
(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 14, No. 9, 2023

990 | P a g e

www.ijacsa.thesai.org

Next-Generation Intrusion Detection and Prevention

System Performance in Distributed Big Data Network

Security Architectures

Michael Hart
1
, Rushit Dave

2
, Eric Richardson

3

College of Science, Engineering, & Technology, Minnesota State University, Mankato, United States
1, 2

College of Health and Human Services, University of North Carolina Wilmington, United States
3

Abstract—Big data systems are expanding to support the

rapidly growing needs of massive scale data analytics. To

safeguard user data, the design and placement of cybersecurity

systems is also evolving as organizations to increase their big data

portfolios. One of several challenges presented by these changes

is benchmarking real-time big data systems that use different

network security architectures. This work introduces an eight-

step benchmark process to evaluate big data systems in varying

architectural environments. The benchmark is tested on real-

time big data systems running in perimeter-based and perimeter-

less network environments. Findings show that marginal I/O

differences exist on distributed file systems between network

architectures. However, during various types of cyber incidents

such as distributed denial of service (DDoS) attacks, certain

security architectures like zero trust require more system

resources than perimeter-based architectures. Results illustrate

the need to broaden research on optimal benchmarking and

security approaches for massive scale distributed computing

systems.

Keywords—Big data systems; zero trust architecture;

benchmarking; distributed denial of service attacks

I. INTRODUCTION

Big data systems are unified environments designed for
massive-scale data analytics. Systems capable of handling
large amounts of data are becoming more important as the
volume of data created and communicated over the Internet
increases [1]. Cybersecurity systems play an important role in
ensuring the large quantities of data on the Internet remains
safe. One dimension of several necessary to accomplish the
latter are next-generation security devices. Intrusion detection
and prevention systems (IDPSs) properly manage data
accessibility, privacy, and safety. IDPS algorithms are able to
identify cyber threats using several mechanisms. This includes
using prior information from previous attacks, anomalies in
network packets [1], and machine learning [2].

As big data systems become more common, their roles will
continue to expand. This includes the capability to analyze and
detect information security vulnerabilities at scale. For
example, several big data frameworks exist that discover
distributed denial of service (DDoS) attacks [3]. This
expansion of roles offers many exciting opportunities for
organizations. However, as the use of big data systems grows,
the capability of attackers to leverage associated parallel
computing power for nefarious reasons also increases [3]. A

systematic review of 32 papers pertaining to securing big data
found that a critical need in future research is building more
secure big data infrastructure [4]. Contributing to the latter
objective, the researchers demonstrate how varying network
architectures impact the security and performance of big data
systems.

Organization of the paper is as follows. Section II reviews
literature on intrusion detection and prevention methods for big
data systems. Section III outlines the research design and
methodologies used to test perimeter-based security and
perimeter-less security applied to a big data system
environment. Section IV describes the research results. Section
V concludes the study by discussing the limitations and future
outlook.

II. LITERATURE REVIEW

Work is necessary to optimize both the information security
and performance of distributed systems. Today, several open-
source big data frameworks provide remarkable potential for
solving challenging data science and related problems by
leveraging powerful parallel and distributed data processing.
However, securing these systems often carries performance
penalties. The review of literature that follows explores
research on the impact of various IT infrastructure security
strategies and their influence on big data environments. It
begins by reviewing comprehensive surveys most closely
related to information security and big data systems.

A. Surveys of Big Data and Intrustion Detection

Previous systematic reviews of literature focused on
information security and big data provide a vast array of
objectives. A prominent theme is using deep learning [1] and
machine learning [2] to assist in detecting or preventing
cybersecurity attacks. This line of research often utilizes deep
learning or machine learning algorithms for near real-time data
protection.

A recent and well cited comprehensive survey in [1]
evaluates how deep learning is used for intrusion detection
systems in the cybersecurity domain. It found notable contrasts
between machine learning approaches in cybersecurity and
deep learning. Conventional machine learning approaches
utilized in cybersecurity were classified by approaches such as
artificial neural networks (ANNs), Bayesian networks, decision
trees, fuzzy logic, k-means clustering, k-nearest neighbor
(kNN) algorithm, and support vector machines (SVMs). The

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 14, No. 9, 2023

991 | P a g e

www.ijacsa.thesai.org

survey centered on deep learning focal intrusion detection
methods that included autoencoders (AEs), convolutional
neural networks (CNNs), deep belief networks (DBNs),
generative adversarial networks (GANs), and long short-term
memory (LSTM) recurrent neural networks [1].

AEs, DBNs, and GANs were highlighted in [1] for their
unsupervised learning strengths. In the absence of gradient
estimation, AEs can use gradient descent to train data. A
strength of LSTM is its capabilities in analyzing time-series
data. CNNs do not need as much data processing prior to
evaluation as certain algorithms and is able to classify cyber-
attacks using multiple characteristics well. Combined, the
survey of literature finds that AEs, CNNs, DBNs, GANs, and
LSTM networks each have potential to improve intrusion
detection methods. Furthermore, the survey [1] outlined the
importance of dataset reliability when evaluating deep learning
intrusion detection effectiveness. Variance in cybersecurity
attack datasets can introduce model bias when comparing
multiple deep learning methods. Thus, any biases in attack
datasets or data from live systems could increase spurious
results [1].

A subsequent theme in the literature concentrates on
cybersecurity and privacy prevention in big data applications.
While this research again employs various data science
methods to detect or prevent data breaches, it also illustrates
how big data techniques can prevent information privacy
issues. Research in [4] led to a proposed model for enhancing
information privacy. The model highlights people,
organizations, society, and government roles. It leverages IDS,
IPS, and encryption as its primary techniques to prevent data
breaches [4].

