
(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 14, No. 9, 2023

966 | P a g e

www.ijacsa.thesai.org

Design and Implementation Submarine Cable Object

Detection YOLOv4 based with Graphical User

Interface (GUI) for Remotely Operated Vehicle

(ROV)

Fikri Arif Wicaksana, Eueung Mulyana, Syarif Hidayat, Rahadian Yusuf

School of Electrical Engineering and Informatics, Institut Teknologi Bandung, Bandung, Indonesia

Abstract—The use of submarine cables as underwater

transmission channels for distributing electrical energy in

Indonesian waters is crucial. However, the detection and

maintenance of submarine cables still heavily rely on human

observation, leading to limitations in time and subjective

interpretations. This research aims to design and implement an

underwater object detection system based on YOLOv4

integrated with a Graphical User Interface (GUI) on a Remotely

Operated Vehicle (ROV) for submarine cable detection. The

YOLOv4 model was trained using a balanced dataset, achieving

performance with precision of 0.89, recall of 0.85, and f1-score of

0.87. Detection of Good Condition (SC-Good-Condition) achieved

an Average Precision (AP) of 97.62%, while Bad Condition

detection (SC-Bad-Condition) had an AP of 87.54%, resulting in

an overall mAP of 92.58%. The implemented GUI successfully

detected submarine cables in two test videos with FPS rates of

0.178 and 0.083. The designed underwater object detection

system using YOLOv4 and GUI on ROV demonstrated

satisfactory performance in detecting submarine cables.

However, further efforts are needed to improve the GUI's FPS to

make it more responsive and efficient. This research contributes

to the development of underwater detection technology that

supports environmental observation and electrical energy

distribution in Indonesian waters.

Keywords—Submarine cable; object detection; GUI; ROV;

YOLOv4

I. INTRODUCTION

Electricity is a fundamental and crucial necessity for the
livelihood of Indonesian society. As Indonesia's economic
growth and population continue to expand, the demand for
electricity increases. Furthermore, being an archipelagic nation
with 17,504 islands, almost all activities in both rural and urban
areas of Indonesia require electricity. Therefore, there is a need
for a transmission medium that can distribute electricity from
one island to another. Submarine cables are underwater
transmission channels that can distribute electricity between
Indonesian islands [1]. However, in practice, submarine cables
require periodic maintenance to ensure their optimal condition.
One stage in the process of maintaining submarine cables is
underwater inspection to observe the surrounding environment
of the cables.

A Remotely Operated Vehicle (ROV) is an underwater
robot that can be controlled remotely [2]. Some ROVs are

equipped with computer vision technology-enabled cameras
for underwater inspection purposes, including maintenance and
observation in the vicinity of submarine cables [3]. Typically,
the process of detecting submarine cables is visually performed
by ROV operators who oversee the video feed from the camera
mounted on the ROV. However, this approach has some
limitations, such as dependency on human observation, which
is susceptible to fatigue and time constraints, as well as
subjective interpretation in identifying submarine cables [4].

To address these limitations, automated object detection
techniques have been developed, including underwater object
detection. One method that has shown good performance is
YOLOv4 (You Only Look Once version 4), which enables fast
and accurate object detection [5]-[7].

Additionally, implementing a Graphical User Interface
(GUI) on the ROV can provide an intuitive and user-friendly
interface for operators, facilitating cable observation and
detection with higher efficiency [8]. However, despite several
studies on underwater object detection using YOLOv4 and
research on GUI implementation on ROVs, research
specifically combining both aspects in the context of
submarine cable detection is still limited.

Therefore, this research aims to fill this knowledge gap by
designing and implementing an underwater object detection
system based on YOLOv4, integrated with a GUI on the ROV,
particularly in the context of submarine cable detection. This
study is expected to enhance the effectiveness and efficiency of
submarine cable detection more accurately and efficiently.

Several prior studies have explored submarine cable
detection using various methods, including both Deep Learning
and non-Deep Learning approaches, yielding reasonably
accurate results.

One previous study employed CNN and YOLO model
(YOLOv3) for submarine cable detection but lacked a desktop
GUI application. The results were as follows: for the original
image dataset, it achieved an Average Precision (AP) of
98.14%, an F1 Score of 95.79%, and an Average Time of
0.416 seconds. Meanwhile, after dataset enhancement, it
achieved an AP of 98.95%, an F1 Score of 96.92%, and an
Average Time of 0.452 seconds [9].

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 14, No. 9, 2023

967 | P a g e

www.ijacsa.thesai.org

Another research used edge detection methods to detect
submarine cables, utilizing the Hough Transform model. This
study developed software for ROVs equipped with cameras for
cable detection. It reported successful submarine cable
detection using 100 scenes, resulting in 83 correct detections,
17 false detections, and a recognition rate of 83% in the first
experiment. In the second experiment, out of 100 scenes, it
achieved 98 correct detections, 2 false detections, and a
recognition rate of 98% [10][11].

This research focuses on submarine cable detection using
the more recent CNN model YOLOv4, enhanced by the
inclusion of a GUI for computer vision on the ROV. This
integration of YOLOv4 and GUI aims to improve the quality
of ROV-acquired computer vision data compared to previous
studies, providing a more advanced and comprehensive
approach to submarine cable detection.

In line with the outlined objectives, this paper is organized
as follows. Section I begins with an exploration of the
background of the research, emphasizing the vital role of
electricity in Indonesian nation, the challenges posed by its
archipelagic nature, and the need for advanced techniques in
submarine cable detection. It further elucidates the specific
goals and contributions of this research, aiming to bridge the
existing gap in the integration of YOLOv4-based object
detection and GUI on ROVs for submarine cable detection.
Moreover, this section provides a concise review of prior
research endeavors related to underwater object detection,
ROV applications, and GUI implementations in the marine
domain.

Section II delves into the research design, detailing the
methodologies, equipment, and procedures employed in
developing the underwater object detection system using
YOLOv4 and integrating it with the ROV's GUI. It sheds light
on the technical aspects and considerations pivotal to the
success of this innovative system.

Section III is dedicated to presenting the experimental
findings and their subsequent analysis. The section elucidates
the outcomes of deploying the YOLOv4-based system and
GUI on the ROV during underwater cable inspections. It
discusses performance metrics and GUI functionality test.

Section IV, we synthesize the findings into comprehensive
conclusions and offer recommendations for future research in
this field. We reflect on the implications of our work on the
broader context of submarine cable maintenance and its
potential contributions to the sustainability and efficiency of
Indonesia's electricity distribution network. Furthermore, we
suggest avenues for further research and improvements to
enhance the capabilities of the integrated system, ensuring its
continued effectiveness in the evolving landscape of
underwater cable detection.

II. RESEARCH DESIGN

A. Research Stages

There are several steps carried out in this research, as
shown in Figure 1.

Fig. 1. Research stages.

 Literature Review: Conducting a comprehensive
literature review on underwater object detection
methods and techniques, the YOLOv4 approach, GUI
utilization on ROVs, and related submarine cable
research to understand the foundational theories and
related studies.

 GUI Design: Designing and developing the Graphical
User Interface (GUI) using PyQt (Python QML) library
to enable interaction between the ROV operator and
the YOLOv4-based underwater object detection
system.

 Data Collection: Gathering the necessary image data
for training and testing the submarine cable detection
model. The image data used in this research was
obtained from underwater inspection videos conducted
by PT Syergie Indoprima in the year 2022.

 Data Splitting: Dividing the image data into two
classes: SC-Good-Condition (good cable condition)
and SC-Bad-Condition (bad cable condition). The
entire image data will be divided into two subsets, with
80% of the data used for model training and 20% for
model testing, both for imbalanced and balanced
datasets.

 Data Annotation and Training: Annotating the image
data with appropriate labels, i.e., SC-Good-Condition
or SC-Bad-Condition, indicating the condition of the
submarine cable in each image. Next, training the
underwater object detection model using YOLOv4
with the annotated image data.

 Performing Cross-Validation: Conducting cross-
validation on the trained model to measure its
performance and accuracy in detecting submarine
cables. The data is divided into 5 subsets (folds), and
the model training and testing will be repeated on each
fold to obtain more reliable results.

