channels for distributing electrical energy in 

Indonesian waters is crucial. However, the detection and 

maintenance of submarine cables still heavily rely on human 

observation, leading to limitations in time and subjective 

interpretations. This research aims to design and implement an 

underwater object detection system based on YOLOv4 

integrated with a Graphical User Interface (GUI) on a Remotely 

Operated Vehicle (ROV) for submarine cable detection. The 

YOLOv4 model was trained using a balanced dataset, achieving 

performance with precision of 0.89, recall of 0.85, and f1-score of 

0.87. Detection of Good Condition (SC-Good-Condition) achieved 

an Average Precision (AP) of 97.62%, while Bad Condition 

detection (SC-Bad-Condition) had an AP of 87.54%, resulting in 

an overall mAP of 92.58%. The implemented GUI successfully 

detected submarine cables in two test videos with FPS rates of 

0.178 and 0.083. The designed underwater object detection 

system using YOLOv4 and GUI on ROV demonstrated 

satisfactory performance in detecting submarine cables. 

However, further efforts are needed to improve the GUI's FPS to 

make it more responsive and efficient. This research contributes 

to the development of underwater detection technology that 

supports environmental observation and electrical energy 

distribution in Indonesian waters. 

Keywords—Submarine cable; object detection; GUI; ROV; 

YOLOv4 

I. INTRODUCTION 

Electricity is a fundamental and crucial necessity for the 
livelihood of Indonesian society. As Indonesia's economic 
growth and population continue to expand, the demand for 
electricity increases. Furthermore, being an archipelagic nation 
with 17,504 islands, almost all activities in both rural and urban 
areas of Indonesia require electricity. Therefore, there is a need 
for a transmission medium that can distribute electricity from 
one island to another. Submarine cables are underwater 
transmission channels that can distribute electricity between 
Indonesian islands [1]. However, in practice, submarine cables 
require periodic maintenance to ensure their optimal condition. 
One stage in the process of maintaining submarine cables is 
underwater inspection to observe the surrounding environment 
of the cables. 

A Remotely Operated Vehicle (ROV) is an underwater 
robot that can be controlled remotely [2]. Some ROVs are 

equipped with computer vision technology-enabled cameras 
for underwater inspection purposes, including maintenance and 
observation in the vicinity of submarine cables [3]. Typically, 
the process of detecting submarine cables is visually performed 
by ROV operators who oversee the video feed from the camera 
mounted on the ROV. However, this approach has some 
limitations, such as dependency on human observation, which 
is susceptible to fatigue and time constraints, as well as 
subjective interpretation in identifying submarine cables [4]. 

To address these limitations, automated object detection 
techniques have been developed, including underwater object 
detection. One method that has shown good performance is 
YOLOv4 (You Only Look Once version 4), which enables fast 
and accurate object detection [5]-[7]. 

Additionally, implementing a Graphical User Interface 
(GUI) on the ROV can provide an intuitive and user-friendly 
interface for operators, facilitating cable observation and 
detection with higher efficiency [8]. However, despite several 
studies on underwater object detection using YOLOv4 and 
research on GUI implementation on ROVs, research 
specifically combining both aspects in the context of 
submarine cable detection is still limited. 

Therefore, this research aims to fill this knowledge gap by 
designing and implementing an underwater object detection 
system based on YOLOv4, integrated with a GUI on the ROV, 
particularly in the context of submarine cable detection. This 
study is expected to enhance the effectiveness and efficiency of 
submarine cable detection more accurately and efficiently. 

Several prior studies have explored submarine cable 
detection using various methods, including both Deep Learning 
and non-Deep Learning approaches, yielding reasonably 
accurate results. 

One previous study employed CNN and YOLO model 
(YOLOv3) for submarine cable detection but lacked a desktop 
GUI application. The results were as follows: for the original 
image dataset, it achieved an Average Precision (AP) of 
98.14%, an F1 Score of 95.79%, and an Average Time of 
0.416 seconds. Meanwhile, after dataset enhancement, it 
achieved an AP of 98.95%, an F1 Score of 96.92%, and an 
Average Time of 0.452 seconds [9]. 
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Another research used edge detection methods to detect 
submarine cables, utilizing the Hough Transform model. This 
study developed software for ROVs equipped with cameras for 
cable detection. It reported successful submarine cable 
detection using 100 scenes, resulting in 83 correct detections, 
17 false detections, and a recognition rate of 83% in the first 
experiment. In the second experiment, out of 100 scenes, it 
achieved 98 correct detections, 2 false detections, and a 
recognition rate of 98% [10][11]. 

This research focuses on submarine cable detection using 
the more recent CNN model YOLOv4, enhanced by the 
inclusion of a GUI for computer vision on the ROV. This 
integration of YOLOv4 and GUI aims to improve the quality 
of ROV-acquired computer vision data compared to previous 
studies, providing a more advanced and comprehensive 
approach to submarine cable detection. 

In line with the outlined objectives, this paper is organized 
as follows. Section I begins with an exploration of the 
background of the research, emphasizing the vital role of 
electricity in Indonesian nation, the challenges posed by its 
archipelagic nature, and the need for advanced techniques in 
submarine cable detection. It further elucidates the specific 
goals and contributions of this research, aiming to bridge the 
existing gap in the integration of YOLOv4-based object 
detection and GUI on ROVs for submarine cable detection. 
Moreover, this section provides a concise review of prior 
research endeavors related to underwater object detection, 
ROV applications, and GUI implementations in the marine 
domain. 

Section II delves into the research design, detailing the 
methodologies, equipment, and procedures employed in 
developing the underwater object detection system using 
YOLOv4 and integrating it with the ROV's GUI. It sheds light 
on the technical aspects and considerations pivotal to the 
success of this innovative system. 

Section III is dedicated to presenting the experimental 
findings and their subsequent analysis. The section elucidates 
the outcomes of deploying the YOLOv4-based system and 
GUI on the ROV during underwater cable inspections. It 
discusses performance metrics and GUI functionality test. 

Section IV, we synthesize the findings into comprehensive 
conclusions and offer recommendations for future research in 
this field. We reflect on the implications of our work on the 
broader context of submarine cable maintenance and its 
potential contributions to the sustainability and efficiency of 
Indonesia's electricity distribution network. Furthermore, we 
suggest avenues for further research and improvements to 
enhance the capabilities of the integrated system, ensuring its 
continued effectiveness in the evolving landscape of 
underwater cable detection. 

II. RESEARCH DESIGN 

A. Research Stages 

There are several steps carried out in this research, as 
shown in Figure 1. 

 

Fig. 1. Research stages. 

 Literature Review: Conducting a comprehensive 
literature review on underwater object detection 
methods and techniques, the YOLOv4 approach, GUI 
utilization on ROVs, and related submarine cable 
research to understand the foundational theories and 
related studies. 

 GUI Design: Designing and developing the Graphical 
User Interface (GUI) using PyQt (Python QML) library 
to enable interaction between the ROV operator and 
the YOLOv4-based underwater object detection 
system. 

 Data Collection: Gathering the necessary image data 
for training and testing the submarine cable detection 
model. The image data used in this research was 
obtained from underwater inspection videos conducted 
by PT Syergie Indoprima in the year 2022. 

 Data Splitting: Dividing the image data into two 
classes: SC-Good-Condition (good cable condition) 
and SC-Bad-Condition (bad cable condition). The 
entire image data will be divided into two subsets, with 
80% of the data used for model training and 20% for 
model testing, both for imbalanced and balanced 
datasets. 

 Data Annotation and Training: Annotating the image 
data with appropriate labels, i.e., SC-Good-Condition 
or SC-Bad-Condition, indicating the condition of the 
submarine cable in each image. Next, training the 
underwater object detection model using YOLOv4 
with the annotated image data. 

 Performing Cross-Validation: Conducting cross-
validation on the trained model to measure its 
performance and accuracy in detecting submarine 
cables. The data is divided into 5 subsets (folds), and 
the model training and testing will be repeated on each 
fold to obtain more reliable results. 