B. Big Data Architectures and Information Security

As big data evolves, the supporting infrastructures will
require proper encryption, intrusion detection, and intrusion
prevention. Changing architectures within computer networks,
messaging techniques, and undefined communication methods
introduce numerous challenges. In a 2014 study Mitchel and
Chen [5] recognized this paradigm. Their emphasis on cyber-
physical systems (CPS) ranging from smart grids to unmanned
aircraft systems led to the classification of four primary
intrusion detection categories. These include legacy
technologies, attack sophistication, closed control loops, and
physical process monitoring. Each of the latter is narrow
concepts as they relate to the broader field of intrusion
detection, underlying the unique customization of IDSs for
cyber-physical systems [5].

Three years later Zarpelo et al. [6] outlined a similar but
distinct paradigm; intrusion detection focal to the Internet of
things (IoT). The researchers stated that IoT has similar
information security matters as the Internet, cloud services, and
wireless sensor networks (WSNs). Despite similarities, IoT
information security approaches are distinct, according to the
authors due to concepts such as data sharing between users, the
volume of interconnected objects, and the amount of
computational power of the associated devices. Like cyber-
physical systems, IoT presents diverse challenges to the design
of instruction detection systems [6].

Designing secure cloud computing environments poses
several novel problems at multiple infrastructure layers. As an
example, cloud resources can be leased by numerous vendors
focused on varying as-a-service models such as infrastructure
as a service (Iaas), platform as a service (PaaS), and/or
software as a service (SaaS). Multi-cloud applications rely
upon the seamless integration of cloud resources from
providers focused on one or many as-a-service types, which
continue to expand. In Casola et al. [7] a model is outlined for
designing, creating, and implementing multi-cloud
applications. The flexible approach accounts for varying as-a-
service components. Security-by-design is a primary objective
of the process lifecycle between the functional design of multi-
cloud applications and the security design. The functional
design phase defines the application logic, interconnections of
services, and resource requirements. In the security design
phase, each cloud element is assessed in terms of security risks
and security needs. Security policies and controls are designed
based on the latter requirements. Similar to CPS [5] and IoT
[6], the multi-cloud application model is a subsequent example
of how information security solutions play a prominent role
due to the systems’ distinct architectural and infrastructure
layers.

Securing big data environments or leveraging associated
techniques like machine learning to enhance information
security intertwines numerous fields include but not limited to
CPS, IoT, and cloud computing. Like big data systems, CPS
requires cybersecurity protection [8] of private data [9]. Big
data, IoT, and CPS often overlap through the ad hoc interfaces
of systems such as smart vehicles, buildings, factories,
transportation systems, and grids [10]. As a vulnerable attack
surface, IoT advances the need for intelligent information
security.

Machine learning [11], including ensemble intrusion
detection [12], and IDS design [13] are proposed techniques to
mitigate malicious cybersecurity attacks. Due in part to porous
attack surfaces in cloud centric big data, IDSs may require
collaborative frameworks [14]. In [15], fuzzy c means cluster
(FCM) and support vector machine (SVM) were proposed as a
collaborative technique for IDS detection rates. Compared to
other mechanisms, the proposed hybrid FCM-SVM showed
lower false alarm ratios and higher detection accuracy [15].
Furthermore, [16] illuminates the need for scaling IDS
detection algorithms using the resources of parallel computing
in the cloud.

In [17] the researchers propose the BigCloud security-by-
design framework. The framework draws from the need to
integrate big data security into the system development
lifecycle. Its primary cloud application domain is focal to
infrastructure as a service. It notes IaaS as one of the faster
growing as-a-service options for big data. The model helps
design and enforce secure authentication, authorization, data
auditability, availability, confidentiality, integrity, and privacy.
However, its IaaS concentration could provide greater benefits
to as-a-service components specific to host operating systems,
hypervisors, networking, and hardware [17]. Similar to IaaS,
the evolution of serverless platforms and Function-as-a-service
(FaaS) applications requires careful security design to
overcome security threats that new services often suffer [18].

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 14, No. 9, 2023

992 | P a g e

www.ijacsa.thesai.org

While distinct, CPS, IoT, cloud computing, and big data are
merely a few examples of why designing intrusion detection
and prevention systems remains highly elastic in modern
computational architectures. As the information technology
landscape changes, information security bends to meet the
evolving needs of the complete environment. To conclude the
literature review, the authors will outline several relevant
studies introducing potential solutions to design stronger
information security controls for big data systems.

C. Encryption

An ongoing challenge in distributed big data systems is
securing communication between multiple systems operating
across various computer networks. Apache Hadoop and
Apache Spark are examples of big data frameworks that
present several opportunities for attackers to access the data
they facilitate. Central to big data frameworks is the ability to
use parallel processing to analyze massive amounts of data.
MapReduce is one of many programming paradigms that
leverages Hadoop to extract valuable knowledge from large
volumes of data. However, like most application or service
modules within big data frameworks, MapReduce highlights
the vast attack vectors that exist in distributed big data systems.
MapReduce examples in literature include side channel attacks
[19], job composition attacks [20], and malicious worker
compromises in the form of distributed denial-of-service
(DDoS) or replay attacks [21], Eaves dropping and data
tampering [22]. Encryption is a primary countermeasure to
secure transmissions and prevent data leaks between big data
servers [19].