 Model Performance Evaluation and Analysis with
Confusion Matrix: Using the cross-validation results, a
confusion matrix is created to depict the overall model
performance. The confusion matrix provides
information on the number of true positives (TP), true
negatives (TN), false positives (FP), and false
negatives (FN) in detecting submarine cables. Through
the confusion matrix, the model's performance is
analyzed and evaluated, including calculation of
evaluation metrics such as precision, recall, and F1-
score, to gain a deeper understanding of the model's
ability to detect submarine cable conditions.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 14, No. 9, 2023

968 | P a g e

www.ijacsa.thesai.org

 Model Implementation into GUI: The trained and
evaluated underwater object detection model is then
implemented into the previously designed GUI
application. This process involves a seamless
integration between the model and GUI to enable real-
time and non-real-time submarine cable detection
through the ROV using a user-friendly GUI that
provides clear and understandable results for the ROV
operator.

B. GUI Design

Figure 2 is a mock-up of the GUI designed in this research.
This GUI functions to display real-time and non-real-time
computer vision camera views for detecting submarine cables.

Fig. 2. Mock-up of ROV computer vision application GUI.

This GUI is equipped with 2 screen views, namely the
"source video" screen to display real-time and non-real-time
computer vision and the "YOLOv4 Processing Result" screen
to show the submarine cable detection results from the trained
YOLOv4 weights. Additionally, there is a status bar that
displays the GUI duration, submarine cable detection class, AP
(Average Precision) value, and bounding box dimensions.

C. Data Collection

The data used in this study was collected from underwater
inspection video documentation by PT Syergie Indoprima. The
documentation videos were converted into image frames using
VLC Media Player. There are 4 underwater inspection videos
used in this research, resulting in a total of 395 image frames.
The data collection process is illustrated in Figure 3.

Fig. 3. Collecting data stages.

D. Data Splitting

After the data collection process, the data is divided into
two classes: SC-Good-Condition and SC-Bad-Condition. This
class division is based on the physical conditions observed in
the underwater inspection videos that have been converted into
395 image frames. The following are some criteria for the
submarine cable classes in this research, presented in Table I.

TABLE I. CRITERIA FOR SUBMARINE CABLE CLASSES

Criteria for SC-Good-Condition Criteria for SC-Bad-Condition

The armor layer of the submarine

cable is intact, with no peeling.

The armor layer of the submarine

cable is peeling.

The submarine cable is not covered

by underwater vegetation.

The submarine cable is covered by

underwater vegetation [12]

Figure 4 is an example of SC-Good-Condition image, and
Figure 5 is an example of SC-Bad-Condition image.

Fig. 4. Example of SC-good-condition image.

Fig. 5. Example of SC-Bad-condition image.

Out of the 395 submarine cable image frames obtained, the
number of images for each class was imbalanced. Therefore,
the image data was re-divided to create a balanced dataset for
the research. The balanced dataset used is presented in Table II,
and the data split between the training and testing sets is
presented in Table III.

TABLE II. DATA IMAGE SPLIT INTO BALANCED DATASET

Class Number of Images

SC-Good-Condition 100 Images

SC-Bad-Condition 100 Images

TABLE III. DATA IMAGE SPLIT BETWEEN TRAINING AND TESTING

SETS

Number of Image

Data
Training Data (80%) Test Data (20%)

200 Images 160 Images 40 Images

Balanced and imbalanced datasets are important concepts
in Deep Learning, including for object detection models like
YOLOv41. When collecting image data, it is crucial to pay

1Introduction to Balanced and Imbalanced Datasets in Machine Learning.

(n.d.). Balanced and Imbalanced Datasets in Machine Learning [Full

Introduction]. https://encord.com/blog/an-introduction-to-balanced-and-
imbalanced-datasets-in-machine-learning/

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 14, No. 9, 2023

969 | P a g e

www.ijacsa.thesai.org

attention to dataset balance, especially if there are differences
in the number of examples between the SC-Good-Condition
and SC-Bad-Condition classes. If the dataset is imbalanced, for
instance, when there are fewer examples of bad submarine
cables compared to good examples, the object detection model
can become biased in learning relevant patterns and features of
the bad submarine cables [13]. Therefore, it is necessary to
perform proportional data splitting for training and testing the
model effectively, enabling the model to accurately recognize
both classes and avoid any undesired bias in submarine cable
detection.

E. Data Annotation and Training

In this research, the tool LabelIm 2 was utilized for
annotating the images used in submarine cable detection. This
tool allows users to easily create annotations in the YOLOv4
format. It provides features to manually select and mark the
positions and boundaries of submarine cables for both SC-
Good-Condition and SC-Bad-Condition classes. The
annotation process involves drawing bounding boxes around
the cables in each image. These bounding boxes provide
information about the coordinates (x, y) and dimensions (width
and height) of the submarine cables.

For the training data process, custom configurations were
used based on the number of classes being trained. A reference
guide3was employed for the configuration of submarine cable
detection, as presented in Table IV for yolov4_train.cfg and
Table V for yolov4_test.cfg.

TABLE IV. CONFIGURATION FOR YOLOV4_TRAIN.CFG

Reference Used Configuration

𝐹𝑖𝑙𝑡𝑒𝑟𝑠 = (𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑐𝑙𝑎𝑠𝑠 + 5) × 𝐵
B = number of bounding boxes

𝐹𝑖𝑙𝑡𝑒𝑟𝑠 = (2 + 5) × 3

𝐹𝑖𝑙𝑡𝑒𝑟𝑠 = 21

𝑀𝑎𝑥 𝑏𝑎𝑡𝑐ℎ𝑒𝑠 =

𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑐𝑙𝑎𝑠𝑠𝑒𝑠 × 2000

𝑀𝑎𝑥 𝑏𝑎𝑡𝑐ℎ𝑒𝑠 = 2 × 2000

𝑀𝑎𝑥 𝑏𝑎𝑡𝑐ℎ𝑒𝑠 = 4000

𝑆𝑡𝑒𝑝𝑠 = 80%, 90% 𝑜𝑓 max 𝑏𝑎𝑡𝑐ℎ𝑒𝑠
𝑆𝑡𝑒𝑝𝑠 = 80%, 90% 𝑜𝑓 4000

𝑆𝑡𝑒𝑝𝑠 = 3200, 3600

𝐵𝑎𝑡𝑐ℎ = 32

𝑆𝑢𝑏𝑑𝑖𝑣𝑖𝑠𝑜𝑛 = 16

𝐵𝑎𝑡𝑐ℎ = 32

𝑆𝑢𝑏𝑑𝑖𝑣𝑖𝑠𝑖𝑜𝑛 = 16

TABLE V. CONFIGURATION FOR YOLOV4_TEST.CFG

Reference [14] Used Configuration

𝐹𝑖𝑙𝑡𝑒𝑟𝑠 = (𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑐𝑙𝑎𝑠𝑠 + 5) × 𝐵
B = number of bounding boxes

𝐹𝑖𝑙𝑡𝑒𝑟𝑠 = (2 + 5) × 3
𝐹𝑖𝑙𝑡𝑒𝑟𝑠 = 21

𝑀𝑎𝑥 𝑏𝑎𝑡𝑐ℎ𝑒𝑠 =
𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑐𝑙𝑎𝑠𝑠𝑒𝑠 × 2000

𝑀𝑎𝑥 𝑏𝑎𝑡𝑐ℎ𝑒𝑠 = 2 × 2000
𝑀𝑎𝑥 𝑏𝑎𝑡𝑐ℎ𝑒𝑠 = 4000

𝑆𝑡𝑒𝑝𝑠 = 80%, 90% 𝑜𝑓 max 𝑏𝑎𝑡𝑐ℎ𝑒𝑠
𝑆𝑡𝑒𝑝𝑠 = 80%, 90% 𝑜𝑓 4000
𝑆𝑡𝑒𝑝𝑠 = 3200, 3600

𝐵𝑎𝑡𝑐ℎ = 1
𝑆𝑢𝑏𝑑𝑖𝑣𝑖𝑠𝑜𝑛 = 1

𝐵𝑎𝑡𝑐ℎ = 1
𝑆𝑢𝑏𝑑𝑖𝑣𝑖𝑠𝑖𝑜𝑛 = 1

2H. (2022, September 22). GitHub - heartexlabs/labelImg: LabelImg is

now part of the Label Studio community. The popular image annotation tool
created by Tzutalin is no longer actively being developed, but you can check

out Label Studio, the open source data labeling tool for images, text,

hypertext, audio, video and time-series data. GitHub.
https://github.com/heartexlabs/labelImg

3A. (2023, June 20). GitHub - AlexeyAB/darknet: YOLOv4 / Scaled-

YOLOv4 / YOLO - Neural Networks for Object Detection (Windows and
Linux version of Darknet). GitHub. https://github.com/AlexeyAB/darknet

 Filters: In the YOLOv4 configuration (cfg) file, the
"filters" parameter refers to the number of filters
needed in the last convolutional layer of the YOLOv4
network architecture. This number of filters is related
to the number of object classes to be detected (plus 5),
then multiplied by 3. Filters = (Number of classes + 5)
× B indicates that for each object class to be detected,
plus 5 (representing bounding box coordinates and
confidence score), it will be multiplied by 3. The result
is the total number of filters required in the last
convolutional layer.