 Model Performance Evaluation and Analysis with 
Confusion Matrix: Using the cross-validation results, a 
confusion matrix is created to depict the overall model 
performance. The confusion matrix provides 
information on the number of true positives (TP), true 
negatives (TN), false positives (FP), and false 
negatives (FN) in detecting submarine cables. Through 
the confusion matrix, the model's performance is 
analyzed and evaluated, including calculation of 
evaluation metrics such as precision, recall, and F1-
score, to gain a deeper understanding of the model's 
ability to detect submarine cable conditions. 
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 Model Implementation into GUI: The trained and 
evaluated underwater object detection model is then 
implemented into the previously designed GUI 
application. This process involves a seamless 
integration between the model and GUI to enable real-
time and non-real-time submarine cable detection 
through the ROV using a user-friendly GUI that 
provides clear and understandable results for the ROV 
operator. 

B. GUI Design 

Figure 2 is a mock-up of the GUI designed in this research. 
This GUI functions to display real-time and non-real-time 
computer vision camera views for detecting submarine cables. 

 

Fig. 2. Mock-up of ROV computer vision application GUI. 

This GUI is equipped with 2 screen views, namely the 
"source video" screen to display real-time and non-real-time 
computer vision and the "YOLOv4 Processing Result" screen 
to show the submarine cable detection results from the trained 
YOLOv4 weights. Additionally, there is a status bar that 
displays the GUI duration, submarine cable detection class, AP 
(Average Precision) value, and bounding box dimensions. 

C. Data Collection 

The data used in this study was collected from underwater 
inspection video documentation by PT Syergie Indoprima. The 
documentation videos were converted into image frames using 
VLC Media Player. There are 4 underwater inspection videos 
used in this research, resulting in a total of 395 image frames. 
The data collection process is illustrated in Figure 3. 

 

Fig. 3. Collecting data stages. 

D. Data Splitting 

After the data collection process, the data is divided into 
two classes: SC-Good-Condition and SC-Bad-Condition. This 
class division is based on the physical conditions observed in 
the underwater inspection videos that have been converted into 
395 image frames. The following are some criteria for the 
submarine cable classes in this research, presented in Table I. 

TABLE I. CRITERIA FOR SUBMARINE CABLE CLASSES 

Criteria for SC-Good-Condition Criteria for SC-Bad-Condition 

The armor layer of the submarine 

cable is intact, with no peeling. 

The armor layer of the submarine 

cable is peeling. 

The submarine cable is not covered 

by underwater vegetation. 

The submarine cable is covered by 

underwater vegetation [12] 

Figure 4 is an example of SC-Good-Condition image, and 
Figure 5 is an example of SC-Bad-Condition image. 

 

Fig. 4. Example of SC-good-condition image. 

 

Fig. 5. Example of SC-Bad-condition image. 

Out of the 395 submarine cable image frames obtained, the 
number of images for each class was imbalanced. Therefore, 
the image data was re-divided to create a balanced dataset for 
the research. The balanced dataset used is presented in Table II, 
and the data split between the training and testing sets is 
presented in Table III. 

TABLE II. DATA IMAGE SPLIT INTO BALANCED DATASET 

Class Number of Images 

SC-Good-Condition 100 Images 

SC-Bad-Condition 100 Images 

TABLE III. DATA IMAGE SPLIT BETWEEN TRAINING AND TESTING 

SETS 

Number of Image 

Data 
Training Data (80%) Test Data (20%) 

200 Images 160 Images 40 Images 

Balanced and imbalanced datasets are important concepts 
in Deep Learning, including for object detection models like 
YOLOv41. When collecting image data, it is crucial to pay 

                                                                                                     
1Introduction to Balanced and Imbalanced Datasets in Machine Learning. 

(n.d.). Balanced and Imbalanced Datasets in Machine Learning [Full 

Introduction]. https://encord.com/blog/an-introduction-to-balanced-and-
imbalanced-datasets-in-machine-learning/ 
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attention to dataset balance, especially if there are differences 
in the number of examples between the SC-Good-Condition 
and SC-Bad-Condition classes. If the dataset is imbalanced, for 
instance, when there are fewer examples of bad submarine 
cables compared to good examples, the object detection model 
can become biased in learning relevant patterns and features of 
the bad submarine cables [13]. Therefore, it is necessary to 
perform proportional data splitting for training and testing the 
model effectively, enabling the model to accurately recognize 
both classes and avoid any undesired bias in submarine cable 
detection. 

E. Data Annotation and Training 

In this research, the tool LabelIm 2  was utilized for 
annotating the images used in submarine cable detection. This 
tool allows users to easily create annotations in the YOLOv4 
format. It provides features to manually select and mark the 
positions and boundaries of submarine cables for both SC-
Good-Condition and SC-Bad-Condition classes. The 
annotation process involves drawing bounding boxes around 
the cables in each image. These bounding boxes provide 
information about the coordinates (x, y) and dimensions (width 
and height) of the submarine cables. 

For the training data process, custom configurations were 
used based on the number of classes being trained. A reference 
guide3was employed for the configuration of submarine cable 
detection, as presented in Table IV for yolov4_train.cfg and 
Table V for yolov4_test.cfg. 

TABLE IV. CONFIGURATION FOR YOLOV4_TRAIN.CFG 

Reference Used Configuration 

𝐹𝑖𝑙𝑡𝑒𝑟𝑠 = (𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑐𝑙𝑎𝑠𝑠 + 5) × 𝐵 
B = number of bounding boxes 

𝐹𝑖𝑙𝑡𝑒𝑟𝑠 = (2 + 5) × 3 

𝐹𝑖𝑙𝑡𝑒𝑟𝑠 = 21 

𝑀𝑎𝑥 𝑏𝑎𝑡𝑐ℎ𝑒𝑠 = 

𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑐𝑙𝑎𝑠𝑠𝑒𝑠 × 2000 

𝑀𝑎𝑥 𝑏𝑎𝑡𝑐ℎ𝑒𝑠 = 2 × 2000 

𝑀𝑎𝑥 𝑏𝑎𝑡𝑐ℎ𝑒𝑠 = 4000 

𝑆𝑡𝑒𝑝𝑠 = 80%, 90% 𝑜𝑓 max 𝑏𝑎𝑡𝑐ℎ𝑒𝑠 
𝑆𝑡𝑒𝑝𝑠 = 80%, 90% 𝑜𝑓 4000 

𝑆𝑡𝑒𝑝𝑠 = 3200, 3600 

𝐵𝑎𝑡𝑐ℎ = 32 

𝑆𝑢𝑏𝑑𝑖𝑣𝑖𝑠𝑜𝑛 = 16 

𝐵𝑎𝑡𝑐ℎ = 32 

𝑆𝑢𝑏𝑑𝑖𝑣𝑖𝑠𝑖𝑜𝑛 = 16 

TABLE V. CONFIGURATION FOR YOLOV4_TEST.CFG 

Reference [14] Used Configuration 

𝐹𝑖𝑙𝑡𝑒𝑟𝑠 = (𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑐𝑙𝑎𝑠𝑠 + 5) × 𝐵 
B = number of bounding boxes 

𝐹𝑖𝑙𝑡𝑒𝑟𝑠 = (2 + 5) × 3 
𝐹𝑖𝑙𝑡𝑒𝑟𝑠 = 21 

𝑀𝑎𝑥 𝑏𝑎𝑡𝑐ℎ𝑒𝑠 = 
𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑐𝑙𝑎𝑠𝑠𝑒𝑠 × 2000 

𝑀𝑎𝑥 𝑏𝑎𝑡𝑐ℎ𝑒𝑠 = 2 × 2000 
𝑀𝑎𝑥 𝑏𝑎𝑡𝑐ℎ𝑒𝑠 = 4000 

𝑆𝑡𝑒𝑝𝑠 = 80%, 90% 𝑜𝑓 max 𝑏𝑎𝑡𝑐ℎ𝑒𝑠 
𝑆𝑡𝑒𝑝𝑠 = 80%, 90% 𝑜𝑓 4000 
𝑆𝑡𝑒𝑝𝑠 = 3200, 3600 

𝐵𝑎𝑡𝑐ℎ = 1 
𝑆𝑢𝑏𝑑𝑖𝑣𝑖𝑠𝑜𝑛 = 1 

𝐵𝑎𝑡𝑐ℎ = 1 
𝑆𝑢𝑏𝑑𝑖𝑣𝑖𝑠𝑖𝑜𝑛 = 1 

                                                                                                     
2H. (2022, September 22). GitHub - heartexlabs/labelImg: LabelImg is 

now part of the Label Studio community. The popular image annotation tool 
created by Tzutalin is no longer actively being developed, but you can check 

out Label Studio, the open source data labeling tool for images, text, 

hypertext, audio, video and time-series data. GitHub. 
https://github.com/heartexlabs/labelImg  

3A. (2023, June 20). GitHub - AlexeyAB/darknet: YOLOv4 / Scaled-

YOLOv4 / YOLO - Neural Networks for Object Detection (Windows and 
Linux version of Darknet ). GitHub. https://github.com/AlexeyAB/darknet  

 Filters: In the YOLOv4 configuration (cfg) file, the 
"filters" parameter refers to the number of filters 
needed in the last convolutional layer of the YOLOv4 
network architecture. This number of filters is related 
to the number of object classes to be detected (plus 5), 
then multiplied by 3. Filters = (Number of classes + 5) 
× B indicates that for each object class to be detected, 
plus 5 (representing bounding box coordinates and 
confidence score), it will be multiplied by 3. The result 
is the total number of filters required in the last 
convolutional layer. 