A primary objective in addressing cybersecurity attacks on
parallel processing services is identifying and preventing leaks
that often occur during data transmission between distributed
worker nodes, also referred to as DataNodes in Apache
Hadoop. These unique yet integrated servers work in parallel to
complete MapReduce jobs. Often in Hadoop, data is stored and
retrieved from the Hadoop Distributed File System (HDFS). In
[19] side-channel attacks are addressed that can occur between
MapReduce workers that utilize HDFS for data storage. These
types of cybersecurity attacks can target worker nodes to
extract valuable information pertaining to MapReduce jobs
such as the amount of packet bandwidth. This further
contributes to successful pattern attacks. The authors proposed
a solution to this vulnerability labeled Strong Shuffle that
enforces strong data hiding between workers [19]. In contrast
to alternative countermeasures such as correlation hiding in
[20], Strong Shuffle avoids leaking the number of records
accepted by each reducer during MapReduce runtime. Secure
plaintext communications is a function of semantically secure
encryption in the Strong Shuffle solution [19].

In [19] data communicated between Hadoop DataNodes
and stored in HDFS is encrypted with semantically secure
AES-128-GCM encryption. Although the latter helps prevent
clear text leakage between MapReduce jobs in Hadoop,
encryption in big data environments has limitations. For
example, encrypted databases can still reveal certain
information during operations that include table queries.
Deterministic encryption and order-preserving encryption can
leak the equality relationship and the order between records.
One proposed solution is semantically secure encryption. In

[23] the authors propose a semantically secure database system
named Arx. Alternative to order-preserving encryption,
semantic security within Arx only allows an attacker to extract
order relationships and frequency of the direct database query
in use in contrast to the entire database. The authors note that
worst-case attackers would gain as much information from a
data leak as deterministic or order-preserving encryption over
time [23]. While methods such as encryption and
authentication help with cross-node data leaks, they do not
prevent other attacks, such as DDoS and passive network
eavesdropping [21]. A subsequent countermeasure is the
effective design and implementation of intrusion detection and
prevention systems [14].

D. Next-Generation Security and Big Data Systems

Next-generation security at a high level can detect and
prevent malicious cybersecurity attacks. Much of the literature
focuses on identifying malicious network packets in real-time.
The comprehensive survey in [24] reviews how modern data
mining techniques are evolving to meet real-time detection
needs. The review classifies intrusion detection systems by
architecture, implementation, and detection methods. Detection
methods are categorized as anomaly-based, signature based,
and hybrids. Signature based methods or misuse often rely
upon a database that defines patterns or existing malicious
attack signatures. Anomaly detection can detect non-normal
network traffic behavior that has yet to be defined in a
signature database. Data mining methods including supervised,
unsupervised, and hybrid learning are being used to improve
anomaly-based intrusion detection systems [24].

While supervised, unsupervised, and hybrid learning IDS
research continues to progress [24], the ongoing need to
improve existing big data implementations remains. In several
systematic literature reviews [1, 2, 3, 24], IDSs are known to
have limitations that contradict the performance benefits of
parallel processing and distributed computing. For example,
large signature based systems drain CPU and memory
resources [24]. While researchers continue to advance areas of
intrusion detection such as packet anomalies and encryption,
only a few studies are advancing security by design and its
effects on varying big data architectures [1]. To address this
need, the authors of this study designed a distributed big data
system over a wide area network to explore the performance of
distributed nodes under different network traffic loads.

III. METHODS

This research methodology follows the design science
approach in [25] and [26]. Design science is based on a
scientific framework for IT research. As March and Smith [25]
outline, IT research should consider natural and design science
as a method to build and evaluate tangible objects. Within this
philosophy, objects often have outputs in the form of models or
instantiations. Instantiations associate with new artifacts in the
design science methodology and the understanding of the
artifact in its environment [25]. IT artifacts can be realized in
many forms such as through the design of an object that helps
solve business problems [26].

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 14, No. 9, 2023

993 | P a g e

www.ijacsa.thesai.org

A. Organizational Problem

Central to the organizational problem in this study is the
need to architect a real-world or simulated big data
environment that generates important inputs and outputs. In the
case of this study, several architectural layers require design,
configuration, benchmarking, and evaluation that accurately
represent industry big data system implementations. These
research activities could establish a more mature model for
IDPS placement in evolving network architectures. Design
science methods guide the latter activities [26].

Big data clusters can have thousands of nodes. Attempting
to secure individual servers poses several issues ranging from
significant costs to lost computational resources. Important to
the artifact design process is the creation of an IDS and IPS
testing environment that results in minimal disruption to
existing big data infrastructures. Additionally, the authors
constructed an experimental setup similar to several local small
business environments that are readily available, relatively
inexpensive, and relevant to a broad audience. Therefore, the
testing environment is limited to several small commodity
virtual machines (VMs) operating in physically distanced data
centers. The authors will briefly outline the network
architecture, hardware, software used in the experimental
environment.

B. Network Architecture

Fig. 1 depicts the baseline network architecture used in this
study. The experimental network emulates a small to medium-
sized business with a 200 Mbps dedicated lease line between
four distinct physical locations. Connections are 1 Gbps copper
from the demarcation point to the LAN nodes. Each server is
connected to layer 2 switches followed by a layer 3 Cisco
Systems enterprise class router.

Fig. 1. Perimeter-based security network architecture.

The cybersecurity servers labeled “CyberOne” to
“CyberFour” illustrate the systems used to attack the big data
cluster. The big data cluster includes four servers labeled
“SparkOne” to “SparkFour.” One streaming server is depicted
as the data stream located in the same local area network
(LAN) as SparkOne. Four intrusion detection and prevention
systems are situated between each big data server and its
extrinsic networks.

C. Hardware

The big data servers run on parallel Dell hardware [27].
The hardware is manufactured on the same date and shipped in
the same container. The testing server used the same single
Intel CPU with 16 logical cores and 32 GBs of physical
random-access memory. The baseline Intel CPU benchmark
average results from the PassMark version 10 performance test
[29] are 2,799 MOps per second for a single thread and 5,443
megabytes per second for data encryption.

