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Abstract—Big data systems are expanding to support the 

rapidly growing needs of massive scale data analytics. To 

safeguard user data, the design and placement of cybersecurity 

systems is also evolving as organizations to increase their big data 

portfolios. One of several challenges presented by these changes 

is benchmarking real-time big data systems that use different 

network security architectures. This work introduces an eight-

step benchmark process to evaluate big data systems in varying 

architectural environments. The benchmark is tested on real-

time big data systems running in perimeter-based and perimeter-

less network environments. Findings show that marginal I/O 

differences exist on distributed file systems between network 

architectures. However, during various types of cyber incidents 

such as distributed denial of service (DDoS) attacks, certain 

security architectures like zero trust require more system 

resources than perimeter-based architectures. Results illustrate 

the need to broaden research on optimal benchmarking and 

security approaches for massive scale distributed computing 

systems. 
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I. INTRODUCTION  

Big data systems are unified environments designed for 
massive-scale data analytics. Systems capable of handling 
large amounts of data are becoming more important as the 
volume of data created and communicated over the Internet 
increases [1]. Cybersecurity systems play an important role in 
ensuring the large quantities of data on the Internet remains 
safe. One dimension of several necessary to accomplish the 
latter are next-generation security devices. Intrusion detection 
and prevention systems (IDPSs) properly manage data 
accessibility, privacy, and safety. IDPS algorithms are able to 
identify cyber threats using several mechanisms. This includes 
using prior information from previous attacks, anomalies in 
network packets [1], and machine learning [2]. 

As big data systems become more common, their roles will 
continue to expand. This includes the capability to analyze and 
detect information security vulnerabilities at scale. For 
example, several big data frameworks exist that discover 
distributed denial of service (DDoS) attacks [3]. This 
expansion of roles offers many exciting opportunities for 
organizations. However, as the use of big data systems grows, 
the capability of attackers to leverage associated parallel 
computing power for nefarious reasons also increases [3]. A 

systematic review of 32 papers pertaining to securing big data 
found that a critical need in future research is building more 
secure big data infrastructure [4]. Contributing to the latter 
objective, the researchers demonstrate how varying network 
architectures impact the security and performance of big data 
systems. 

Organization of the paper is as follows. Section II reviews 
literature on intrusion detection and prevention methods for big 
data systems. Section III outlines the research design and 
methodologies used to test perimeter-based security and 
perimeter-less security applied to a big data system 
environment. Section IV describes the research results. Section 
V concludes the study by discussing the limitations and future 
outlook. 

II. LITERATURE REVIEW 

Work is necessary to optimize both the information security 
and performance of distributed systems. Today, several open-
source big data frameworks provide remarkable potential for 
solving challenging data science and related problems by 
leveraging powerful parallel and distributed data processing. 
However, securing these systems often carries performance 
penalties. The review of literature that follows explores 
research on the impact of various IT infrastructure security 
strategies and their influence on big data environments. It 
begins by reviewing comprehensive surveys most closely 
related to information security and big data systems. 

A. Surveys of Big Data and Intrustion Detection 

Previous systematic reviews of literature focused on 
information security and big data provide a vast array of 
objectives. A prominent theme is using deep learning [1] and 
machine learning [2] to assist in detecting or preventing 
cybersecurity attacks. This line of research often utilizes deep 
learning or machine learning algorithms for near real-time data 
protection. 

A recent and well cited comprehensive survey in [1] 
evaluates how deep learning is used for intrusion detection 
systems in the cybersecurity domain. It found notable contrasts 
between machine learning approaches in cybersecurity and 
deep learning. Conventional machine learning approaches 
utilized in  cybersecurity were classified by approaches such as 
artificial neural networks (ANNs), Bayesian networks, decision 
trees, fuzzy logic, k-means clustering, k-nearest neighbor 
(kNN) algorithm, and support vector machines (SVMs). The 
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survey centered on deep learning focal intrusion detection 
methods that included autoencoders (AEs), convolutional 
neural networks (CNNs), deep belief networks (DBNs), 
generative adversarial networks (GANs), and long short-term 
memory (LSTM) recurrent neural networks [1]. 

AEs, DBNs, and GANs were highlighted in [1] for their 
unsupervised learning strengths. In the absence of gradient 
estimation, AEs can use gradient descent to train data. A 
strength of LSTM is its capabilities in analyzing time-series 
data. CNNs do not need as much data processing prior to 
evaluation as certain algorithms and is able to classify cyber-
attacks using multiple characteristics well. Combined, the 
survey of literature finds that AEs, CNNs, DBNs, GANs, and 
LSTM networks each have potential to improve intrusion 
detection methods. Furthermore, the survey [1] outlined the 
importance of dataset reliability when evaluating deep learning 
intrusion detection effectiveness. Variance in cybersecurity 
attack datasets can introduce model bias when comparing 
multiple deep learning methods. Thus, any biases in attack 
datasets or data from live systems could increase spurious 
results [1]. 