 Max batches: In the YOLOv4 configuration (cfg) file, 
the "max_batches" parameter determines the total 
number of iterations that will be used in the model 
training. Each iteration involves one batch of image 
data to train the model. The value of "max_batches" 
indicates the limit on the number of iterations to be 
performed during training. Therefore, from the formula 
Max batches = Number of classes × 2000, it can be 
concluded that in this research, the maximum number 
of iterations for each training session is set to 4000 
iterations. 

 Steps: In the YOLOv4 configuration (cfg) file, the 
"steps" parameter is used to control when the learning 
rate will be adjusted during the training process. The 
"steps" value, expressed as a percentage of 
"max_batches," determines the points at which the 
learning rate will undergo changes. In this research, 
"steps" are set at 80% and 90% of "max_batches," 
which means there are two points where the learning 
rate will change during training: (1) At 80% of 
"max_batches": The learning rate will be adjusted 
when the training reaches 80% of the total scheduled 
iterations ("max_batches"). This adjustment usually 
involves decreasing the learning rate to help the model 
reach an optimal point during training. (2) At 90% of 
"max_batches": The learning rate will be adjusted 
when the training reaches 90% of the total scheduled 
iterations ("max_batches"). This adjustment typically 
involves further decreasing the learning rate to smooth 
the model's convergence process and improve the final 
results. The purpose of adjusting the learning rate is to 
optimize the training process and aid the model in 
achieving a good convergence, thereby enhancing 
object detection performance. 

 Batch and subdivision: In the YOLOv4 configuration 
(cfg) file, the "batch" and "subdivisions" parameters 
are used to control how training or testing data is 
processed in each iteration. Here is an explanation for 
both values: (1) For the “yolov4_train.cfg”: Batch=32: 
The "batch" value indicates the number of images 
processed in each training iteration. In this case, 32 
images are processed simultaneously in one iteration. 
This means that 32 images are loaded into memory and 
used to update the model weights in one iteration. 
Subdivisions=16: The "subdivisions" value indicates 
how many weight updates will be performed before 
considering one iteration complete. In this case, every 
16 weight updates will be performed before one 

https://github.com/heartexlabs/labelImg
https://github.com/AlexeyAB/darknet
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iteration is considered complete. This is useful to 
reduce memory load and speed up the training process. 
With this configuration, in each training iteration, 32 
images are loaded and processed, and weight updates 
are performed every 16 times. This allows for 
YOLOv4 model training with efficiency and speeds up 
the training process. (2) For the “yolov4_test.cfg”: 
Batch=1: The "batch" value is set to 1, which means 
that in each testing iteration, only 1 image will be 
processed. This is done because during the testing 
phase, we want to test each image individually to 
obtain accurate detection results and precise 
evaluation. Subdivisions=1: The "subdivisions" value 
is set to 1, which means that weight updates are not 
needed during the testing process. Each image is tested 
separately without any weight updates because no 
training is done at this stage. With this configuration, 
each image in the testing data will be tested separately, 
one by one, without any weight updates performed. 
This allows for accurate testing and precise evaluation 
of the previously trained model. 

F. Performing Cross-Validation 

In this research, cross-validation method is used to evaluate 
and validate the performance of the underwater object 
detection model. Cross-validation is a statistical method 
employed to assess and validate a model on a limited dataset4. 
The following are the steps of cross-validation conducted in 
this study: 

 Data Splitting: The dataset used is divided into several 
subsets called "folds". In this research, the dataset is 
divided into 5 folds, as shown in the data split in Table 
VI. 

 Cross-Validation Iterations: The cross-validation is 
performed 5 times, where each iteration uses one fold 
as the testing data, and the remaining folds are used as 
the training data. For example, in the first iteration, 
fold 5 is used as the testing data, while folds 1 to 4 are 
used as the training data. In the second iteration, fold 4 
is used as the testing data, and folds 5 and 1 to 3 are 
used as the training data, and so on. 

 Model Training: In each iteration, the submarine cable 
detection model is trained using the designated training 
data. The training process is conducted using the 
predetermined techniques and parameters. 

 Model Testing: After training the model in each 
iteration, the model is evaluated using separate testing 
data. The model's performance is measured using 
relevant evaluation metrics such as precision, recall, 
and F1-score. 

 Selecting the Best Iteration Result: After completing 
the cross-validation iterations, the performance 
evaluation results of the model in each iteration are 
recorded. Then, the best iteration result is chosen based 
on evaluation metrics like precision, recall, and F1-

                                                                                                     
4Cross Validation: Teknik Evaluasi Machine Learning, 6 Metode. (2022, 

August 14). Digital Polar. https://digitalpolar.com/cross-validation/ 

score. The best iteration result is selected as the final 
outcome representing the model's best performance. 

TABLE VI. DATASET FOLD SPLITTING 

Iteration 
Fold 1 

(20%) 

Fold 2 

(20%) 

Fold 3 

(20%) 

Fold 4 

(20%) 

Fold 5 

(20%) 

Iteration 1 Train Test 

Iteration 2 Train Test Train 

Iteration 3 Train Test Train 

Iteration 4 Train Test Train 

Iteration 5 Test Train 

Through the cross-validation method, this research can 
obtain more stable and reliable estimations of the performance 
of the submarine cable detection model. By dividing the 
dataset into different subsets for training and testing, this study 
can objectively test the model on various data and identify its 
strengths and weaknesses. 

G. Model Performance Evaluation and Analysis with 

Confusion Matrix 

This stage involves using the confusion matrix to evaluate 
and analyze the performance of the submarine cable detection 
model. The following are the steps involved: 

 Building the Confusion Matrix: Using the testing data, 
the submarine cable detection model will make 
predictions for the SC-Good-Condition and SC-Bad-
Condition object classes. From the prediction results 
and the ground truth labels, the confusion matrix will 
be constructed. The confusion matrix is a table with 
four cells representing the number of correct and 
incorrect predictions for each object class. The cells in 
the confusion matrix include True Positive (TP), True 
Negative (TN), False Positive (FP), and False Negative 
(FN) [14]. The visualization of the confusion matrix is 
shown in Figure 6. 

 Based on the visualization of the confusion matrix 
above, in the context of submarine cable detection with 
classes SC-Good-Condition and SC-Bad-Condition, 
the definitions of True Positive (TP), True Negative 
(TN), False Positive (FP), and False Negative (FN) can 
be stated as follows: 

o True Positive (TP): TP occurs when the model 

correctly detects a submarine cable in good 

condition (SC-Good-Condition). This means that 

the model predicts correctly that the example 

belongs to the SC-Good-Condition class and 

indeed represents a submarine cable in good 

condition. 

o True Negative (TN): TN occurs when the model 

correctly detects a submarine cable in bad 

condition (SC-Bad-Condition). This means that the 

model predicts correctly that the example belongs 

to the SC-Bad-Condition class and indeed 

represents a submarine cable in bad condition. 

https://digitalpolar.com/cross-validation/
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o False Positive (FP): FP occurs when the model 

incorrectly detects a submarine cable in bad 

condition (SC-Bad-Condition) as a submarine 

cable in good condition (SC-Good-Condition). 

This means that the model mistakenly predicts that 

the example belongs to the SC-Good-Condition 

class, whereas it actually belongs to the SC-Bad-

Condition class. 

o False Negative (FN): FN occurs when the model 

incorrectly detects a submarine cable in good 

condition (SC-Good-Condition) as a submarine 

cable in bad condition (SC-Bad-Condition). This 

means that the model mistakenly predicts that the 

example belongs to the SC-Bad-Condition class, 

whereas it actually belongs to the SC-Good-

Condition class. 