 Max batches: In the YOLOv4 configuration (cfg) file,
the "max_batches" parameter determines the total
number of iterations that will be used in the model
training. Each iteration involves one batch of image
data to train the model. The value of "max_batches"
indicates the limit on the number of iterations to be
performed during training. Therefore, from the formula
Max batches = Number of classes × 2000, it can be
concluded that in this research, the maximum number
of iterations for each training session is set to 4000
iterations.

 Steps: In the YOLOv4 configuration (cfg) file, the
"steps" parameter is used to control when the learning
rate will be adjusted during the training process. The
"steps" value, expressed as a percentage of
"max_batches," determines the points at which the
learning rate will undergo changes. In this research,
"steps" are set at 80% and 90% of "max_batches,"
which means there are two points where the learning
rate will change during training: (1) At 80% of
"max_batches": The learning rate will be adjusted
when the training reaches 80% of the total scheduled
iterations ("max_batches"). This adjustment usually
involves decreasing the learning rate to help the model
reach an optimal point during training. (2) At 90% of
"max_batches": The learning rate will be adjusted
when the training reaches 90% of the total scheduled
iterations ("max_batches"). This adjustment typically
involves further decreasing the learning rate to smooth
the model's convergence process and improve the final
results. The purpose of adjusting the learning rate is to
optimize the training process and aid the model in
achieving a good convergence, thereby enhancing
object detection performance.

 Batch and subdivision: In the YOLOv4 configuration
(cfg) file, the "batch" and "subdivisions" parameters
are used to control how training or testing data is
processed in each iteration. Here is an explanation for
both values: (1) For the “yolov4_train.cfg”: Batch=32:
The "batch" value indicates the number of images
processed in each training iteration. In this case, 32
images are processed simultaneously in one iteration.
This means that 32 images are loaded into memory and
used to update the model weights in one iteration.
Subdivisions=16: The "subdivisions" value indicates
how many weight updates will be performed before
considering one iteration complete. In this case, every
16 weight updates will be performed before one

https://github.com/heartexlabs/labelImg
https://github.com/AlexeyAB/darknet

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 14, No. 9, 2023

970 | P a g e

www.ijacsa.thesai.org

iteration is considered complete. This is useful to
reduce memory load and speed up the training process.
With this configuration, in each training iteration, 32
images are loaded and processed, and weight updates
are performed every 16 times. This allows for
YOLOv4 model training with efficiency and speeds up
the training process. (2) For the “yolov4_test.cfg”:
Batch=1: The "batch" value is set to 1, which means
that in each testing iteration, only 1 image will be
processed. This is done because during the testing
phase, we want to test each image individually to
obtain accurate detection results and precise
evaluation. Subdivisions=1: The "subdivisions" value
is set to 1, which means that weight updates are not
needed during the testing process. Each image is tested
separately without any weight updates because no
training is done at this stage. With this configuration,
each image in the testing data will be tested separately,
one by one, without any weight updates performed.
This allows for accurate testing and precise evaluation
of the previously trained model.

F. Performing Cross-Validation

In this research, cross-validation method is used to evaluate
and validate the performance of the underwater object
detection model. Cross-validation is a statistical method
employed to assess and validate a model on a limited dataset4.
The following are the steps of cross-validation conducted in
this study:

 Data Splitting: The dataset used is divided into several
subsets called "folds". In this research, the dataset is
divided into 5 folds, as shown in the data split in Table
VI.

 Cross-Validation Iterations: The cross-validation is
performed 5 times, where each iteration uses one fold
as the testing data, and the remaining folds are used as
the training data. For example, in the first iteration,
fold 5 is used as the testing data, while folds 1 to 4 are
used as the training data. In the second iteration, fold 4
is used as the testing data, and folds 5 and 1 to 3 are
used as the training data, and so on.

 Model Training: In each iteration, the submarine cable
detection model is trained using the designated training
data. The training process is conducted using the
predetermined techniques and parameters.

 Model Testing: After training the model in each
iteration, the model is evaluated using separate testing
data. The model's performance is measured using
relevant evaluation metrics such as precision, recall,
and F1-score.

 Selecting the Best Iteration Result: After completing
the cross-validation iterations, the performance
evaluation results of the model in each iteration are
recorded. Then, the best iteration result is chosen based
on evaluation metrics like precision, recall, and F1-

4Cross Validation: Teknik Evaluasi Machine Learning, 6 Metode. (2022,

August 14). Digital Polar. https://digitalpolar.com/cross-validation/

score. The best iteration result is selected as the final
outcome representing the model's best performance.

TABLE VI. DATASET FOLD SPLITTING

Iteration
Fold 1

(20%)

Fold 2

(20%)

Fold 3

(20%)

Fold 4

(20%)

Fold 5

(20%)

Iteration 1 Train Test

Iteration 2 Train Test Train

Iteration 3 Train Test Train

Iteration 4 Train Test Train

Iteration 5 Test Train

Through the cross-validation method, this research can
obtain more stable and reliable estimations of the performance
of the submarine cable detection model. By dividing the
dataset into different subsets for training and testing, this study
can objectively test the model on various data and identify its
strengths and weaknesses.

G. Model Performance Evaluation and Analysis with

Confusion Matrix

This stage involves using the confusion matrix to evaluate
and analyze the performance of the submarine cable detection
model. The following are the steps involved:

 Building the Confusion Matrix: Using the testing data,
the submarine cable detection model will make
predictions for the SC-Good-Condition and SC-Bad-
Condition object classes. From the prediction results
and the ground truth labels, the confusion matrix will
be constructed. The confusion matrix is a table with
four cells representing the number of correct and
incorrect predictions for each object class. The cells in
the confusion matrix include True Positive (TP), True
Negative (TN), False Positive (FP), and False Negative
(FN) [14]. The visualization of the confusion matrix is
shown in Figure 6.

 Based on the visualization of the confusion matrix
above, in the context of submarine cable detection with
classes SC-Good-Condition and SC-Bad-Condition,
the definitions of True Positive (TP), True Negative
(TN), False Positive (FP), and False Negative (FN) can
be stated as follows:

o True Positive (TP): TP occurs when the model

correctly detects a submarine cable in good

condition (SC-Good-Condition). This means that

the model predicts correctly that the example

belongs to the SC-Good-Condition class and

indeed represents a submarine cable in good

condition.

o True Negative (TN): TN occurs when the model

correctly detects a submarine cable in bad

condition (SC-Bad-Condition). This means that the

model predicts correctly that the example belongs

to the SC-Bad-Condition class and indeed

represents a submarine cable in bad condition.

https://digitalpolar.com/cross-validation/

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 14, No. 9, 2023

971 | P a g e

www.ijacsa.thesai.org

o False Positive (FP): FP occurs when the model

incorrectly detects a submarine cable in bad

condition (SC-Bad-Condition) as a submarine

cable in good condition (SC-Good-Condition).

This means that the model mistakenly predicts that

the example belongs to the SC-Good-Condition

class, whereas it actually belongs to the SC-Bad-

Condition class.

o False Negative (FN): FN occurs when the model

incorrectly detects a submarine cable in good

condition (SC-Good-Condition) as a submarine

cable in bad condition (SC-Bad-Condition). This

means that the model mistakenly predicts that the

example belongs to the SC-Bad-Condition class,

whereas it actually belongs to the SC-Good-

Condition class.

Fig. 6. Confusion matrix visualization [15].

 Calculating Evaluation Metrics: Based on the
confusion matrix, various performance evaluation
metrics for the model can be calculated, such as
precision, recall, and F1-score. Precision measures the
extent to which the model's positive predictions are
correct, while recall measures the extent to which the
model can correctly identify positive objects. F1-score
is a combined measure that takes into account both
precision and recall to provide a balanced performance
overview5. The calculation algorithms for each metric
are presented in Table VII.