A subsequent theme in the literature concentrates on 
cybersecurity and privacy prevention in big data applications. 
While this research again employs various data science 
methods to detect or prevent data breaches, it also illustrates 
how big data techniques can prevent information privacy 
issues. Research in [4] led to a proposed model for enhancing 
information privacy. The model highlights people, 
organizations, society, and government roles. It leverages IDS, 
IPS, and encryption as its primary techniques to prevent data 
breaches [4]. 

B. Big Data Architectures and Information Security 

As big data evolves, the supporting infrastructures will 
require proper encryption, intrusion detection, and intrusion 
prevention. Changing architectures within computer networks, 
messaging techniques, and undefined communication methods 
introduce numerous challenges. In a 2014 study Mitchel and 
Chen [5] recognized this paradigm. Their emphasis on cyber-
physical systems (CPS) ranging from smart grids to unmanned 
aircraft systems led to the classification of four primary 
intrusion detection categories. These include legacy 
technologies, attack sophistication, closed control loops, and 
physical process monitoring. Each of the latter is narrow 
concepts as they relate to the broader field of intrusion 
detection, underlying the unique customization of IDSs for 
cyber-physical systems [5]. 

Three years later Zarpelo et al. [6] outlined a similar but 
distinct paradigm; intrusion detection focal to the Internet of 
things (IoT). The researchers stated that IoT has similar 
information security matters as the Internet, cloud services, and 
wireless sensor networks (WSNs). Despite similarities, IoT 
information security approaches are distinct, according to the 
authors due to concepts such as data sharing between users, the 
volume of interconnected objects, and the amount of 
computational power of the associated devices. Like cyber-
physical systems, IoT presents diverse challenges to the design 
of instruction detection systems [6]. 

Designing secure cloud computing environments poses 
several novel problems at multiple infrastructure layers. As an 
example, cloud resources can be leased by numerous vendors 
focused on varying as-a-service models such as infrastructure 
as a service (Iaas), platform as a service (PaaS), and/or 
software as a service (SaaS). Multi-cloud applications rely 
upon the seamless integration of cloud resources from 
providers focused on one or many as-a-service types, which 
continue to expand. In Casola et al. [7] a model is outlined for 
designing, creating, and implementing multi-cloud 
applications. The flexible approach accounts for varying as-a-
service components. Security-by-design is a primary objective 
of the process lifecycle between the functional design of multi-
cloud applications and the security design. The functional 
design phase defines the application logic, interconnections of 
services, and resource requirements. In the security design 
phase, each cloud element is assessed in terms of security risks 
and security needs. Security policies and controls are designed 
based on the latter requirements. Similar to CPS [5] and IoT 
[6], the multi-cloud application model is a subsequent example 
of how information security solutions play a prominent role 
due to the systems’ distinct architectural and infrastructure 
layers. 

Securing big data environments or leveraging associated 
techniques like machine learning to enhance information 
security intertwines numerous fields include but not limited to 
CPS, IoT, and cloud computing. Like big data systems, CPS 
requires cybersecurity protection [8] of private data [9]. Big 
data, IoT, and CPS often overlap through the ad hoc interfaces 
of systems such as smart vehicles, buildings, factories, 
transportation systems, and grids [10]. As a vulnerable attack 
surface, IoT advances the need for intelligent information 
security. 

Machine learning [11], including ensemble intrusion 
detection [12], and IDS design [13] are proposed techniques to 
mitigate malicious cybersecurity attacks. Due in part to porous 
attack surfaces in cloud centric big data, IDSs may require 
collaborative frameworks [14]. In [15], fuzzy c means cluster 
(FCM) and support vector machine (SVM) were proposed as a 
collaborative technique for IDS detection rates. Compared to 
other mechanisms, the proposed hybrid FCM-SVM showed 
lower false alarm ratios and higher detection accuracy [15]. 
Furthermore, [16] illuminates the need for scaling IDS 
detection algorithms using the resources of parallel computing 
in the cloud. 