Cisco RV series routers with integrated firewalls exist
between each Apache Spark node and the external network.
Cisco Firmware 1.0.3.55 is in use with the default firewall
ruleset. The authors added customized rules that allow the
internal LAN IP addresses to communicate on the necessary
Apache HDFS and Spark ports. Subsequent ports are blocked
[28].

D. Big Data Systems

Each big data server and streaming server used equivalent
software and versions. Systems ran on the Ubuntu server
20.04.3 LTS operating system. Installed software included Java
11, Python 3.8, Apache Hadoop 3.2, and Apache Spark 3.2.
The big data environment is comprised of five servers. This
includes one primary cluster manager labeled SparkOne and
three secondary work nodes labeled SparkTwo, SparkThree,
and SparkFour. Apache Spark is tuned using optimal
parameters such as those specified in [30] and [31]. HDFS
disks are balanced between nodes with DFS replicating three
blocks. The data stream denotes the independent Spark
streaming instance.

SparkOne is the primary node in the testing environment
used in this study. It is comprised of the driver program. The
driver program executes the big data application’s main() class
and generates the SparkContext [32]. SparkContext is capable
of using various big data resource managers. Tests in this study
use Yet Another Resource Negotiator (YARN) as the
distributed cluster manager [33].

SparkContext helps communicate application jobs
containing code in various forms such as Python and JAR files
to the executors on the worker or secondary nodes in the
cluster. YARN has two primary high-level components labeled
the NodeManager and ResourceManager. Secondary nodes in a
big data cluster managed by YARN each have a NodeManager.
Its function is to manage containers on each server. Containers
encompass resources such as network, disk, CPU, and
memory. These are allocated properly to facilitate task
execution. The YARN ResourceManager consists of the
ApplicationsManager and the Scheduler. While the Scheduler
determines the necessary resources for each application the

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 14, No. 9, 2023

994 | P a g e

www.ijacsa.thesai.org

ApplicationsManager identifies which container the application
will use and subsequently monitors their task execution [33].

Apache Spark and HDFS replicate between three secondary
big data servers. The secondary or worker nodes labeled
SparkTwo, SparkThree, and SparkFour contain executor
processes. An executor process remains throughout the runtime
of tasks that each worker is allocated by the cluster manager.
Every application receives its own executor process and/or
processes as necessary. The driver program on SparkOne is
configured to listen for executor process communications from
the secondary nodes until the job is completed. Per Apache
Spark documentation in [32], when possible, the driver
program should be on the same local area network as the
worker nodes due to the latter communication. In the
experimental network design, the worker nodes are physically
distanced. Therefore, Spark is optimized to open local remote
procedure calls on the worker LANs [32].

E. Attack Systems

Although the cybersecurity servers ran on the same
hardware as the big data servers, they used different software.
CyberOne, CyberTwo, CyberThree, and CyberFour each
delineate a server used to carry out cyber-attacks on the big
data cluster. The software includes the Kali Linux operating
system running the 5.14 kernel. Kali Linux is an open-source
operating system based on Debian Linux. It is designed for
numerous information security objectives such as reverse
engineering, forensics, pen testing, and research [34].

F. Intrustion Detection and Prevention Systems

Consistent with Fig. 1, the baseline IDS and IPS systems
are located between the cyber-attack and big data systems.
Regardless, the authors manipulate the placement of these
systems throughout each experimentation. As a simulated
construct in the research methodology, the authors propose that
IDS and IPS architecture placement predicts data streaming
performance between worker nodes. Performance evaluation of
this potential construct is an important step toward advancing a
future IDPS placement framework for physically distanced big
data systems.

The authors implemented Snort and Suricata, two popular
open-source IDS and IPS systems. Snort is developed by Cisco
Systems. It serves as a leading intrusion detection engine and
rule set for Cisco next-generation firewalls and IPSs. Its
mechanisms for detecting and preventing security threats
continue to evolve. However, a fundamental capability during
this writing is the formation of rules. In contrast to traditional
methods such as signature-based detection, rules focus on
vulnerability detection [35]. Suricata is developed by the Open
Information Security Foundation (OISF). Similar to Snort,
Suricata can use rules to detect and block cyber-attacks [36].

Version 2.9.7 of Snort ran with libpcap version 1.9.1 and
version 8.39 of the payload detection rules. Suricata testing
uses version 6.0.6 with the emerging threats open ruleset. The
authors customized the latter default Snort and Suricata rulesets
to secure the distributed nodes. The rulesets are parallel in
count and type (e.g. alert, drop) to control significant variations
in resource contention. Suricata and Snort use the same rules in
the tests, except for minor incompatibilities. Where

incompatible, the rules are adjusted to perform the same action
in both IDSs at parallel throughput rates.

Snort and Suricata run on the same server hardware and
operating systems as the big data servers. A second NIC allows
the servers to act as gateways between trusted and untrusted
networks. The servers communicate between the local area
networks using Transport Layer Security (TLS) and Secure
Shell (SSH) Protocols. Ubuntu server 20.04.3 LTS is
configured using OpenSSH version 8.2 and OpenSSL version
1.1.1.

G. Benchmarks

The authors developed custom benchmarks to identify how
big data clusters perform under various IDS physically
distanced network architectures. The benchmarks perform two
significant network load functions, 1) streaming unstructured
data to the Spark big data cluster and 2) flooding the Spark
nodes via DDoS attacks. Network and system benchmarking
uses version 16m of the nmon source code to measure network
performance. Originally developed by IBM, nmon is an open-
source Linux project that monitors system resource utilization.
Performance metrics include CPU, disk, memory, and
networking [37].

The authors follow the design science methodology [25] to
design and implement an IDS placement experiment for
physically distanced big data systems. Next, the authors
construct a series of tests to determine how IDS locations
influence real-world distributed worker nodes.