 

Fig. 6. Confusion matrix visualization [15]. 

 Calculating Evaluation Metrics: Based on the 
confusion matrix, various performance evaluation 
metrics for the model can be calculated, such as 
precision, recall, and F1-score. Precision measures the 
extent to which the model's positive predictions are 
correct, while recall measures the extent to which the 
model can correctly identify positive objects. F1-score 
is a combined measure that takes into account both 
precision and recall to provide a balanced performance 
overview5. The calculation algorithms for each metric 
are presented in Table VII. 

TABLE VII. ALGORITHM FOR CALCULATING EVALUATION METRICS 

Metric Calculation Algorithm 

Precision 
𝑇𝑃

(𝑇𝑃 + 𝐹𝑃)
 (1) 

Recall 
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
 (2) 

F1-score 
2 × (𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 × 𝑅𝑒𝑐𝑎𝑙𝑙)

(𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑅𝑒𝑐𝑎𝑙𝑙)
 (3) 

mAP 

1

𝑁
 ∑ 𝐴𝑃𝑖

𝑁

𝑖=1

 

Note: 

N = Number of AP data 
AP = Average Precision 

(4) 

                                                                                                     
5Kumar, A. (2023, March 17). Accuracy, Precision, Recall & F1-score - 

Python Examples - Data Analytics. Data Analytics. 
https://vitalflux.com/accuracy-precision-recall-f1-score-python-example   

 Interpretation of Results: Through the confusion matrix 
and calculated evaluation metrics, the performance 
results of the model can be interpreted. Analyzing the 
number of TP, TN, FP, and FN for each object class 
provides insights into the model's ability to detect 
submarine cables in both SC-Good-Condition and SC-
Bad-Condition classes. Observing the values of 
precision, recall, and F1-score for each object class 
helps in understanding the strengths and weaknesses of 
the model in detecting submarine cables. 

 Visualization of Confusion Matrix: To facilitate 
understanding, the confusion matrix can be visualized 
using graphs or heat maps. This helps to clearly 
visualize the distribution of prediction results and 
errors that occur across all object classes. 

 Testing Submarine Cable Detection on 20 Image 
Samples: To ensure that the model can accurately 
detect submarine cable conditions, a test for submarine 
cable detection is performed on 20 images listed in 
Table VIII, which are then analyzed for their results. 

TABLE VIII. DETAILS OF THE SUBMARINE CABLE DETECTION TEST 

IMAGES 

File Name Class 

Sample01.png – Sample10.png SC-Good-Condition 

Sample11.png – Sample20.png SC-Bad-Condition 

Through the evaluation and performance analysis of the 
model using the confusion matrix, this research provides 
detailed insights into how the submarine cable detection model 
operates, the extent of errors that occur, and the model's 
performance across all object classes. This aids in 
understanding and reporting the model's performance more 
accurately and informatively. 

H. Model Implemetation to GUI 

This stage involves integrating the object detection model 
for underwater objects into the previously designed GUI. The 
following are the steps involved in this implementation: 

 Model Preparation: The trained and tested submarine 
cable detection model (weights) will be prepared for 
integration into the GUI. 

 Integration with GUI Library and Framework: The 
model will be integrated with the GUI library and 
framework used in this research, which is PyQt 
(Python QML). 

 Functional Testing: After the integration is complete, 
functional testing of the GUI will be conducted to 
ensure that the submarine cable detection model 
operates smoothly within the GUI. At this stage, non-
real-time submarine cable detection will be tested on 
several videos, and the details of these test videos are 
presented in Table IX. 

 Evaluation and Refinement: After testing the 
functionality, the performance of the GUI and the 
submarine cable detection model within the GUI 
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environment is evaluated. Several aspects that can be 
evaluated include the mAP of the detection results 
according to equation (4) and also the calculation of 
the GUI's Frames per Second (FPS) performance, 
which can be calculated using the following equation: 

𝐹𝑃𝑆 =  
𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝐷𝑒𝑡𝑒𝑐𝑡𝑒𝑑 𝑆𝐶 𝐹𝑟𝑎𝑚𝑒𝑠

𝐺𝑈𝐼 𝑃𝑟𝑜𝑐𝑒𝑠𝑠𝑖𝑛𝑔 𝑇𝑖𝑚𝑒
 

(5) 

 

TABLE IX. DETAIL OF SUBMARINE CABLE DETECTION TEST 

VIDEOS ON GUI. 

File Name Video Duration 

SampelVideo1.mov 54 seconds 

SampleVideo2.mov 60 seconds 

Subsequently, areas that need improvement or 
enhancement can be identified, and refinements can be made as 
necessary. 

By integrating the submarine cable detection model into the 
GUI, this research provides an intuitive and interactive 
interface for users to perform submarine cable detection 
practically and efficiently. The GUI facilitates both real-time 
and non-real-time usage of the model and streamlines the 
interpretation of detection results within a more structured 
environment. 

III. RESULT AND ANALYSIS 

In this chapter, the results of the experiments, evaluation, 
and performance analysis of the model, as well as the 
functionality test of the GUI, are explained in accordance with 
the previously described design. 

A. Experiment using Imbalanced Dataset 

A total of 16 training experiments were conducted using 
the imbalanced dataset, wherein four datasets with varying 
numbers of images were used. The number of images in the 
SC-Good-Condition class was smaller compared to the number 
of images in the SC-Bad-Condition class, with a ratio of 40:60. 
The details of the image distribution for the imbalanced dataset 
are presented in Table X and Table XI. 

From the division of the imbalanced dataset, training was 
conducted with varying numbers of iterations. Each dataset 
was trained using 1000, 2000, 3000, and 4000 iterations. The 
training results produced 16 metric outcomes, presented in 
Table XII and visualized in the graph in Figure 7. 

TABLE X. THE NUMBER OF IMAGES IN THE SC-GOOD-CONDITION 

CCLASS AND THE SC-BAD-CONDITION CLASS USED IN THE 

IMBALANCED DATASET 

Dataset 

Name 

Number of 

Images Data 

SC-Good-

Condition Class 

(40%) 

SC-Bad-

Condition Class 

(60%) 

Dataset 1 395 Images 158 Images 237 Images 

Dataset 2 790 Images 316 Images 474 Images 

Dataset 3 1185 Images 474 Images 711 Images 

Dataset 4 1580 Images 632 Images 948 Images 

TABLE XI. COMPOSITION OF IMBALANCED DATASET 

Dataset 

Name 

Original 

Images 

Rotated 

Images 

90° 

Rotated 

Images 

180° 

Rotated 

Images 

270° 

Total 

Number 

of Image 

Data 

Dataset 1 395 Images 0 Images 0 Images 0 Images 
395 
Images 

Dataset 2 395 Images 
395 

Images 
0 Images 0 Images 

790 

Images 

Dataset 3 395 Images 
395 
Images 

395 
Images 

0 Images 
1185 
Images 

Dataset 4 395 Images 
395 

Images 

395 

Images 

395 

Images 

1580 

Images 

TABLE XII. TRAINING RESULTS USING THE IMBALANCED DATASET 

Name of Weight Precision Recall 
F1-

score 

mAP 

@0.5 

yolov4_imb_395_1000 0.69 0.58 0.63 64.62% 

yolov4_imb_395_2000 0.87 0.82 0.85 87.67% 

yolov4_imb_395_3000 0.87 0.83 0.85 87.37% 

yolov4_imb_395_4000 0.87 0.83 0.85 87.67% 

yolov4_imb_790_1000 0.71 0.14 0.24 45.04% 

yolov4_imb_790_2000 0.72 0.59 0.64 49.95% 

yolov4_imb_790_3000 0.76 0.65 0.70 68.58% 

yolov4_imb_790_4000 0.82 0.64 0.72 70.98% 

yolov4_imb_1185_1000 0.62 0.06 0.11 18.86% 

yolov4_imb_1185_2000 0.70 0.26 0.38 33.15% 

yolov4_imb_1185_3000 0.70 0.24 0.36 31.84% 

yolov4_imb_1185_4000 0.69 0.23 0.35 30.97% 

yolov4_imb_1580_1000 0.54 0.05 0.09 17.18% 

yolov4_imb_1580_2000 0.65 0.29 0.40 37.52% 

yolov4_imb_1580_3000 0.62 0.29 0.40 38.12% 

yolov4_imb_1580_4000 0.69 0.27 0.38 38.63% 

 

Fig. 7. Graph of evaluation metrics from training using the imbalanced 

dataset. 