In [17] the researchers propose the BigCloud security-by-
design framework. The framework draws from the need to 
integrate big data security into the system development 
lifecycle. Its primary cloud application domain is focal to 
infrastructure as a service. It notes IaaS as one of the faster 
growing as-a-service options for big data. The model helps 
design and enforce secure authentication, authorization,  data 
auditability, availability, confidentiality, integrity, and privacy. 
However, its IaaS concentration could provide greater benefits 
to as-a-service components specific to host operating systems, 
hypervisors, networking, and hardware [17]. Similar to IaaS, 
the evolution of serverless platforms and Function-as-a-service 
(FaaS) applications requires careful security design to 
overcome security threats that new services often suffer [18]. 
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While distinct, CPS, IoT, cloud computing, and big data are 
merely a few examples of why designing intrusion detection 
and prevention systems remains highly elastic in modern 
computational architectures. As the information technology 
landscape changes, information security bends to meet the 
evolving needs of the complete environment. To conclude the 
literature review, the authors will outline several relevant 
studies introducing potential solutions to design stronger 
information security controls for big data systems. 

C. Encryption 

An ongoing challenge in distributed big data systems is 
securing communication between multiple systems operating 
across various computer networks. Apache Hadoop and 
Apache Spark are examples of big data frameworks that 
present several opportunities for attackers to access the data 
they facilitate. Central to big data frameworks is the ability to 
use parallel processing to analyze massive amounts of data. 
MapReduce is one of many programming paradigms that 
leverages Hadoop to extract valuable knowledge from large 
volumes of data. However, like most application or service 
modules within big data frameworks, MapReduce highlights 
the vast attack vectors that exist in distributed big data systems. 
MapReduce examples in literature include side channel attacks 
[19], job composition attacks [20], and malicious worker 
compromises in the form of distributed denial-of-service 
(DDoS) or replay attacks [21], Eaves dropping and data 
tampering [22]. Encryption is a primary countermeasure to 
secure transmissions and prevent data leaks between big data 
servers [19]. 

A primary objective in addressing cybersecurity attacks on 
parallel processing services is identifying and preventing leaks 
that often occur during data transmission between distributed 
worker nodes, also referred to as DataNodes in Apache 
Hadoop. These unique yet integrated servers work in parallel to 
complete MapReduce jobs. Often in Hadoop, data is stored and 
retrieved from the Hadoop Distributed File System (HDFS). In 
[19] side-channel attacks are addressed that can occur between 
MapReduce workers that utilize HDFS for data storage. These 
types of cybersecurity attacks can target worker nodes to 
extract valuable information pertaining to MapReduce jobs 
such as the amount of packet bandwidth. This further 
contributes to successful pattern attacks. The authors proposed 
a solution to this vulnerability labeled Strong Shuffle that 
enforces strong data hiding between workers [19]. In contrast 
to alternative countermeasures such as correlation hiding in 
[20], Strong Shuffle avoids leaking the number of records 
accepted by each reducer during MapReduce runtime. Secure 
plaintext communications is a function of semantically secure 
encryption in the Strong Shuffle solution [19]. 

In [19] data communicated between Hadoop DataNodes 
and stored in HDFS is encrypted with semantically secure 
AES-128-GCM encryption. Although the latter helps prevent 
clear text leakage between MapReduce jobs in Hadoop, 
encryption in big data environments has limitations. For 
example, encrypted databases can still reveal certain 
information during operations that include table queries. 
Deterministic encryption and order-preserving encryption can 
leak the equality relationship and the order between records. 
One proposed solution is semantically secure encryption. In 

[23] the authors propose a semantically secure database system 
named Arx. Alternative to order-preserving encryption, 
semantic security within Arx only allows an attacker to extract 
order relationships and frequency of the direct database query 
in use in contrast to the entire database. The authors note that 
worst-case attackers would gain as much information from a 
data leak as deterministic or order-preserving encryption over 
time [23]. While methods such as encryption and 
authentication help with cross-node data leaks, they do not 
prevent other attacks, such as DDoS and passive network 
eavesdropping [21]. A subsequent countermeasure is the 
effective design and implementation of intrusion detection and 
prevention systems [14]. 

D. Next-Generation Security and Big Data Systems 

Next-generation security at a high level can detect and 
prevent malicious cybersecurity attacks. Much of the literature 
focuses on identifying malicious network packets in real-time. 
The comprehensive survey in [24] reviews how modern data 
mining techniques are evolving to meet real-time detection 
needs. The review classifies intrusion detection systems by 
architecture, implementation, and detection methods. Detection 
methods are categorized as anomaly-based, signature based, 
and hybrids. Signature based methods or misuse often rely 
upon a database that defines patterns or existing malicious 
attack signatures. Anomaly detection can detect non-normal 
network traffic behavior that has yet to be defined in a 
signature database. Data mining methods including supervised, 
unsupervised, and hybrid learning are being used to improve 
anomaly-based intrusion detection systems [24]. 