IV. RESULTS

Each of the tests followed an eight-step process, 1) network
architecture is determined and implemented, 2) IDPS locations
are identified and configured, 3) IDPS customized rulesets are
implemented, 4) the big data system cluster is started and
tested as operational, 5) data streams to the cluster are invoked,
6) DDoS attacks are executed, 7) the benchmarks are run, and
8) the researchers maintain and monitor the testing
environment for anomalies. Each of the tests was repeated
three times to ensure saturation existed in the results.

A. Test 1 Perimeter-Based Security Results

Fig. 1 illustrates the IDPS placement location for the first
test. The cloud represents the leased line between the
geographical sites. Below the cloud icon is the selected IDPS
solution followed by the Apache Spark cluster. Network
architecture in the first test follows Cisco Systems’ best
practices for a collapsed data center and LAN core [38]. Within
this design, a hardware-based IDPS is situated between the
public untrusted and private trusted networks. Test one
includes a traditional perimeter Cisco Systems IDPS.
Individual Spark nodes are networked in a single VLAN
connected through the collapsed core.

In contrast to the network architecture in Fig. 1, CyberOne
through CyberFour servers are not deployed for tests 1-3. In
each of these tests, typical network traffic is present void of
any DDoS attacks.

Benchmark metrics are specific to the big data systems
unless otherwise specified. During the data stream, HDFS is

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 14, No. 9, 2023

995 | P a g e

www.ijacsa.thesai.org

writing 128 MB blocks to disk on all three Spark worker nodes
at a constant rate. Inconsequential wait time exists on disk
reads and writes. Average CPU utilization per thread or
“CPU%” on the big data worker nodes is 4.3% during the first
test. The average time a process waits for an input-output (I/O)
to complete or “wait%” is 0.3. The average number of
processor context switches per second is 1,728, identified as
“PWps” hereafter.

The authors measured network performance between each
of the Spark nodes using four metrics. Metrics are captured on
the worker node network interface cards. The first performance
variable measures the average number of all network packet
reads per second (APRps). The second variable captures the
average number of all network packet writes per second
(APWps). The measure “APIORkBs” refers to the amount of
network I/O read traffic in kB per second sent between the
servers. The fourth metric, “APIOWkBs,” indicates the amount
of network I/O write traffic in kB per second sent between the
servers.

Fig. 3 illustrates the average network I/O (KB/s) on each
Apache Spark node in tests 1-3 while Fig. 4 demonstrate the
average network I/O (KB/s) on each Apache Spark node in
tests 3-6.

In the perimeter-based network architecture, the average
APRps reads per second are 637 across all Spark worker nodes.
The average APWps writes per second are 620. The average
APIORkBs read traffic between all Spark worker nodes is 80
while APIOWkBs is 78. The authors reconfigured the network
architecture in the subsequent test to provide further insight
into IDPS placement impact on distributed big data systems.

Fig. 2. Perimeter-less security network architecture.

B. Tests 2-3 Perimeter-less Security Results

 Fig. 2 demonstrates the big data network designed for
tests two and three. Network architecture uses a modified
perimeter-less design proposed by Kotantoulas [39]. In contrast
to the traditional perimeter IDPS location in Fig. 1, every big
data worker node is in a zero trust network. The authors
designed an SD-WAN trust boundary to secure each big data
node. The boundary consists of Snort and Suricata intrusion

detection and prevention security gateways. Similar to the
virtual software defined perimeter (vEPC) proposed by Bello et
al. [40], this study’s zero trust software-based system acts as a
security gateway for all distributed servers. Sparkone through
Sparkfour are designed to operate securely in most cloud
architectures in this model by integrating an SDN security
stack on each physically distanced server. The integrated IDPS
gateways control and authorize incoming and outgoing
network communication. The design emulates the trust
boundary surrounding the cloud edge in [39] using the SSH
and TLS protocols. Gateways authenticate and connect the
distributed systems using a 3072-bit key generated by the
Rivest–Shamir–Adleman (RSA) algorithm.

Benchmark results for test 2 with Snort SDN gateways
show the wait% is 0.413% and CPU% is 12.54%. Results from
this study show that CPU resource consumption is over two
times greater in the zero trust architecture than the perimeter
network design. Test 3 with Suricata SDN gateways results in
11.05% CPU% and 0.342% wait%. Similar to the perimeter-
less design in test 2, test 3 used considerably more CPU
resources than test 1. Despite similar rulesets, Suricata SDN
gateways used slightly less CPU than Snort.

In the test 2 perimeter-less network architecture the average
APRps reads per second are 2,198 across all Spark worker
nodes. The average APWps writes per second are 653. The
average APIORkBs read traffic between all Spark worker
nodes is 298 in test 2, APIOWkBs is 82.

Fig. 3. Tests 1-3 spark per node network I/O in KB/s.

The test 3 network architecture had similar results to test 2.
The average APRps reads per second are 2,120 across the
distributed Spark systems. The average APWps is 611.
APIORkBs between the big data servers is 289 and
APIOWkBs is 77. Fig. 3 illustrates the average network I/O
(KB/s) on each Apache Spark node in tests 1-3. These results
indicate that network traffic and network I/O are nominal when
writing to HDFS in all network architectures within this study.
In contrast, the number of packets the systems have to read is
higher in the perimeter-less network architectures. APRps is
over three times higher in tests 2 and 3 than in test 1.

0

200

400

600

800

1000

1200

1 2 3 4 5 6 7 8 9 1011121314151617181920

K
il

o
b

it
s

Seconds

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 14, No. 9, 2023

996 | P a g e

www.ijacsa.thesai.org

C. Test 4 Perimeter-Based DDoS Attack Results

Test 4 uses the network architecture (Fig. 1), parallel to test
1. Perimeter-based intrusion detection and prevention systems
protect the internal LANs of the Spark nodes. CyberOne
through CyberFour are active in test 4. The cyber servers are
configured to flood the big data cluster with unlimited TCP
SYN handshakes.