TABLE VII. ALGORITHM FOR CALCULATING EVALUATION METRICS

Metric Calculation Algorithm

Precision
𝑇𝑃

(𝑇𝑃 + 𝐹𝑃)
 (1)

Recall
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
 (2)

F1-score
2 × (𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 × 𝑅𝑒𝑐𝑎𝑙𝑙)

(𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑅𝑒𝑐𝑎𝑙𝑙)
 (3)

mAP

1

𝑁
 ∑ 𝐴𝑃𝑖

𝑁

𝑖=1

Note:

N = Number of AP data
AP = Average Precision

(4)

5Kumar, A. (2023, March 17). Accuracy, Precision, Recall & F1-score -

Python Examples - Data Analytics. Data Analytics.
https://vitalflux.com/accuracy-precision-recall-f1-score-python-example

 Interpretation of Results: Through the confusion matrix
and calculated evaluation metrics, the performance
results of the model can be interpreted. Analyzing the
number of TP, TN, FP, and FN for each object class
provides insights into the model's ability to detect
submarine cables in both SC-Good-Condition and SC-
Bad-Condition classes. Observing the values of
precision, recall, and F1-score for each object class
helps in understanding the strengths and weaknesses of
the model in detecting submarine cables.

 Visualization of Confusion Matrix: To facilitate
understanding, the confusion matrix can be visualized
using graphs or heat maps. This helps to clearly
visualize the distribution of prediction results and
errors that occur across all object classes.

 Testing Submarine Cable Detection on 20 Image
Samples: To ensure that the model can accurately
detect submarine cable conditions, a test for submarine
cable detection is performed on 20 images listed in
Table VIII, which are then analyzed for their results.

TABLE VIII. DETAILS OF THE SUBMARINE CABLE DETECTION TEST

IMAGES

File Name Class

Sample01.png – Sample10.png SC-Good-Condition

Sample11.png – Sample20.png SC-Bad-Condition

Through the evaluation and performance analysis of the
model using the confusion matrix, this research provides
detailed insights into how the submarine cable detection model
operates, the extent of errors that occur, and the model's
performance across all object classes. This aids in
understanding and reporting the model's performance more
accurately and informatively.

H. Model Implemetation to GUI

This stage involves integrating the object detection model
for underwater objects into the previously designed GUI. The
following are the steps involved in this implementation:

 Model Preparation: The trained and tested submarine
cable detection model (weights) will be prepared for
integration into the GUI.

 Integration with GUI Library and Framework: The
model will be integrated with the GUI library and
framework used in this research, which is PyQt
(Python QML).

 Functional Testing: After the integration is complete,
functional testing of the GUI will be conducted to
ensure that the submarine cable detection model
operates smoothly within the GUI. At this stage, non-
real-time submarine cable detection will be tested on
several videos, and the details of these test videos are
presented in Table IX.

 Evaluation and Refinement: After testing the
functionality, the performance of the GUI and the
submarine cable detection model within the GUI

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 14, No. 9, 2023

972 | P a g e

www.ijacsa.thesai.org

environment is evaluated. Several aspects that can be
evaluated include the mAP of the detection results
according to equation (4) and also the calculation of
the GUI's Frames per Second (FPS) performance,
which can be calculated using the following equation:

𝐹𝑃𝑆 =
𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝐷𝑒𝑡𝑒𝑐𝑡𝑒𝑑 𝑆𝐶 𝐹𝑟𝑎𝑚𝑒𝑠

𝐺𝑈𝐼 𝑃𝑟𝑜𝑐𝑒𝑠𝑠𝑖𝑛𝑔 𝑇𝑖𝑚𝑒

(5)

TABLE IX. DETAIL OF SUBMARINE CABLE DETECTION TEST

VIDEOS ON GUI.

File Name Video Duration

SampelVideo1.mov 54 seconds

SampleVideo2.mov 60 seconds

Subsequently, areas that need improvement or
enhancement can be identified, and refinements can be made as
necessary.

By integrating the submarine cable detection model into the
GUI, this research provides an intuitive and interactive
interface for users to perform submarine cable detection
practically and efficiently. The GUI facilitates both real-time
and non-real-time usage of the model and streamlines the
interpretation of detection results within a more structured
environment.

III. RESULT AND ANALYSIS

In this chapter, the results of the experiments, evaluation,
and performance analysis of the model, as well as the
functionality test of the GUI, are explained in accordance with
the previously described design.

A. Experiment using Imbalanced Dataset

A total of 16 training experiments were conducted using
the imbalanced dataset, wherein four datasets with varying
numbers of images were used. The number of images in the
SC-Good-Condition class was smaller compared to the number
of images in the SC-Bad-Condition class, with a ratio of 40:60.
The details of the image distribution for the imbalanced dataset
are presented in Table X and Table XI.

From the division of the imbalanced dataset, training was
conducted with varying numbers of iterations. Each dataset
was trained using 1000, 2000, 3000, and 4000 iterations. The
training results produced 16 metric outcomes, presented in
Table XII and visualized in the graph in Figure 7.

TABLE X. THE NUMBER OF IMAGES IN THE SC-GOOD-CONDITION

CCLASS AND THE SC-BAD-CONDITION CLASS USED IN THE

IMBALANCED DATASET

Dataset

Name

Number of

Images Data

SC-Good-

Condition Class

(40%)

SC-Bad-

Condition Class

(60%)

Dataset 1 395 Images 158 Images 237 Images

Dataset 2 790 Images 316 Images 474 Images

Dataset 3 1185 Images 474 Images 711 Images

Dataset 4 1580 Images 632 Images 948 Images

TABLE XI. COMPOSITION OF IMBALANCED DATASET

Dataset

Name

Original

Images

Rotated

Images

90°

Rotated

Images

180°

Rotated

Images

270°

Total

Number

of Image

Data

Dataset 1 395 Images 0 Images 0 Images 0 Images
395
Images

Dataset 2 395 Images
395

Images
0 Images 0 Images

790

Images

Dataset 3 395 Images
395
Images

395
Images

0 Images
1185
Images

Dataset 4 395 Images
395

Images

395

Images

395

Images

1580

Images

TABLE XII. TRAINING RESULTS USING THE IMBALANCED DATASET

Name of Weight Precision Recall
F1-

score

mAP

@0.5

yolov4_imb_395_1000 0.69 0.58 0.63 64.62%

yolov4_imb_395_2000 0.87 0.82 0.85 87.67%

yolov4_imb_395_3000 0.87 0.83 0.85 87.37%

yolov4_imb_395_4000 0.87 0.83 0.85 87.67%

yolov4_imb_790_1000 0.71 0.14 0.24 45.04%

yolov4_imb_790_2000 0.72 0.59 0.64 49.95%

yolov4_imb_790_3000 0.76 0.65 0.70 68.58%

yolov4_imb_790_4000 0.82 0.64 0.72 70.98%

yolov4_imb_1185_1000 0.62 0.06 0.11 18.86%

yolov4_imb_1185_2000 0.70 0.26 0.38 33.15%

yolov4_imb_1185_3000 0.70 0.24 0.36 31.84%

yolov4_imb_1185_4000 0.69 0.23 0.35 30.97%

yolov4_imb_1580_1000 0.54 0.05 0.09 17.18%

yolov4_imb_1580_2000 0.65 0.29 0.40 37.52%

yolov4_imb_1580_3000 0.62 0.29 0.40 38.12%

yolov4_imb_1580_4000 0.69 0.27 0.38 38.63%

Fig. 7. Graph of evaluation metrics from training using the imbalanced

dataset.

From Table XII and Figure 7, it can be observed that there
is variation in the performance metrics across different datasets
and iterations. It is evident that increasing the number of
images in the dataset and the number of iterations does not
always result in consistent improvement in the measured
metrics.

For example, in the mAP (mean Average Precision)
column, it can be seen that some combinations have lower

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 14, No. 9, 2023

973 | P a g e

www.ijacsa.thesai.org

values compared to others, even when using a higher number
of images and iterations. For instance, in the
"yolov4_imb_395" dataset, the mAP for 4000 iterations
(87.67%) does not show a significant improvement compared
to 2000 iterations (87.67%). This indicates that after reaching a
certain threshold of images and iterations, further increases do
not provide significant benefits in the measured metrics.

This highlights that performance improvement is not solely
dependent on increasing the number of data and iterations.
There are other factors that need to be considered, such as data
quality, balance of data between classes, and algorithmic
factors used in model training. In this experiment with the
imbalanced dataset, the best metric results were achieved by
the "yolov4_imb_395_4000" weight.

B. Experiment using Balanced Dataset

 A total of 20 training experiments were conducted with
the balanced dataset using the cross-validation method. Among
these experiments, the training process involved 5 iterations of
cross-validation, with 5 fold data images for both training and
testing data, as indicated in Table VI. Each cross-validation
iteration utilized a different number of training iterations,
similar to the training of the imbalanced dataset, which
included 1000, 2000, 3000, and 4000 training iterations.