From Table XII and Figure 7, it can be observed that there 
is variation in the performance metrics across different datasets 
and iterations. It is evident that increasing the number of 
images in the dataset and the number of iterations does not 
always result in consistent improvement in the measured 
metrics. 

For example, in the mAP (mean Average Precision) 
column, it can be seen that some combinations have lower 
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values compared to others, even when using a higher number 
of images and iterations. For instance, in the 
"yolov4_imb_395" dataset, the mAP for 4000 iterations 
(87.67%) does not show a significant improvement compared 
to 2000 iterations (87.67%). This indicates that after reaching a 
certain threshold of images and iterations, further increases do 
not provide significant benefits in the measured metrics. 

This highlights that performance improvement is not solely 
dependent on increasing the number of data and iterations. 
There are other factors that need to be considered, such as data 
quality, balance of data between classes, and algorithmic 
factors used in model training. In this experiment with the 
imbalanced dataset, the best metric results were achieved by 
the "yolov4_imb_395_4000" weight. 

B. Experiment using Balanced Dataset 

 A total of 20 training experiments were conducted with 
the balanced dataset using the cross-validation method. Among 
these experiments, the training process involved 5 iterations of 
cross-validation, with 5 fold data images for both training and 
testing data, as indicated in Table VI. Each cross-validation 
iteration utilized a different number of training iterations, 
similar to the training of the imbalanced dataset, which 
included 1000, 2000, 3000, and 4000 training iterations. 

The number of images in the SC-Good-Condition class was 
balanced with the number of images in the SC-Bad-Condition 
class, with a 1:1 ratio. The details of image distribution for the 
balanced dataset are provided in Table II and Table III, as 
discussed previously. The training results from the balanced 
dataset yielded 20 sets of performance metrics, presented in 
Table XIII, and visualized in Figure 8. 

TABLE XIII. TRAINING RESULTS USING THE BALANCED DATASET 

Name of Weight Precision Recall F1-score 
mAP 

@0.5 

yolov4_blc_itr1_1000 0.62 0.32 0.42 51.98% 

yolov4_blc_itr1_2000 0.70 0.68 0.69 64.54% 

yolov4_blc_itr1_3000 0.80 0.78 0.79 75.65% 

yolov4_blc_itr1_4000 0.79 0.76 0.77 72.86% 

yolov4_blc_itr2_1000 0.78 0.62 0.69 73.68% 

yolov4_blc_itr2_2000 0.86 0.80 0.83 86.06% 

yolov4_blc_itr2_3000 0.81 0.73 0.76 78.44% 

yolov4_blc_itr2_4000 0.89 0.85 0.87 92.58% 

yolov4_blc_itr3_1000 0.55 0.45 0.49 51.28% 

yolov4_blc_itr3_2000 0.91 0.77 0.84 77.01% 

yolov4_blc_itr3_3000 0.84 0.77 0.81 77.08% 

yolov4_blc_itr3_4000 0.89 0.77 0.83 77.53% 

yolov4_blc_itr4_1000 0.55 0.38 0.45 36.53% 

yolov4_blc_itr4_2000 0.70 0.55 0.61 49.87% 

yolov4_blc_itr4_3000 0.53 0.38 0.44 34.20% 

yolov4_blc_itr4_4000 0.75 0.57 0.65 61.09% 

yolov4_blc_itr5_1000 0.47 0.35 0.40 40.90% 

yolov4_blc_itr5_2000 0.59 0.47 0.53 47.13% 

yolov4_blc_itr5_3000 0.72 0.57 0.64 59.87% 

yolov4_blc_itr5_4000 0.82 0.68 0.74 72.25% 

 

Fig. 8. Graph of evaluation metrics from training using the balanced dataset. 

From the table and graph above, there is data on the 
performance metrics from various dataset combinations with 
different iterations during the model training. Here are some 
analyses based on the available data: 

 Differences in Dataset Combinations: It is evident that 
each dataset combination exhibits different 
performances in the measured metrics. For example, if 
we observe the Precision column, some dataset 
combinations like "yolov4_blc_itr2_2000" (0.86) and 
"yolov4_blc_itr2_4000" (0.89) show higher precision 
values compared to other combinations. 

 Influence of Iterations: In some cases, increasing the 
number of iterations consistently improves the 
measured metrics. For instance, if we consider the 
dataset combinations "yolov4_blc_itr1" and 
"yolov4_blc_itr2," it can be seen that higher numbers 
of iterations result in better performance in metrics like 
precision, recall, and F1-score. 

 Interrelation of Metrics: In certain cases, there is a 
connection observed between the measured metrics. 
For example, the dataset combination 
"yolov4_blc_itr2_4000" exhibits higher values of 
precision (0.89), recall (0.85), and F1-score (0.87) 
compared to the dataset combination 
"yolov4_blc_itr2_1000" (precision: 0.78, recall: 0.62, 
F1-score: 0.69). This indicates that improvements in 
precision and recall also contribute to an increase in the 
F1-score. 

 Dependency on Dataset and Iterations: The analysis 
reveals that performance improvement is not solely 
dependent on the number of iterations but also relies on 
the dataset combination used. For instance, in the 
dataset combination "yolov4_blc_itr3," increasing the 
number of iterations does not lead to significant 
improvements in the measured metrics, particularly in 
precision and recall. 

This analysis shows that performance enhancement cannot 
be guaranteed solely through increasing the number of 
iterations. Additionally, other factors such as dataset quality, 
data variation, and parameter tuning should be considered to 
improve the overall model performance. 

Subsequently, from each cross-validation iteration, the 
best-performing weight was selected, and the results were 
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summarized in the cross-validation results table shown in 
Table XIV and visualized in Figure 9. 

TABLE XIV. CROSS-VALIDATION RESULT 

Iteration Precision Recall F1-score mAP @0.5 

Iteration 1 0.80 0.78 0.79 75.65% 

Iteration 2 0.89 0.85 0.87 92.58% 

Iteration 3 0.89 0.77 0.83 77.53% 

Iteration 4 0.75 0.57 0.65 61.09% 

Iteration 5 0.82 0.68 0.74 72.25% 

 

Fig. 9. Graph of evaluation matrix from cross-validation result. 

From the cross-validation results above, several analysis 
can be drawn as follows: 

 Precision: Precision measures how accurately the 
model classifies the positive class. The average 
precision from five iterations is 0.83, with the highest 
value reaching 0.89 in the second iteration. This 
indicates that the model tends to perform well in 
identifying the positive class. 

 Recall: Recall measures how well the model 
recognizes instances of the positive class. The average 
recall from five iterations is 0.73, with the highest 
value reaching 0.85 in the second iteration. Although 
the average recall is relatively high, it should be noted 
that there is variation in recall values between different 
iterations. 

 F1-score: The F1-score is a combined measure of 
precision and recall. The average F1-score from five 
iterations is 0.76, indicating a balanced performance 
between precision and recall in classifying the positive 
class. 

 mAP @0.5: The mAP (mean Average Precision) at 
threshold 0.5 is a commonly used evaluation metric in 
object detection tasks. The average mAP from five 
iterations is 76.62%, with the highest value reaching 
92.58% in the second iteration. This shows that the 
model has a good ability to detect objects with 
confidence levels that meet this threshold. 

Thus, based on the cross-validation results, the model 
demonstrates good performance in classifying the positive 
class with a relatively high level of accuracy. Consequently, we 
select the weight associated with the best metric, which is the 

metric from iteration 2: "yolov4_blc_itr2_4000," for further 
analysis and comparison in our research. 

C. Comparison of Imbalanced Dataset and Balanced Dataset 

Experiment 

After conducting training experiments on both imbalanced 
and balanced datasets, the best-performing weights from each 
dataset were selected for comparison. The comparison of these 
weights is presented in Table XV and the graph in Figure 10.  