Benchmark results for the big data servers during the DDoS
attacks parallel test 1 in test 4. In test 4, the IDPSs prevented
additional CPU load and network load on the big data servers.
In the test case, the hardware IPSs successfully blocked the
DDoS attacks.

D. Tests 5-6 Perimeter-less DDoS Attack Results

Tests 5 and 6 are similar to tests 3 and 4. However, DDoS
attacks are administered on the big data cluster. Tests 5-6 use
the (Fig. 2) perimeter-less security network architecture. Test 5
uses the Snort-based SDN security boundary, while test 6 uses
Suricata. CyberOne through CyberFour are active in tests 5 and
6. The cyber servers execute DDoS attacks on the big data
cluster by flooding the servers with unlimited TCP SYN
handshakes.

Snort and Suricata security gateways successfully protect
the big data systems from DDoS attacks in a zero trust network
in tests 5 and 6; however, at the expense of local computational
resource increases. Results for test 5 with Snort SDN gateways
show the wait% is 0.308% and CPU% is 13.8%. CPU resource
consumption increases on average over 1% on the big data
servers during the DDoS attacks. Test 6 with Suricata SDN
gateways results in 11.95% CPU% and 0.337% wait%. DDoS
attacks increased average CPU% by 0.9% across big data
systems. Suricata SDN gateways used slightly less CPU than
Snort SDN gateways during the DDoS attacks.

Within the test 5 perimeter-less network architecture the
average APRps reads per second are 4,762 across all
distributed by data secondary nodes. The average APWps
writes per second are 626. The average APIORkBs traffic
between the distributed systems is 425. APIOWkBs is 79.

Fig. 4. Tests 4-6 spark per node network I/O in KB/s.

The Suricata gateways in test 6 have average APRps reads
per second of 4,311 across the distributed Spark systems.
Average APWps is 661. APIORkBs between the big data
servers is 416 and APIOWkBs is 81. Fig. 4 demonstrates the
average network I/O (KB/s) on each Apache Spark node in
tests 3-6.

E. Test 7 Perimeter-Based DDoS Attack Results

Test 7 shares the same network architecture as test 1 and
test 4, illustrated in Fig. 1. To decipher how the DDoS attacks
affect the big data servers in the perimeter-based network
architecture without IDPS protection, test 7 repeats test 4 but
allow all network traffic from CyberOne through CyberFour to
the big data cluster. When the DDoS attacks are allowed
through the perimeter IPSs in the Fig. 1 network architecture,
results show an average CPU% of 17.9% across all distributed
big data systems. Predictably, network packets increase in test
7 compared to tests 1 and 4. APRps is 2,895 while APIORkBs
is 518. Test 7 has the highest APIORkBs of all network
benchmarks performed in this study.

F. Discussion of the Results

The results illustrate that network traffic and network I/O
have marginal differences when writing to HDFS in the
network architectures studied. CPU resources and network
traffic read by the operating systems increased in zero trust
network architectures. The most substantial differences were
between tests 4 and 5. During the DDoS attacks, the big data
servers required more CPU resources in the perimeter-less
security network architecture. In test 5, APIORkBs are
considerably higher at 425 than test 4 at 80. This additional
traffic is partly due to the SDN security boundaries necessary
to protect the systems in a zero trust network environment.

Shifting compute resources closer to individual devices
may be necessary as network security perimeters dissipate.
However, zero trust architectures in the experimental
environment reduced cluster performance. Therefore,
additional research is beneficial to optimize the design of
perimeter-less network environments.

G. Limitations

Several environmental factors limit the results. Site-to-site
networks were on leased 200 Mbps connections. Future studies
might consider leased lines capable of establishing more robust
data streams to the distributed nodes. A subsequent restriction
is the number of architectures and communication technologies
tested. Similar to the architecture in [40], gateways allow for IP
Security (IPsec) or Transport Layer Security (TLS) protocols.
Future IDPS SDN gateways could add this layer of encryption
in a software-defined security boundary between geo-
distributed big data systems. The outlined limitations
emphasize the need for future research to investigate more
extensive network architectures and IDPS technologies for big
data system security.

V. CONCLUSION

As the volume of data expands, organizations require big
data systems to perform large-scale data analytics. One of
several needs for these systems is effective intrusion detection
and prevention strategies. This paper builds a review of the

0

200

400

600

800

1000

1200

1400

1600

1800

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

K
ilo

b
it

s

Seconds

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 14, No. 9, 2023

997 | P a g e

www.ijacsa.thesai.org

literature on methods used to reduce cybersecurity threats in a
range of network architectures that big data systems operate.
Findings from literature suggest intrusion detection and
prevention systems can respond to certain security attacks.
However, a potential disadvantage of capable security systems
is the impact on big data system cluster performance. Using a
design science approach, the authors develop an eight-step
process to benchmark big data systems in varying network
architectural environments. The new benchmark process is
tested on real-time big data systems running in perimeter-based
and perimeter-less network environments. During DDoS
cyber-attacks, perimeter-based network architectures
outperformed perimeter-less network architectures. This
underlines the importance of optimizing the design of zero trust
architectures for distributed big data systems.

REFERENCES

[1] D. Gümüşbaş, T. Yıldırım, A. Genovese, and F. Scotti, “A
comprehensive survey of databases and deep learning methods for
cybersecurity and intrusion detection systems,” IEEE Systems Journal,
vol. 15, no. 2, pp. 1717–1731, Jun. 2021, doi:
10.1109/JSYST.2020.2992966.