The number of images in the SC-Good-Condition class was
balanced with the number of images in the SC-Bad-Condition
class, with a 1:1 ratio. The details of image distribution for the
balanced dataset are provided in Table II and Table III, as
discussed previously. The training results from the balanced
dataset yielded 20 sets of performance metrics, presented in
Table XIII, and visualized in Figure 8.

TABLE XIII. TRAINING RESULTS USING THE BALANCED DATASET

Name of Weight Precision Recall F1-score
mAP

@0.5

yolov4_blc_itr1_1000 0.62 0.32 0.42 51.98%

yolov4_blc_itr1_2000 0.70 0.68 0.69 64.54%

yolov4_blc_itr1_3000 0.80 0.78 0.79 75.65%

yolov4_blc_itr1_4000 0.79 0.76 0.77 72.86%

yolov4_blc_itr2_1000 0.78 0.62 0.69 73.68%

yolov4_blc_itr2_2000 0.86 0.80 0.83 86.06%

yolov4_blc_itr2_3000 0.81 0.73 0.76 78.44%

yolov4_blc_itr2_4000 0.89 0.85 0.87 92.58%

yolov4_blc_itr3_1000 0.55 0.45 0.49 51.28%

yolov4_blc_itr3_2000 0.91 0.77 0.84 77.01%

yolov4_blc_itr3_3000 0.84 0.77 0.81 77.08%

yolov4_blc_itr3_4000 0.89 0.77 0.83 77.53%

yolov4_blc_itr4_1000 0.55 0.38 0.45 36.53%

yolov4_blc_itr4_2000 0.70 0.55 0.61 49.87%

yolov4_blc_itr4_3000 0.53 0.38 0.44 34.20%

yolov4_blc_itr4_4000 0.75 0.57 0.65 61.09%

yolov4_blc_itr5_1000 0.47 0.35 0.40 40.90%

yolov4_blc_itr5_2000 0.59 0.47 0.53 47.13%

yolov4_blc_itr5_3000 0.72 0.57 0.64 59.87%

yolov4_blc_itr5_4000 0.82 0.68 0.74 72.25%

Fig. 8. Graph of evaluation metrics from training using the balanced dataset.

From the table and graph above, there is data on the
performance metrics from various dataset combinations with
different iterations during the model training. Here are some
analyses based on the available data:

 Differences in Dataset Combinations: It is evident that
each dataset combination exhibits different
performances in the measured metrics. For example, if
we observe the Precision column, some dataset
combinations like "yolov4_blc_itr2_2000" (0.86) and
"yolov4_blc_itr2_4000" (0.89) show higher precision
values compared to other combinations.

 Influence of Iterations: In some cases, increasing the
number of iterations consistently improves the
measured metrics. For instance, if we consider the
dataset combinations "yolov4_blc_itr1" and
"yolov4_blc_itr2," it can be seen that higher numbers
of iterations result in better performance in metrics like
precision, recall, and F1-score.

 Interrelation of Metrics: In certain cases, there is a
connection observed between the measured metrics.
For example, the dataset combination
"yolov4_blc_itr2_4000" exhibits higher values of
precision (0.89), recall (0.85), and F1-score (0.87)
compared to the dataset combination
"yolov4_blc_itr2_1000" (precision: 0.78, recall: 0.62,
F1-score: 0.69). This indicates that improvements in
precision and recall also contribute to an increase in the
F1-score.

 Dependency on Dataset and Iterations: The analysis
reveals that performance improvement is not solely
dependent on the number of iterations but also relies on
the dataset combination used. For instance, in the
dataset combination "yolov4_blc_itr3," increasing the
number of iterations does not lead to significant
improvements in the measured metrics, particularly in
precision and recall.

This analysis shows that performance enhancement cannot
be guaranteed solely through increasing the number of
iterations. Additionally, other factors such as dataset quality,
data variation, and parameter tuning should be considered to
improve the overall model performance.

Subsequently, from each cross-validation iteration, the
best-performing weight was selected, and the results were

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 14, No. 9, 2023

974 | P a g e

www.ijacsa.thesai.org

summarized in the cross-validation results table shown in
Table XIV and visualized in Figure 9.

TABLE XIV. CROSS-VALIDATION RESULT

Iteration Precision Recall F1-score mAP @0.5

Iteration 1 0.80 0.78 0.79 75.65%

Iteration 2 0.89 0.85 0.87 92.58%

Iteration 3 0.89 0.77 0.83 77.53%

Iteration 4 0.75 0.57 0.65 61.09%

Iteration 5 0.82 0.68 0.74 72.25%

Fig. 9. Graph of evaluation matrix from cross-validation result.

From the cross-validation results above, several analysis
can be drawn as follows:

 Precision: Precision measures how accurately the
model classifies the positive class. The average
precision from five iterations is 0.83, with the highest
value reaching 0.89 in the second iteration. This
indicates that the model tends to perform well in
identifying the positive class.

 Recall: Recall measures how well the model
recognizes instances of the positive class. The average
recall from five iterations is 0.73, with the highest
value reaching 0.85 in the second iteration. Although
the average recall is relatively high, it should be noted
that there is variation in recall values between different
iterations.

 F1-score: The F1-score is a combined measure of
precision and recall. The average F1-score from five
iterations is 0.76, indicating a balanced performance
between precision and recall in classifying the positive
class.

 mAP @0.5: The mAP (mean Average Precision) at
threshold 0.5 is a commonly used evaluation metric in
object detection tasks. The average mAP from five
iterations is 76.62%, with the highest value reaching
92.58% in the second iteration. This shows that the
model has a good ability to detect objects with
confidence levels that meet this threshold.

Thus, based on the cross-validation results, the model
demonstrates good performance in classifying the positive
class with a relatively high level of accuracy. Consequently, we
select the weight associated with the best metric, which is the

metric from iteration 2: "yolov4_blc_itr2_4000," for further
analysis and comparison in our research.

C. Comparison of Imbalanced Dataset and Balanced Dataset

Experiment

After conducting training experiments on both imbalanced
and balanced datasets, the best-performing weights from each
dataset were selected for comparison. The comparison of these
weights is presented in Table XV and the graph in Figure 10.

TABLE XV. COMPARISON OF EVALUATION METRICS FOR TRAINING

ON IMBALANCED AND BALANCED DATASETS

Name of Weight
Dataset

Type

Precisi

on
Recall

F1-

score

mAP

@0.5

yolov4_imb_395

_4000
Imbalanced 0.87 0.83 0.85 0.8767

yolov4_blc_itr2_
4000

Balanced 0.89 0.85 0.87 0.9258

Fig. 10. Comparison graph of evaluation metrics for training on imbalanced

and balanced datasets.

 Precision: The model with the balanced dataset has
slightly higher precision (0.89) compared to the model
with the imbalanced dataset (0.87). Precision measures
how accurately the model classifies the positive class,
and higher results indicate that the model with the
balanced dataset is better at accurately recognizing the
positive class.

 Recall: Recall in the model with the balanced dataset
(0.85) is slightly lower than the model with the
imbalanced dataset (0.83). Recall measures how well
the model recognizes instances of the positive class.
Although recall in the model with the balanced dataset
is higher, the difference is not significant.

 F1-score: The model with the balanced dataset (0.87)
has a higher F1-score compared to the model with the
imbalanced dataset (0.85). F1-score is a measure of the
harmonic mean between precision and recall, and the
higher result in the model with the balanced dataset
indicates better overall performance in classifying the
positive class.

 mAP @0.5: The model with the balanced dataset has a
higher mAP @0.5 (0.9258) compared to the model
with the imbalanced dataset (0.8767). mAP @0.5 is a
commonly used evaluation metric in object detection
tasks, and the higher result in the model with the
balanced dataset indicates better ability to detect
objects with confidence levels that meet the threshold.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 14, No. 9, 2023

975 | P a g e

www.ijacsa.thesai.org

Based on the performance evaluation results in the table
and graph above, the weight "yolov4_blc_itr2_4000" using the
balanced dataset outperforms the weight
"yolov4_imb_395_4000" using the imbalanced dataset in terms
of precision, recall, F1-score, and mAP @0.5. The model with
the balanced dataset has better ability to accurately classify the
positive class, with higher F1-score and mAP @0.5.

In addition to better metric results, using the balanced
dataset also provides several other advantages. By using a
balanced dataset, we can avoid bias in the model as the dataset
reflects an even distribution of data. Additionally, a balanced
dataset can provide more balanced classification results and
better control over prediction errors.