TABLE XV. COMPARISON OF EVALUATION METRICS FOR TRAINING 

ON IMBALANCED AND BALANCED DATASETS 

Name of Weight 
Dataset 

Type 

Precisi

on 
Recall 

F1-

score 

mAP 

@0.5 

yolov4_imb_395

_4000 
Imbalanced 0.87 0.83 0.85 0.8767 

yolov4_blc_itr2_
4000 

Balanced 0.89 0.85 0.87 0.9258 

 

Fig. 10. Comparison graph of evaluation metrics for training on imbalanced 

and balanced datasets. 

 Precision: The model with the balanced dataset has 
slightly higher precision (0.89) compared to the model 
with the imbalanced dataset (0.87). Precision measures 
how accurately the model classifies the positive class, 
and higher results indicate that the model with the 
balanced dataset is better at accurately recognizing the 
positive class. 

 Recall: Recall in the model with the balanced dataset 
(0.85) is slightly lower than the model with the 
imbalanced dataset (0.83). Recall measures how well 
the model recognizes instances of the positive class. 
Although recall in the model with the balanced dataset 
is higher, the difference is not significant. 

 F1-score: The model with the balanced dataset (0.87) 
has a higher F1-score compared to the model with the 
imbalanced dataset (0.85). F1-score is a measure of the 
harmonic mean between precision and recall, and the 
higher result in the model with the balanced dataset 
indicates better overall performance in classifying the 
positive class. 

 mAP @0.5: The model with the balanced dataset has a 
higher mAP @0.5 (0.9258) compared to the model 
with the imbalanced dataset (0.8767). mAP @0.5 is a 
commonly used evaluation metric in object detection 
tasks, and the higher result in the model with the 
balanced dataset indicates better ability to detect 
objects with confidence levels that meet the threshold. 
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Based on the performance evaluation results in the table 
and graph above, the weight "yolov4_blc_itr2_4000" using the 
balanced dataset outperforms the weight 
"yolov4_imb_395_4000" using the imbalanced dataset in terms 
of precision, recall, F1-score, and mAP @0.5. The model with 
the balanced dataset has better ability to accurately classify the 
positive class, with higher F1-score and mAP @0.5. 

In addition to better metric results, using the balanced 
dataset also provides several other advantages. By using a 
balanced dataset, we can avoid bias in the model as the dataset 
reflects an even distribution of data. Additionally, a balanced 
dataset can provide more balanced classification results and 
better control over prediction errors. 

Therefore, based on the comparison results and the 
advantages obtained, the model with the balanced dataset 
("yolov4_blc_itr2_4000") can be chosen as the best in 
classifying SC-Good-Condition and SC-Bad-Condition. 

D. Model Performance Evaluation and Analysis 

After selecting the "yolov4_blc_itr2_4000" weight using 
the balanced dataset as the best training result based on the 
metrics, the performance of the model will be further evaluated 
and analyzed using the confusion matrix. 

From testing 40 validation images on the balanced dataset, 
a confusion matrix is constructed as a tool to analyze the 
trained classification model. Figure 11 displays the confusion 
matrix of the selected weight. 

 

Fig. 11. Confusion matrix of the selected weight. 

Based on the confusion matrix above, the model weight can 
be evaluated as follows: 

 TP (True Positives): There are 20 images correctly 
detected as SC-Good Condition. 

 TN (True Negatives): There are 15 images correctly 
detected as SC-Bad Condition. 

 FP (False Positives): There is 1 image wrongly 
detected as SC-Bad Condition, whereas it should be 
SC-Good Condition. 

 FN (False Negatives): There are 3 images misclassified 
as SC-Good Condition, whereas they should be SC-
Bad Condition. 

To improve the model's performance in handling false 
positives (FP) and false negatives (FN) cases, several 
additional improvements can be implemented: 

 Increase the Amount of Data: Collecting more 
submarine cable images with a wider variation. Having 
a larger and more representative dataset allows the 
model to learn more complex patterns and enhance its 
detection capabilities for cases of false positives and 
false negatives. 

 Further Data Augmentation: Perform data 
augmentation on submarine cable images with even 
broader variations, such as rotation, translation, 
zooming, cropping, and other distortions. This will 
help the model recognize various possible conditions in 
submarine cables and improve its adaptability. 

 Hyperparameter Configuration Tuning: Perform 
hyperparameter tuning on the YOLOv4 model. Some 
hyperparameters that can be examined include learning 
rate, max_batches, batch size, subdivision size, input 
image size, and other parameters related to the 
YOLOv4 architecture. 

E. Detection Test on Submarine Cable Image Samples 

In this stage, a detection test is conducted on 20 sample 
submarine cable images, comprising 10 images with good 
condition and 10 images with bad condition. These images are 
outside of the balanced dataset used for training. The results of 
the detection test on the sample images are shown in Table 
XVI. Additionally, the Average Precision (AP) graphs for the 
SC-Good-Condition and SC-Bad-Condition classes are 
presented in Figure 12 and Figure 13, respectively. 

TABLE XVI. RESULTS OF THE DETECTION TEST ON SUBMARINE 

CABLE IMAGE SAMPLES 

File Name Detection Image Result Class 
AP 

@0.5 

Sample01.png 

 

SC-Good-
Condition 

0.87 

Sample02.png 

 

SC-Good-

Condition 
0.94 

Sample03.png 

 

SC-Good-
Condition 

0.87 

Sample04.png 

 

SC-Good-

Condition 
0.82 
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Sample05.png 

 

SC-Good-

Condition 
0.94 

Sample06.png 

 

SC-Good-

Condition 
0.91 

Sample07.png 

 

SC-Good-

Condition 
0.95 

Sample08.png 

 

SC-Good-
Condition 

0.82 

Sample09.png 

 

SC-Good-

Condition 
0.96 

Sample10.png 

 

SC-Good-

Condition 
0.97 

Sample11.png 

 

SC-Bad-

Condition 
0.82 

Sample12.png 

 

SC-Bad-

Condition 
0.90 

Sample13.png 

 

SC-Bad-

Condition 
0.94 

Sample14.png 

 

SC-Bad-
Condition 

0.83 

Sample15.png 

 

SC-Bad-

Condition 
0.87 

Sample16.png 

 

SC-Bad-

Condition 
0.88 

Sample17.png 

 

SC-Bad-

Condition 
0.66 

Sample18.png 

 

SC-Bad-
Condition 

0.98 

Sample19.png 

 

SC-Bad-

Condition 
0.96 

Sample20.png 

 

SC-Bad-

Condition 
0.91 

 

Fig. 12. Graph of average precision results for the detection test on SC-Good-

Condition class image samples. 

 

Fig. 13. Graph of Average Precision results for the detection test on SC-Bad-

Condition class image samples. 

Based on the table and graphs above, the AP (Average 
Precision) values indicate how well the model can detect and 
classify objects with high accuracy. The higher the AP value, 
the better the detection performance on those images. It can be 
observed that some SC-Good-Condition and SC-Bad-
Condition images have high AP values, such as Sample10.png 
(SC-Good-Condition) with AP 0.97 and Sample18.png (SC-
Bad-Condition) with AP 0.98. This indicates that the model has 
a good ability to detect and classify both conditions of 
submarine cables. There is variation in the detection 
performance among the submarine cable images. Some images 
achieve high AP values, showing accurate detection, while 
others obtain lower AP values, suggesting possible difficulties 
in detection for those images. Therefore, it is necessary to 
evaluate the causes of the low AP values and identify factors 
that may influence the detection results in those images. This 
may involve visual analysis and further investigation of the 
images to discover patterns or difficulties that the model may 
encounter in accurately classifying submarine cable images. 
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Here are some assumptions about the factors that may 
influence the detection results with low AP values on the 
submarine cable images: 

 Blurry or Unclear Image Quality: Images with blurry 
or unclear quality can cause difficulties in detecting 
submarine cables. The lines or contours of the 
submarine cables may not be clearly visible, making it 
challenging for the model to classify accurately. 

 Inappropriate Image Scale or Size: Image size that is 
either too small or too large can affect the model's 
ability to detect submarine cables accurately. Images 
that are too small may lead to the submarine cable 
object being too tiny to detect, while images that are 
too large may cause the details of the submarine cable 
object to be lost or distorted. 

 Variations in Lighting or Image Contrast: Differences 
in lighting or contrast in submarine cable images can 
affect the model's ability to recognize and classify the 
submarine cables accurately. Low lighting or low 
contrast can make it difficult to see the details of the 
submarine cable object, leading to detection 
challenges. 