[2] I. D. Aiyanyo, S. Hamman, and H. Lim, “A systematic review of
defensive and offensive cybersecurity with machine learning,” Applied
Sciences, vol. 10, no. 17, p. 5811, 2020, doi: 10.3390/app10175811.

[3] N. V. Patil, C. Rama Krishna, and K. Kumar, “Distributed frameworks
for detecting distributed denial of service attacks: A comprehensive
review, challenges and future directions,” Concurrency and
Computation: Practice and Experience, vol. 33, no. 10, pp. 1-21, May
2021, doi: 10.1002/cpe.6197.

[4] R. Rafiq, M. J. Awan, A. Yasin, H. Nobanee, A. M. Zain, and S. A.
Bahaj, “Privacy prevention of big data applications: A systematic
literature review,” Sage Open, vol. 12, no. 2, Apr. 2022, doi:
10.1177/21582440221096445.

[5] R. Mitchell and I. R. Chen, “A survey of intrusion detection techniques
for cyber-physical systems,” ACM Comput. Surv., vol. 46, no. 4, Mar.
2014, doi: 10.1145/2542049.

[6] B. B. Zarpelão, R. S. Miani, C. T. Kawakani, and S. C. de Alvarenga,
“A survey of intrusion detection in Internet of Things,” Journal of
Network and Computer Applications, vol. 84, pp. 25–37, Apr. 2017, doi:
10.1016/j.jnca.2017.02.009.

[7] V. Casola, A. De Benedictis, M. Rak, and U. Villano, “Security-by-
design in multi-cloud applications: An optimization approach,”
Information Sciences, vol. 454–455, pp. 344–362, Jul. 2018, doi:
10.1016/j.ins.2018.04.081.

[8] R. Atat, L. Liu, J. Wu, G. Li, C. Ye, and Y. Yang, “Big data meet cyber-
physical systems: a panoramic survey,” IEEE Access, vol. 6, pp. 73603–
73636, 2018, doi: 10.1109/ACCESS.2018.2878681.

[9] R. Gifty, R. Bharathi, and P. Krishnakumar, “Privacy and security of big
data in cyber physical systems using Weibull distribution-based
intrusion detection,” Neural Computing and Applications, vol. 31, no. 1,
pp. 23–34, Jan. 2019, doi: 10.1007/s00521-018-3635-6.

[10] S. F. Ochoa, G. Fortino, and G. Di Fatta, “Cyber-physical systems,
internet of things and big data,” Future Generation Computer Systems,
vol. 75, pp. 82–84, Oct. 2017, doi: 10.1016/j.future.2017.05.040.

[11] K. A. P. da Costa, J. P. Papa, C. O. Lisboa, R. Munoz, and V. H. C. de
Albuquerque, “Internet of Things: A survey on machine learning-based
intrusion detection approaches,” Computer Networks, vol. 151, pp. 147–
157, Mar. 2019, doi: 10.1016/j.comnet.2019.01.023.

[12] N. Moustafa, B. Turnbull, and K. R. Choo, “An ensemble intrusion
detection technique based on proposed statistical flow features for
protecting network traffic of Internet of Things,” IEEE Internet of
Things Journal, vol. 6, no. 3, pp. 4815–4830, Jun. 2019, doi:
10.1109/JIOT.2018.2871719.

[13] A. Yang, Y. Zhuansun, C. Liu, J. Li, and C. Zhang, “Design of intrusion
detection system for Internet of Things based on improved BP neural

network,” IEEE Access, vol. 7, pp. 106043–106052, 2019, doi:
10.1109/ACCESS.2019.2929919.

[14] Z. Tan et al., “Enhancing big data security with collaborative intrusion
detection,” IEEE Cloud Computing, vol. 1, no. 3, pp. 27–33, Sep. 2014,
doi: 10.1109/MCC.2014.53.

[15] A. N. Jaber and S. U. Rehman, “FCM–SVM based intrusion detection
system for cloud computing environment,” Cluster Computing, vol. 23,
no. 4, pp. 3221–3231, Dec. 2020, doi: 10.1007/s10586-020-03082-6.

[16] M. Hafsa and F. Jemili, “Comparative study between big data analysis
techniques in intrusion detection,” Big Data and Cognitive Computing,
vol. 3, no. 1, pp. 1-13, Dec. 2018, doi: 10.3390/bdcc3010001.

[17] F. M. Awaysheh, M. N. Aladwan, M. Alazab, S. Alawadi, J. C.
Cabaleiro, and T. F. Pena, “Security by design for big data frameworks
over cloud computing,” IEEE Transactions on Engineering
Management, pp. 1–18, Feb. 2021, doi: 10.1109/TEM.2020.3045661.

[18] A. Bocci, S. Forti, G. L. Ferrari, and A. Brogi, “Secure FaaS
orchestration in the fog: How far are we?” Computing, vol. 103, no. 5,
pp. 1025–1056, May 2021, doi: 10.1007/s00607-021-00924-y.

[19] Y. Wang, X. Zhang, Y. Wu, and Y. Shen, “Enhancing leakage
prevention for mapreduce,” IEEE Transactions on Information
Forensics and Security, vol. 17, pp. 1558–1572, 2022, doi:
10.1109/TIFS.2022.3166641.

[20] O. Ohrimenko, M. Costa, C. Fournet, C. Gkantsidis, M. Kohlweiss, and
D. Sharma, “Observing and preventing leakage in MapReduce,” in
Proceedings of the 22nd ACM SIGSAC Conference on Computer and
Communications Security, New York, NY, USA, 2015, pp. 1570–1581.
doi: 10.1145/2810103.2813695.