Therefore, based on the comparison results and the
advantages obtained, the model with the balanced dataset
("yolov4_blc_itr2_4000") can be chosen as the best in
classifying SC-Good-Condition and SC-Bad-Condition.

D. Model Performance Evaluation and Analysis

After selecting the "yolov4_blc_itr2_4000" weight using
the balanced dataset as the best training result based on the
metrics, the performance of the model will be further evaluated
and analyzed using the confusion matrix.

From testing 40 validation images on the balanced dataset,
a confusion matrix is constructed as a tool to analyze the
trained classification model. Figure 11 displays the confusion
matrix of the selected weight.

Fig. 11. Confusion matrix of the selected weight.

Based on the confusion matrix above, the model weight can
be evaluated as follows:

 TP (True Positives): There are 20 images correctly
detected as SC-Good Condition.

 TN (True Negatives): There are 15 images correctly
detected as SC-Bad Condition.

 FP (False Positives): There is 1 image wrongly
detected as SC-Bad Condition, whereas it should be
SC-Good Condition.

 FN (False Negatives): There are 3 images misclassified
as SC-Good Condition, whereas they should be SC-
Bad Condition.

To improve the model's performance in handling false
positives (FP) and false negatives (FN) cases, several
additional improvements can be implemented:

 Increase the Amount of Data: Collecting more
submarine cable images with a wider variation. Having
a larger and more representative dataset allows the
model to learn more complex patterns and enhance its
detection capabilities for cases of false positives and
false negatives.

 Further Data Augmentation: Perform data
augmentation on submarine cable images with even
broader variations, such as rotation, translation,
zooming, cropping, and other distortions. This will
help the model recognize various possible conditions in
submarine cables and improve its adaptability.

 Hyperparameter Configuration Tuning: Perform
hyperparameter tuning on the YOLOv4 model. Some
hyperparameters that can be examined include learning
rate, max_batches, batch size, subdivision size, input
image size, and other parameters related to the
YOLOv4 architecture.

E. Detection Test on Submarine Cable Image Samples

In this stage, a detection test is conducted on 20 sample
submarine cable images, comprising 10 images with good
condition and 10 images with bad condition. These images are
outside of the balanced dataset used for training. The results of
the detection test on the sample images are shown in Table
XVI. Additionally, the Average Precision (AP) graphs for the
SC-Good-Condition and SC-Bad-Condition classes are
presented in Figure 12 and Figure 13, respectively.

TABLE XVI. RESULTS OF THE DETECTION TEST ON SUBMARINE

CABLE IMAGE SAMPLES

File Name Detection Image Result Class
AP

@0.5

Sample01.png

SC-Good-
Condition

0.87

Sample02.png

SC-Good-

Condition
0.94

Sample03.png

SC-Good-
Condition

0.87

Sample04.png

SC-Good-

Condition
0.82

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 14, No. 9, 2023

976 | P a g e

www.ijacsa.thesai.org

Sample05.png

SC-Good-

Condition
0.94

Sample06.png

SC-Good-

Condition
0.91

Sample07.png

SC-Good-

Condition
0.95

Sample08.png

SC-Good-
Condition

0.82

Sample09.png

SC-Good-

Condition
0.96

Sample10.png

SC-Good-

Condition
0.97

Sample11.png

SC-Bad-

Condition
0.82

Sample12.png

SC-Bad-

Condition
0.90

Sample13.png

SC-Bad-

Condition
0.94

Sample14.png

SC-Bad-
Condition

0.83

Sample15.png

SC-Bad-

Condition
0.87

Sample16.png

SC-Bad-

Condition
0.88

Sample17.png

SC-Bad-

Condition
0.66

Sample18.png

SC-Bad-
Condition

0.98

Sample19.png

SC-Bad-

Condition
0.96

Sample20.png

SC-Bad-

Condition
0.91

Fig. 12. Graph of average precision results for the detection test on SC-Good-

Condition class image samples.

Fig. 13. Graph of Average Precision results for the detection test on SC-Bad-

Condition class image samples.

Based on the table and graphs above, the AP (Average
Precision) values indicate how well the model can detect and
classify objects with high accuracy. The higher the AP value,
the better the detection performance on those images. It can be
observed that some SC-Good-Condition and SC-Bad-
Condition images have high AP values, such as Sample10.png
(SC-Good-Condition) with AP 0.97 and Sample18.png (SC-
Bad-Condition) with AP 0.98. This indicates that the model has
a good ability to detect and classify both conditions of
submarine cables. There is variation in the detection
performance among the submarine cable images. Some images
achieve high AP values, showing accurate detection, while
others obtain lower AP values, suggesting possible difficulties
in detection for those images. Therefore, it is necessary to
evaluate the causes of the low AP values and identify factors
that may influence the detection results in those images. This
may involve visual analysis and further investigation of the
images to discover patterns or difficulties that the model may
encounter in accurately classifying submarine cable images.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 14, No. 9, 2023

977 | P a g e

www.ijacsa.thesai.org

Here are some assumptions about the factors that may
influence the detection results with low AP values on the
submarine cable images:

 Blurry or Unclear Image Quality: Images with blurry
or unclear quality can cause difficulties in detecting
submarine cables. The lines or contours of the
submarine cables may not be clearly visible, making it
challenging for the model to classify accurately.

 Inappropriate Image Scale or Size: Image size that is
either too small or too large can affect the model's
ability to detect submarine cables accurately. Images
that are too small may lead to the submarine cable
object being too tiny to detect, while images that are
too large may cause the details of the submarine cable
object to be lost or distorted.

 Variations in Lighting or Image Contrast: Differences
in lighting or contrast in submarine cable images can
affect the model's ability to recognize and classify the
submarine cables accurately. Low lighting or low
contrast can make it difficult to see the details of the
submarine cable object, leading to detection
challenges.

 Presence of Confusing Objects: The presence of other
objects that have visual similarities with submarine
cables, such as other cables or structural elements, or
the presence of other objects obstructing the submarine
cable, such as fish, rocks, etc., can confuse the model
and disrupt the process of accurate detection and
classification.

 Variations in Submarine Cable Shapes or Types:
Images in the dataset may have variations in the shape
or type of submarine cables, which can pose challenges
for the model in recognizing these variations. The
model may struggle to understand the variations in
texture, shape, or size of different types of submarine
cables.

F. GUI Functionality Test

In this stage, the functionality of the GUI is tested by
conducting non-real-time submarine cable detection on several
videos presented in Table IX. The results of the GUI
functionality test are presented in Table XVII and graph
images in Figure 14 for the testing on the SampleVideo1.mov
file.

TABLE XVII. RESULTS OF GUI FUNCTIONALITY TEST ON

SAMPLEVIDEO1.MOV

Video Duration
GUI Processing

Duration
Detected Class

AP Value

@0.5

00:01 00:06 SC-Bad-Condition 0.75

00:01 00:11 SC-Bad-Condition 0.85

00:02 00:16 SC-Bad-Condition 0.89

00:03 00:20 SC-Bad-Condition 0.91

00:04 00:25 SC-Bad-Condition 0.97

00:05 00:29 SC-Bad-Condition 0.97

00:06 00:33 SC-Bad-Condition 0.98

00:06 00:38 SC-Bad-Condition 0.93

00:07 00:42 SC-Bad-Condition 0.95

00:08 00:47 SC-Bad-Condition 0.98

00:09 00:51 SC-Bad-Condition 0.98

00:09 00:56 SC-Bad-Condition 0.98

00:10 01:00 SC-Bad-Condition 0.99

00:11 01:04 SC-Bad-Condition 0.99

00:12 01:09 SC-Bad-Condition 0.97

00:12 01:14 SC-Bad-Condition 0.96

00:14 01:18 SC-Bad-Condition 0.81

00:14 01:22 SC-Bad-Condition 0.73

00:15 01:26 SC-Bad-Condition 0.95

00:16 01:31 SC-Bad-Condition 0.98

00:17 01:35 SC-Bad-Condition 0.91

00:18 01:39 SC-Bad-Condition 0.82

00:18 01:44 SC-Good-Condition 0.93

00:19 01:48 SC-Good-Condition 0.94

00:20 01:52 SC-Good-Condition 0.91

00:21 01:57 SC-Good-Condition 0.94

00:25 02:16 SC-Bad-Condition 0.89

00:26 02:20 SC-Bad-Condition 0.90

00:27 02:25 SC-Bad-Condition 0.50

00:28 02:29 SC-Bad-Condition 0.85

00:30 02:38 SC-Good-Condition 0.75

00:30 02:42 SC-Good-Condition 0.78

00:31 02:47 SC-Good-Condition 0.79

00:32 02:56 SC-Good-Condition 0.66

00:34 03:00 SC-Bad-Condition 0.73

00:34 03:05 SC-Good-Condition 0.54

00:39 03:24 SC-Bad-Condition 0.82

00:39 03:28 SC-Bad-Condition 0.85

00:41 03:33 SC-Bad-Condition 0.32

00:42 03:42 SC-Bad-Condition 0.76

00:44 03:51 SC-Bad-Condition 0.89

00:44 03:55 SC-Bad-Condition 0.85

00.45 04.00 SC-Bad-Condition 0.90

00:47 04:09 SC-Bad-Condition 0.75

00:47 04.13 SC-Bad-Condition 0.71

00:48 04:17 SC-Bad-Condition 0.79

00:48 04:22 SC-Bad-Condition 0.79

00:50 04:26 SC-Good-Condition 0.41

00:51 04:35 SC-Good-Condition 0.78

00:52 04:40 SC-Good-Condition 0.54

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 14, No. 9, 2023

978 | P a g e

www.ijacsa.thesai.org

Fig. 14. Graph of GUI functionality test results on SampleVideo1.mov.