 Presence of Confusing Objects: The presence of other 
objects that have visual similarities with submarine 
cables, such as other cables or structural elements, or 
the presence of other objects obstructing the submarine 
cable, such as fish, rocks, etc., can confuse the model 
and disrupt the process of accurate detection and 
classification. 

 Variations in Submarine Cable Shapes or Types: 
Images in the dataset may have variations in the shape 
or type of submarine cables, which can pose challenges 
for the model in recognizing these variations. The 
model may struggle to understand the variations in 
texture, shape, or size of different types of submarine 
cables. 

F. GUI Functionality Test 

In this stage, the functionality of the GUI is tested by 
conducting non-real-time submarine cable detection on several 
videos presented in Table IX. The results of the GUI 
functionality test are presented in Table XVII and graph 
images in Figure 14 for the testing on the SampleVideo1.mov 
file. 

TABLE XVII. RESULTS OF GUI FUNCTIONALITY TEST ON 

SAMPLEVIDEO1.MOV 

Video Duration 
GUI Processing 

Duration 
Detected Class 

AP Value 

@0.5 

00:01 00:06 SC-Bad-Condition 0.75 

00:01 00:11 SC-Bad-Condition 0.85 

00:02 00:16 SC-Bad-Condition 0.89 

00:03 00:20 SC-Bad-Condition 0.91 

00:04 00:25 SC-Bad-Condition 0.97 

00:05 00:29 SC-Bad-Condition 0.97 

00:06 00:33 SC-Bad-Condition 0.98 

00:06 00:38 SC-Bad-Condition 0.93 

00:07 00:42 SC-Bad-Condition 0.95 

00:08 00:47 SC-Bad-Condition 0.98 

00:09 00:51 SC-Bad-Condition 0.98 

00:09 00:56 SC-Bad-Condition 0.98 

00:10 01:00 SC-Bad-Condition 0.99 

00:11 01:04 SC-Bad-Condition 0.99 

00:12 01:09 SC-Bad-Condition 0.97 

00:12 01:14 SC-Bad-Condition 0.96 

00:14 01:18 SC-Bad-Condition 0.81 

00:14 01:22 SC-Bad-Condition 0.73 

00:15 01:26 SC-Bad-Condition 0.95 

00:16 01:31 SC-Bad-Condition 0.98 

00:17 01:35 SC-Bad-Condition 0.91 

00:18 01:39 SC-Bad-Condition 0.82 

00:18 01:44 SC-Good-Condition 0.93 

00:19 01:48 SC-Good-Condition 0.94 

00:20 01:52 SC-Good-Condition 0.91 

00:21 01:57 SC-Good-Condition 0.94 

00:25 02:16 SC-Bad-Condition 0.89 

00:26 02:20 SC-Bad-Condition 0.90 

00:27 02:25 SC-Bad-Condition 0.50 

00:28 02:29 SC-Bad-Condition 0.85 

00:30 02:38 SC-Good-Condition 0.75 

00:30 02:42 SC-Good-Condition 0.78 

00:31 02:47 SC-Good-Condition 0.79 

00:32 02:56 SC-Good-Condition 0.66 

00:34 03:00 SC-Bad-Condition 0.73 

00:34 03:05 SC-Good-Condition 0.54 

00:39 03:24 SC-Bad-Condition 0.82 

00:39 03:28 SC-Bad-Condition 0.85 

00:41 03:33 SC-Bad-Condition 0.32 

00:42 03:42 SC-Bad-Condition 0.76 

00:44 03:51 SC-Bad-Condition 0.89 

00:44 03:55 SC-Bad-Condition 0.85 

00.45 04.00 SC-Bad-Condition 0.90 

00:47 04:09 SC-Bad-Condition 0.75 

00:47 04.13 SC-Bad-Condition 0.71 

00:48 04:17 SC-Bad-Condition 0.79 

00:48 04:22 SC-Bad-Condition 0.79 

00:50 04:26 SC-Good-Condition 0.41 

00:51 04:35 SC-Good-Condition 0.78 

00:52 04:40 SC-Good-Condition 0.54 
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Fig. 14. Graph of GUI functionality test results on SampleVideo1.mov. 

Based on the table and graph above, the analysis is as 
follows: 

 The GUI successfully detected SC-Good-Condition at 
the video timestamps: 00:18, 00:19, 00:20, 00:21, 
00:30, 00:31, 00:32, 00:34, 00:50, 00:51, and 00:52. 
The GUI successfully detected SC-Good-Condition 11 
times out of a total of 50 detection frames. 

 The GUI successfully detected SC-Bad-Condition at 
the video timestamps: 00:01, 00:02, 00:03, 00:04, 
00:05, 00:06, 00:07, 00:08, 00:09, 00:10, 00:11, 00:12, 
00:13, 00:15, 00:16, 00:17, 00:18, 00:19, 00:25, 00:26, 
00:27, 00:28, 00:34, 00:39, 00:41, 00:42, 00:44, 00:45, 
00:47, and 00:48. The GUI successfully detected SC-
Bad-Condition 30 times out of a total of 50 detection 
frames. 

 Several frames are at the same second, such as frames 
of SC-Bad-Condition at video timestamps: 00:01, 
00:06, 00:09, 00:12, 00:14, 00:18, 00:34, 00:39, 00:44, 
00:47, and 00:48, which were detected twice at each 
second. As for SC-Good-Condition frames, there is 
only one video timestamp (00:30) with two frames 
detected in that second. 

 Several frames are at the same second but have 
different detection classes. At video timestamps: 00:18 
and 00:34, each has 2 frames with different detection 
classes, one frame of SC-Good-Condition, and one 
frame of SC-Bad-Condition. 

 To calculate the GUI's FPS (Frames per Second) 
performance for SampleVideo.mov, the formula in 
equation (V) is used: 

𝐹𝑃𝑆 =  
50 𝑓𝑟𝑎𝑚𝑒

280 𝑑𝑒𝑡𝑖𝑘
= 0.178 𝑓𝑝𝑠 

From the calculations above, the GUI performance for 
detecting SampleVideo1.mov still has a low FPS, taking a total 
time of 4 minutes and 40 seconds (280 seconds). 

 To calculate the mAP (mean Average Precision) 
performance, the formula in equation (IV) is used. The 
results of mAP calculations for each class in the GUI 
functionality test on VideoSample01.mov are shown in 
Table XVIII. 

TABLE XVIII. RESULTS OF MAP CALCULATION FOR GUI 

FUNCTIONALITY TEST ON VIDEOSAMPLE01.MOV 

Class Name mAP @0.5 

SC-Good-Condition 0.725 

SC-Bad-Condition 0.861 

Based on the table above, the detection and classification 
results of submarine cables using the GUI have achieved a 
good mAP value. 

Next, the functionality test continues for the video 
SampleVideo2.mov. The results of the GUI functionality test 
for SampleVideo2.mov are presented in Table XIX and graph 
images in Figure 15. 

TABLE XIX. RESULTS OF GUI FUNCTIONALITY TEST ON 

SAMPLEVIDEO2.MOV 

Video Duration 
GUI Processing 

Duration 
Detected Class 

AP Value 

@0.5 

00:02 00:07 SC-Good-Condition 0.48 

00:02 00:12 SC-Good-Condition 0.95 

00:02 00:16 SC-Good-Condition 0.56 

00:03 00:20 SC-Good-Condition 0.79 

00:04 00:24 SC-Good-Condition 0.35 

00:11 00:53 SC-Good-Condition 0.45 

00:11 00:58 SC-Good-Condition 0.43 

00:11 01:02 SC-Good-Condition 0.92 

00:12 01:06 SC-Good-Condition 0.86 

00:13 01:11 SC-Good-Condition 0.51 

00:14 01:15 SC-Good-Condition 0.49 

00:14 01:19 SC-Good-Condition 0.29 

00:20 01:35 SC-Good-Condition 0.27 

00:30 02:31 SC-Good-Condition 0.56 

00:38 03:08 SC-Bad-Condition 0.39 

00:44 03:43 SC-Bad-Condition 0.58 

00:50 04:09 SC-Bad-Condition 0.41 

00:51 04:14 SC-Bad-Condition 0.72 

00:51 04:18 SC-Bad-Condition 0.94 

00:52 04:22 SC-Bad-Condition 0.98 

00:53 04:27 SC-Bad-Condition 0.90 

00:54 04:31 SC-Bad-Condition 0.94 

00:54 04:36 SC-Bad-Condition 0.74 

Based on the table and graph above, the analysis is as 
follows: 

 The GUI successfully detected SC-Good-Condition at 
the video timestamps: 00:02, 00:03, 00:04, 00:11, 
00:12, 00:13, 00:14, 00:20, and 00:30. The GUI 
successfully detected SC-Good-Condition 9 times out 
of a total of 23 detection frames. 
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Fig. 15. Graph of GUI functionality test results on SampleVideo2.mov. 