[21] A. M. Sauber, A. Awad, A. F. Shawish, and P. M. El-Kafrawy, “A novel
hadoop security model for addressing malicious collusive workers,”
Computational Intelligence and Neuroscience, vol. 2021, pp. 1-10,
2021, doi: 10.1155/2021/5753948.

[22] P. Derbeko, S. Dolev, E. Gudes, and S. Sharma, “Security and privacy
aspects in MapReduce on clouds: A survey,” Computer Science Review,
vol. 20, pp. 1–28, May 2016, doi: 10.1016/j.cosrev.2016.05.001.

[23] R. Poddar, T. Boelter, and R. Popa, “Arx: An encrypted database using
semantically secure encryption,” Proceedings of the VLDB Endowment,
vol. 12, pp. 1664–1678, Jul. 2019, doi: 10.14778/3342263.3342641.

[24] A. Nisioti, A. Mylonas, P. D. Yoo, and V. Katos, “From intrusion
detection to attacker attribution: A comprehensive survey of
unsupervised methods,” IEEE Communications Surveys & Tutorials,
vol. 20, no. 4, pp. 3369–3388, Fourthquarter 2018, doi:
10.1109/COMST.2018.2854724.

[25] S. T. March and G. F. Smith, “Design and natural science research on
information technology,” Decision Support Systems, vol. 15, no. 4, pp.
251–266, Dec. 1995, doi: 10.1016/0167-9236(94)00041-2.

[26] A. R. Hevner, S. T. March, J. Park, and S. Ram, “Design science in
information systems research,” MIS Quarterly, vol. 28, no. 1, pp. 75–
105, 2004, doi: 10.2307/25148625.

[27] “Dell technology,” Dell Inc, June, 2022. [Online]. Available:
https://www.dell.com.

[28] “Cisco routers and SD-WAN,” Cisco Systems, June, 2022. [Online].
Available:
https://www.cisco.com/site/us/en/products/networking/sdwan-
routers/index.html.

[29] “Benchmarking & Diagnostic Software,” Passmark Software, June,
2022. [Online]. Available: https://www.passmark.com.

[30] “Spark tuning guide on 3rd generation Intel® Xeon® scalable
processors based platform,” Intel Corporation, August, 2021, [Online].
Available:
https://www.intel.cn/content/www/cn/zh/developer/articles/guide/spark-
tuning-guide-on-xeon-based-systems.html.

[31] “Tuning Spark,” The Apache Software Foundation, July, 2022. [Online].
Available: https://spark.apache.org/docs/3.2.2/.

[32] “Cluster Mode Overview,” The Apache Software Foundation, June,
2022. [Online]. Available: https://spark.apache.org/docs/latest/cluster-
overview.html.

[33] “Apache Hadoop YARN,” The Apache Software Foundation, June,
2022. [Online]. Available:

https://doi.org/10.1109/JSYST.2020.2992966
https://doi.org/10.1002/cpe.6197
https://doi.org/10.1177/21582440221096445
https://doi.org/10.1145/2542049
https://doi.org/10.1016/j.jnca.2017.02.009
https://doi.org/10.1016/j.ins.2018.04.081
https://doi.org/10.1109/ACCESS.2018.2878681
https://doi.org/10.1007/s00521-018-3635-6
https://doi.org/10.1016/j.future.2017.05.040
https://doi.org/10.1016/j.comnet.2019.01.023
https://doi.org/10.1109/JIOT.2018.2871719
https://doi.org/10.1109/ACCESS.2019.2929919
https://doi.org/10.1109/MCC.2014.53
https://doi.org/10.1007/s10586-020-03082-6
https://doi.org/10.3390/bdcc3010001
https://doi.org/10.1109/TEM.2020.3045661
https://doi.org/10.1109/TIFS.2022.3166641
https://doi.org/10.1145/2810103.2813695
https://doi.org/10.1155/2021/5753948
https://doi.org/10.1016/j.cosrev.2016.05.001
https://doi.org/10.14778/3342263.3342641
https://doi.org/10.1109/COMST.2018.2854724
https://doi.org/10.1016/0167-9236(94)00041-2
https://doi.org/10.2307/25148625

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 14, No. 9, 2023

998 | P a g e

www.ijacsa.thesai.org

https://hadoop.apache.org/docs/stable/hadoop-yarn/hadoop-yarn-
site/YARN.html.

[34] “Kali linux features,” OffSec Services Limited, June, 2022. [Online].
Available: https://www.kali.org/features.

[35] “Snort FAQ/Wiki,” Cisco Systems, July, 2022. [Online]. Available:
https://www.snort.org/faq.

[36] “Suricata user guide,” Open Information Security Foundation, July,
2022. [Online]. Available: https://suricata.readthedocs.io/en/suricata-
6.0.6.

[37] “nmon for Linux,” IBM, June, 2022. [Online]. Available:
http://nmon.sourceforge.net.

[38] “Collapsed data center and campus core deployment guide,” Cisco
Systems, June, 2022. [Online]. Available:
https://www.cisco.com/c/dam/global/en_ca/solutions/strategy/docs/sbaG
ov_nexus7000Dguide_new.pdf.

[39] J. Kotantoulas, “Zero trust for government networks,” Cisco Systems,
June, 2022. [Online]. Available:
https://blogs.cisco.com/government/zero-trust-for-government-
networks-6-steps-you-need-to-know.

[40] Y. Bello, A. R. Hussein, M. Ulema, and J. Koilpillai, “On sustained zero
trust conceptualization security for mobile core networks in 5G and
beyond,” IEEE Transactions on Network and Service Management, vol.
19, no. 2, pp. 1876–1889, Jun. 2022, doi: 10.1109/TNSM.2022.3157248.

https://www.snort.org/faq
https://doi.org/10.1109/TNSM.2022.3157248