Based on the table and graph above, the analysis is as
follows:

 The GUI successfully detected SC-Good-Condition at
the video timestamps: 00:18, 00:19, 00:20, 00:21,
00:30, 00:31, 00:32, 00:34, 00:50, 00:51, and 00:52.
The GUI successfully detected SC-Good-Condition 11
times out of a total of 50 detection frames.

 The GUI successfully detected SC-Bad-Condition at
the video timestamps: 00:01, 00:02, 00:03, 00:04,
00:05, 00:06, 00:07, 00:08, 00:09, 00:10, 00:11, 00:12,
00:13, 00:15, 00:16, 00:17, 00:18, 00:19, 00:25, 00:26,
00:27, 00:28, 00:34, 00:39, 00:41, 00:42, 00:44, 00:45,
00:47, and 00:48. The GUI successfully detected SC-
Bad-Condition 30 times out of a total of 50 detection
frames.

 Several frames are at the same second, such as frames
of SC-Bad-Condition at video timestamps: 00:01,
00:06, 00:09, 00:12, 00:14, 00:18, 00:34, 00:39, 00:44,
00:47, and 00:48, which were detected twice at each
second. As for SC-Good-Condition frames, there is
only one video timestamp (00:30) with two frames
detected in that second.

 Several frames are at the same second but have
different detection classes. At video timestamps: 00:18
and 00:34, each has 2 frames with different detection
classes, one frame of SC-Good-Condition, and one
frame of SC-Bad-Condition.

 To calculate the GUI's FPS (Frames per Second)
performance for SampleVideo.mov, the formula in
equation (V) is used:

𝐹𝑃𝑆 =
50 𝑓𝑟𝑎𝑚𝑒

280 𝑑𝑒𝑡𝑖𝑘
= 0.178 𝑓𝑝𝑠

From the calculations above, the GUI performance for
detecting SampleVideo1.mov still has a low FPS, taking a total
time of 4 minutes and 40 seconds (280 seconds).

 To calculate the mAP (mean Average Precision)
performance, the formula in equation (IV) is used. The
results of mAP calculations for each class in the GUI
functionality test on VideoSample01.mov are shown in
Table XVIII.

TABLE XVIII. RESULTS OF MAP CALCULATION FOR GUI

FUNCTIONALITY TEST ON VIDEOSAMPLE01.MOV

Class Name mAP @0.5

SC-Good-Condition 0.725

SC-Bad-Condition 0.861

Based on the table above, the detection and classification
results of submarine cables using the GUI have achieved a
good mAP value.

Next, the functionality test continues for the video
SampleVideo2.mov. The results of the GUI functionality test
for SampleVideo2.mov are presented in Table XIX and graph
images in Figure 15.

TABLE XIX. RESULTS OF GUI FUNCTIONALITY TEST ON

SAMPLEVIDEO2.MOV

Video Duration
GUI Processing

Duration
Detected Class

AP Value

@0.5

00:02 00:07 SC-Good-Condition 0.48

00:02 00:12 SC-Good-Condition 0.95

00:02 00:16 SC-Good-Condition 0.56

00:03 00:20 SC-Good-Condition 0.79

00:04 00:24 SC-Good-Condition 0.35

00:11 00:53 SC-Good-Condition 0.45

00:11 00:58 SC-Good-Condition 0.43

00:11 01:02 SC-Good-Condition 0.92

00:12 01:06 SC-Good-Condition 0.86

00:13 01:11 SC-Good-Condition 0.51

00:14 01:15 SC-Good-Condition 0.49

00:14 01:19 SC-Good-Condition 0.29

00:20 01:35 SC-Good-Condition 0.27

00:30 02:31 SC-Good-Condition 0.56

00:38 03:08 SC-Bad-Condition 0.39

00:44 03:43 SC-Bad-Condition 0.58

00:50 04:09 SC-Bad-Condition 0.41

00:51 04:14 SC-Bad-Condition 0.72

00:51 04:18 SC-Bad-Condition 0.94

00:52 04:22 SC-Bad-Condition 0.98

00:53 04:27 SC-Bad-Condition 0.90

00:54 04:31 SC-Bad-Condition 0.94

00:54 04:36 SC-Bad-Condition 0.74

Based on the table and graph above, the analysis is as
follows:

 The GUI successfully detected SC-Good-Condition at
the video timestamps: 00:02, 00:03, 00:04, 00:11,
00:12, 00:13, 00:14, 00:20, and 00:30. The GUI
successfully detected SC-Good-Condition 9 times out
of a total of 23 detection frames.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 14, No. 9, 2023

979 | P a g e

www.ijacsa.thesai.org

Fig. 15. Graph of GUI functionality test results on SampleVideo2.mov.

 The GUI successfully detected SC-Bad-Condition at
the video timestamps: 00:38, 00:44, 00:50, 00:51,
00:52, and 00:54. The GUI successfully detected SC-
Bad-Condition 6 times out of a total of 23 detection
frames.

 Several frames are at the same second, such as SC-
Bad-Condition frames at video timestamps: 00:51 and
00:54, which were detected twice at each second. SC-
Good-Condition frames at video timestamps: 00:13 and
00:14 were detected three times in each second.

 To calculate the GUI's FPS (Frames per Second)
performance for SampleVideo.mov, the formula in
equation (V) is used:

𝐹𝑃𝑆 =
23 𝑓𝑟𝑎𝑚𝑒

276 𝑑𝑒𝑡𝑖𝑘
= 0.083 𝑓𝑝𝑠

Based on the calculations above, the GUI performance for
detecting SampleVideo2.mov still has a low FPS, taking a total
time of 4 minutes and 36 seconds (276 seconds).

 From the testing of SampleVideo1.mov and
SampleVideo2.mov, both GUI FPS performances are
relatively low. The following are some assumptions
that may cause the low FPS performance:

o Model Complexity: The low FPS may be caused

by the complexity of the YOLOv4 detection model

used. Models with many layers and parameters

may require longer processing time.

o Computational Load: Object detection using the

YOLOv4 model requires intensive processing and

consumes a lot of computational power. This can

reduce processing speed and result in low FPS.

o Hardware Limitations: The use of less powerful

hardware, such as a CPU with low computational

power, can affect the GUI's performance and cause

low FPS.

 To improve FPS and enhance the GUI's responsiveness
in submarine cable detection, several efforts can be
made:

o Model Optimization: Optimize the YOLOv4

detection model by reducing the number of

unnecessary layers or parameters and using a

lighter model.

o Use More Powerful Hardware: Use GPUs with

parallel processing capabilities to improve

processing speed and FPS.

o Resolution Reduction: Reduce the video resolution

or convert the video format to a lighter format to

improve FPS.

o Data Streaming: Use data streaming techniques to

process videos in real-time and enhance GUI

responsiveness.

By implementing the above efforts, it is expected that FPS
on the GUI can be increased, making the application more
responsive and providing users with a better experience in
submarine cable detection. Continuous and iterative evaluation
is necessary to ensure optimal performance improvements.

 To calculate the mAP (mean Average Precision)
performance, the formula in equation (IV) is used. The
results of mAP calculations for each class in the GUI
functionality test on VideoSample02.mov are shown in
Table XX.

TABLE XX. RESULTS OF MAP CALCULATION FOR GUI

FUNCTIONALITY TEST ON VIDEOSAMPLE02.MOV

Class Name mAP @0.5

SC-Good-Condition 0.554

SC-Bad-Condition 0.681

G. Comparison of Functionality Test Performance

From the two functionality tests with two different videos,
VideoSample01.mov and VideoSample02.mov, two
performances were obtained for comparison. The comparison
of functionality test performances is presented in Table XXI.