 The GUI successfully detected SC-Bad-Condition at 
the video timestamps: 00:38, 00:44, 00:50, 00:51, 
00:52, and 00:54. The GUI successfully detected SC-
Bad-Condition 6 times out of a total of 23 detection 
frames. 

 Several frames are at the same second, such as SC-
Bad-Condition frames at video timestamps: 00:51 and 
00:54, which were detected twice at each second. SC-
Good-Condition frames at video timestamps: 00:13 and 
00:14 were detected three times in each second. 

 To calculate the GUI's FPS (Frames per Second) 
performance for SampleVideo.mov, the formula in 
equation (V) is used: 

𝐹𝑃𝑆 =  
23 𝑓𝑟𝑎𝑚𝑒

276 𝑑𝑒𝑡𝑖𝑘
= 0.083 𝑓𝑝𝑠 

Based on the calculations above, the GUI performance for 
detecting SampleVideo2.mov still has a low FPS, taking a total 
time of 4 minutes and 36 seconds (276 seconds). 

 From the testing of SampleVideo1.mov and 
SampleVideo2.mov, both GUI FPS performances are 
relatively low. The following are some assumptions 
that may cause the low FPS performance: 

o Model Complexity: The low FPS may be caused 

by the complexity of the YOLOv4 detection model 

used. Models with many layers and parameters 

may require longer processing time. 

o Computational Load: Object detection using the 

YOLOv4 model requires intensive processing and 

consumes a lot of computational power. This can 

reduce processing speed and result in low FPS. 

o Hardware Limitations: The use of less powerful 

hardware, such as a CPU with low computational 

power, can affect the GUI's performance and cause 

low FPS. 

 To improve FPS and enhance the GUI's responsiveness 
in submarine cable detection, several efforts can be 
made: 

o Model Optimization: Optimize the YOLOv4 

detection model by reducing the number of 

unnecessary layers or parameters and using a 

lighter model. 

o Use More Powerful Hardware: Use GPUs with 

parallel processing capabilities to improve 

processing speed and FPS. 

o Resolution Reduction: Reduce the video resolution 

or convert the video format to a lighter format to 

improve FPS. 

o Data Streaming: Use data streaming techniques to 

process videos in real-time and enhance GUI 

responsiveness. 

By implementing the above efforts, it is expected that FPS 
on the GUI can be increased, making the application more 
responsive and providing users with a better experience in 
submarine cable detection. Continuous and iterative evaluation 
is necessary to ensure optimal performance improvements. 

 To calculate the mAP (mean Average Precision) 
performance, the formula in equation (IV) is used. The 
results of mAP calculations for each class in the GUI 
functionality test on VideoSample02.mov are shown in 
Table XX. 

TABLE XX. RESULTS OF MAP CALCULATION FOR GUI 

FUNCTIONALITY TEST ON VIDEOSAMPLE02.MOV 

Class Name mAP @0.5 

SC-Good-Condition 0.554 

SC-Bad-Condition 0.681 

G. Comparison of Functionality Test Performance 

From the two functionality tests with two different videos, 
VideoSample01.mov and VideoSample02.mov, two 
performances were obtained for comparison. The comparison 
of functionality test performances is presented in Table XXI.  

TABLE XXI. COMPARISON OF GUI FUNCTIONALITY TEST RESULTS 

FOR VIDEOSAMPLE01.MOV AND VIDEOSAMPLE02.MOV 

File Name 

Video 

Duratio

n 

GUI 

Processin

g Time 

Number 

of SC 

Frame 

Detecte

d 

FPS 
mAP 

@0.5 

VideoSample01.mo

v 
00:54 04:40 

50 

frames 

0.17

8 

0.82

9 

VideoSample02.mo

v 
01.00 04:36 

23 

frames 

0.08

3 

0.60

5 

Overall, the GUI has performed well in detecting 
submarine cables in both videos. This can be seen from the 
relatively high mean Average Precision (mAP) @0.5 values, 
which are 0.829 for VideoSample01.mov and 0.605 for 
VideoSample02.mov. mAP @0.5 measures the object 
detection accuracy at an Intersection over Union (IoU) 
threshold of 0.5, and the higher the mAP value, the more 
accurate the detection results. 

However, there are differences in the number of detected 
submarine cable frames between the two videos. In 
VideoSample01.mov, the GUI successfully detected 50 SC 
frames, while in VideoSample02.mov, the number of detected 
submarine cable frames was only 23. This difference is due to 
the varying video conditions between the two samples. 
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VideoSample02.mov has a more blurry, shaky, and often 
unfocused video quality, making submarine cable detection 
more challenging. This affects the GUI's performance in 
detecting SC in that video. Another factor that can affect the 
number of detected submarine cable frames is the complexity 
of the background and the presence of other objects that are 
similar to the submarine cable, causing some submarine cable 
frames to go undetected. 

Regarding FPS, both VideoSample01.mov and 
VideoSample02.mov have low FPS values. This indicates that 
the GUI's processing is still relatively slow, resulting in slow 
detection. Increasing the FPS is one of the efforts that need to 
be made to improve the quality and efficiency of the GUI in 
detecting submarine cables. 

IV. CONCLUSION 

In this research, a YOLOv4-based underwater detection 
system integrated with a Graphical User Interface (GUI) for 
Remotely Operated Vehicle (ROV) in submarine cable 
detection has been successfully designed and implemented. 
Based on the experimental results and analysis, the following 
are the conclusions drawn from this research: 

1) Development of Submarine Cable Detection Model: 

The performance evaluation of the model on the balanced 

dataset weight showed satisfactory results with precision of 

0.89, recall of 0.85, F1-score of 0.87, and mAP of 92.58%. 

This indicates the model's ability to recognize both classes 

effectively. 

2) Implementation of Graphical User Interface (GUI): The 

performance evaluation of the designed GUI showed 

promising results. In VideoSample01.mov, the GUI 

successfully detected 50 frames of submarine cable images 

with an mAP of 0.829 and GUI FPS of 0.0178. In 

VideoSample02.mov, the GUI detected 23 frames of 

submarine cable images with an mAP of 0.605 and GUI FPS 

of 0.083. The implementation of the GUI with the submarine 

cable detection model on the ROV successfully reduces 

dependency on human observation. With this automated 

system, issues of fatigue and subjective interpretation in 

identifying submarine cable conditions can be addressed. This 

provides the benefit of facilitating the submarine cable 

maintenance process. 

In light of the successful development and implementation 
of the YOLOv4-based underwater detection system integrated 
with a GUI for ROV in submarine cable detection, there are 
several key areas for future research and improvements: 

1) Future work should aim to enhance the scalability and 

adaptability of the system. This could involve expanding the 

dataset to encompass a broader range of underwater 

environments and conditions. Additionally, exploring the 

integration of machine learning techniques for automatic 

parameter tuning, especially in varying lighting and water 

clarity conditions, would further bolster the system's 

performance and reliability. Furthermore, the system could 

benefit from the incorporation of real-time anomaly detection 

algorithms to promptly identify potential cable issues and 

facilitate proactive maintenance. 

2) There is potential to extend the application of this 

technology to broader marine infrastructure management. 

Researchers can explore its utility in tasks beyond submarine 

cable detection, such as pipeline monitoring, marine 

biodiversity assessment, and archaeological exploration. 

Adapting the system for these diverse applications could 

significantly contribute to the advancement of marine sciences 

and industries. Additionally, research efforts should be 

directed toward refining the user interface and operator 

interaction aspects of the GUI to ensure user-friendliness and 

efficiency. This includes incorporating features that enable 

operators to annotate and validate detected cable segments, 

fostering human-machine collaboration for more accurate 

results. By addressing these areas in future research 

endeavors, we can further enhance the capabilities and impact 

of this innovative underwater detection system. 
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