TABLE XXI. COMPARISON OF GUI FUNCTIONALITY TEST RESULTS

FOR VIDEOSAMPLE01.MOV AND VIDEOSAMPLE02.MOV

File Name

Video

Duratio

n

GUI

Processin

g Time

Number

of SC

Frame

Detecte

d

FPS
mAP

@0.5

VideoSample01.mo

v
00:54 04:40

50

frames

0.17

8

0.82

9

VideoSample02.mo

v
01.00 04:36

23

frames

0.08

3

0.60

5

Overall, the GUI has performed well in detecting
submarine cables in both videos. This can be seen from the
relatively high mean Average Precision (mAP) @0.5 values,
which are 0.829 for VideoSample01.mov and 0.605 for
VideoSample02.mov. mAP @0.5 measures the object
detection accuracy at an Intersection over Union (IoU)
threshold of 0.5, and the higher the mAP value, the more
accurate the detection results.

However, there are differences in the number of detected
submarine cable frames between the two videos. In
VideoSample01.mov, the GUI successfully detected 50 SC
frames, while in VideoSample02.mov, the number of detected
submarine cable frames was only 23. This difference is due to
the varying video conditions between the two samples.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 14, No. 9, 2023

980 | P a g e

www.ijacsa.thesai.org

VideoSample02.mov has a more blurry, shaky, and often
unfocused video quality, making submarine cable detection
more challenging. This affects the GUI's performance in
detecting SC in that video. Another factor that can affect the
number of detected submarine cable frames is the complexity
of the background and the presence of other objects that are
similar to the submarine cable, causing some submarine cable
frames to go undetected.

Regarding FPS, both VideoSample01.mov and
VideoSample02.mov have low FPS values. This indicates that
the GUI's processing is still relatively slow, resulting in slow
detection. Increasing the FPS is one of the efforts that need to
be made to improve the quality and efficiency of the GUI in
detecting submarine cables.

IV. CONCLUSION

In this research, a YOLOv4-based underwater detection
system integrated with a Graphical User Interface (GUI) for
Remotely Operated Vehicle (ROV) in submarine cable
detection has been successfully designed and implemented.
Based on the experimental results and analysis, the following
are the conclusions drawn from this research:

1) Development of Submarine Cable Detection Model:

The performance evaluation of the model on the balanced

dataset weight showed satisfactory results with precision of

0.89, recall of 0.85, F1-score of 0.87, and mAP of 92.58%.

This indicates the model's ability to recognize both classes

effectively.

2) Implementation of Graphical User Interface (GUI): The

performance evaluation of the designed GUI showed

promising results. In VideoSample01.mov, the GUI

successfully detected 50 frames of submarine cable images

with an mAP of 0.829 and GUI FPS of 0.0178. In

VideoSample02.mov, the GUI detected 23 frames of

submarine cable images with an mAP of 0.605 and GUI FPS

of 0.083. The implementation of the GUI with the submarine

cable detection model on the ROV successfully reduces

dependency on human observation. With this automated

system, issues of fatigue and subjective interpretation in

identifying submarine cable conditions can be addressed. This

provides the benefit of facilitating the submarine cable

maintenance process.

In light of the successful development and implementation
of the YOLOv4-based underwater detection system integrated
with a GUI for ROV in submarine cable detection, there are
several key areas for future research and improvements:

1) Future work should aim to enhance the scalability and

adaptability of the system. This could involve expanding the

dataset to encompass a broader range of underwater

environments and conditions. Additionally, exploring the

integration of machine learning techniques for automatic

parameter tuning, especially in varying lighting and water

clarity conditions, would further bolster the system's

performance and reliability. Furthermore, the system could

benefit from the incorporation of real-time anomaly detection

algorithms to promptly identify potential cable issues and

facilitate proactive maintenance.

2) There is potential to extend the application of this

technology to broader marine infrastructure management.

Researchers can explore its utility in tasks beyond submarine

cable detection, such as pipeline monitoring, marine

biodiversity assessment, and archaeological exploration.

Adapting the system for these diverse applications could

significantly contribute to the advancement of marine sciences

and industries. Additionally, research efforts should be

directed toward refining the user interface and operator

interaction aspects of the GUI to ensure user-friendliness and

efficiency. This includes incorporating features that enable

operators to annotate and validate detected cable segments,

fostering human-machine collaboration for more accurate

results. By addressing these areas in future research

endeavors, we can further enhance the capabilities and impact

of this innovative underwater detection system.

REFERENCES

[1] M. Jamin and A. Sugiyono, “Pengembangan Kelistrikan Nasional.”

[2] Susianti, E., Syahputra, N. A., Wibowo, A. U., & Maria, P. S. (2021).
Rancang Bangun Robot Observasi Bawah Air-ROV (Remotely Operated
Vihicle) Menggunakan Arduino UNO. Jurnal Elektro dan Mesin
Terapan, 7(2), 136-146.

[3] Saputro, B. S., Djunarsjah, E., Setiyadi, J., & Negara, A. K. (2015).
Pengoperasian Remotely Operated Vehicle (ROV) Mendukung
Pekerjaan Bawah Air (Studi Kasus Pendeteksian Kabel Bawah Laut
Menggunakan ROV H800 Di Perairan Selat Bangka Belitung):
Remotely Operated Vehicle (ROV) Operation Supports Underwater
Work (Case Study of Detecting Submarine cables Using ROV H800 in
the Waters of the Bangka Belitung Strait). Jurnal Hidropilar, 1(2), 95-
111.

[4] Noyes, R. Y. (1994). Inspection methods for underwater cables
(Doctoral dissertation, National Technical Information Service).

[5] Zhang, M., Xu, S., Song, W., He, Q., & Wei, Q. (2021). Lightweight
underwater object detection based on yolo v4 and multi-scale attentional
feature fusion. Remote Sensing, 13(22), 4706.

[6] Rosli, M. S. A. B., Isa, I. S., Maruzuki, M. I. F., Sulaiman, S. N., &
Ahmad, I. (2021, August). Underwater animal detection using
YOLOV4. In 2021 11th IEEE International Conference on Control
System, Computing and Engineering (ICCSCE) (pp. 158-163). IEEE.

[7] Zhang, C., Zhang, G., Li, H., Liu, H., Tan, J., & Xue, X. (2023).
Underwater target detection algorithm based on improved YOLOv4 with
SemiDSConv and FIoU loss function. Frontiers in Marine Science, 10,
1153416.

[8] García-Valdovinos, L. G., Salgado-Jiménez, T., Bandala-Sánchez, M.,
Nava-Balanzar, L., Hernández-Alvarado, R., & Cruz-Ledesma, J. A.
(2014). Modelling, design and robust control of a remotely operated
underwater vehicle. International Journal of Advanced Robotic Systems,
11(1), 1.

[9] Li, Y., Zhang, X., & Shen, Z. (2022). YOLO-Submarine cable: An
Improved YOLO-V3 Network for Object Detection on Submarine cable
Images. Journal of Marine Science and Engineering, 10(8), 1143.

[10] Matsumoto, S., & Ito, Y. (1995, October). Real-time vision-based
tracking of submarine-cables for AUV/ROV. In 'Challenges of Our
Changing Global Environment'. Conference Proceedings. OCEANS'95
MTS/IEEE (Vol. 3, pp. 1997-2002). IEEE.

[11] Fatan, M., Daliri, M. R., & Shahri, A. M. (2016). Underwater cable
detection in the images using edge classification based on texture
information. Measurement, 91, 309-317.

[12] Burnett, D. R., Beckman, R., & Davenport, T. M. (Eds.). (2013).
Submarine cables: the handbook of Law and Policy. Martinus Nijhoff
Publishers.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 14, No. 9, 2023

981 | P a g e

www.ijacsa.thesai.org

[13] Adesokan, A. A. (2021). Covid-19 Control: Face Mask Detection Using
Deep Learning for Balanced and Unbalanced Dataset. Available at
SSRN 4181373.

[14] Confusion Matrix - an overview | ScienceDirect Topics. (n.d.).
Confusion Matrix - an Overview | ScienceDirect Topics.
https://doi.org/10.1016/B978-0-12-818366-3.00005-8

[15] Sharma, D. K., Chatterjee, M., Kaur, G., & Vavilala, S. (2022). Deep
Learning applications for disease diagnosis. In Deep Learning for
medical applications with unique data (pp. 31-51). Academic Press.