While supervised, unsupervised, and hybrid learning IDS 
research continues to progress [24], the ongoing need to 
improve existing big data implementations remains. In several 
systematic literature reviews [1, 2, 3, 24], IDSs are known to 
have limitations that contradict the performance benefits of 
parallel processing and distributed computing. For example, 
large signature based systems drain CPU and memory 
resources [24]. While researchers continue to advance areas of 
intrusion detection such as packet anomalies and encryption, 
only a few studies are advancing security by design and its 
effects on varying big data architectures [1]. To address this 
need, the authors of this study designed a distributed big data 
system over a wide area network to explore the performance of 
distributed nodes under different network traffic loads. 

III. METHODS 

This research methodology follows the design science 
approach in [25] and [26]. Design science is based on a 
scientific framework for IT research. As March and Smith [25] 
outline, IT research should consider natural and design science 
as a method to build and evaluate tangible objects. Within this 
philosophy, objects often have outputs in the form of models or 
instantiations. Instantiations associate with new artifacts in the 
design science methodology and the understanding of the 
artifact in its environment [25]. IT artifacts can be realized in 
many forms such as through the design of an object that helps 
solve business problems [26]. 
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A. Organizational Problem 

Central to the organizational problem in this study is the 
need to architect a real-world or simulated big data 
environment that generates important inputs and outputs. In the 
case of this study, several architectural layers require design, 
configuration, benchmarking, and evaluation that accurately 
represent industry big data system implementations. These 
research activities could establish a more mature model for 
IDPS placement in evolving network architectures. Design 
science methods guide the latter activities [26]. 

Big data clusters can have thousands of nodes. Attempting 
to secure individual servers poses several issues ranging from 
significant costs to lost computational resources. Important to 
the artifact design process is the creation of an IDS and IPS 
testing environment that results in minimal disruption to 
existing big data infrastructures. Additionally, the authors 
constructed an experimental setup similar to several local small 
business environments that are readily available, relatively 
inexpensive, and relevant to a broad audience. Therefore, the 
testing environment is limited to several small commodity 
virtual machines (VMs) operating in physically distanced data 
centers. The authors will briefly outline the network 
architecture, hardware, software used in the experimental 
environment. 

B. Network Architecture 

Fig. 1 depicts the baseline network architecture used in this 
study. The experimental network emulates a small to medium-
sized business with a 200 Mbps dedicated lease line between 
four distinct physical locations. Connections are 1 Gbps copper 
from the demarcation point to the LAN nodes. Each server is 
connected to layer 2 switches followed by a layer 3 Cisco 
Systems enterprise class router. 

 

Fig. 1. Perimeter-based security network architecture. 

The cybersecurity servers labeled “CyberOne” to 
“CyberFour” illustrate the systems used to attack the big data 
cluster. The big data cluster includes four servers labeled 
“SparkOne” to “SparkFour.” One streaming server is depicted 
as the data stream located in the same local area network 
(LAN) as SparkOne. Four intrusion detection and prevention 
systems are situated between each big data server and its 
extrinsic networks. 

C. Hardware 

The big data servers run on parallel Dell hardware [27]. 
The hardware is manufactured on the same date and shipped in 
the same container. The testing server used the same single 
Intel CPU with 16 logical cores and 32 GBs of physical 
random-access memory. The baseline Intel CPU benchmark 
average results from the PassMark version 10 performance test 
[29] are 2,799 MOps per second for a single thread and 5,443 
megabytes per second for data encryption. 

Cisco RV series routers with integrated firewalls exist 
between each Apache Spark node and the external network. 
Cisco Firmware 1.0.3.55 is in use with the default firewall 
ruleset. The authors added customized rules that allow the 
internal LAN IP addresses to communicate on the necessary 
Apache HDFS and Spark ports. Subsequent ports are blocked 
[28]. 

D. Big Data Systems 

Each big data server and streaming server used equivalent 
software and versions. Systems ran on the Ubuntu server 
20.04.3 LTS operating system. Installed software included Java 
11, Python 3.8, Apache Hadoop 3.2, and Apache Spark 3.2. 
The big data environment is comprised of five servers. This 
includes one primary cluster manager labeled SparkOne and 
three secondary work nodes labeled SparkTwo, SparkThree, 
and SparkFour. Apache Spark is tuned using optimal 
parameters such as those specified in [30] and [31]. HDFS 
disks are balanced between nodes with DFS replicating three 
blocks. The data stream denotes the independent Spark 
streaming instance. 

SparkOne is the primary node in the testing environment 
used in this study. It is comprised of the driver program. The 
driver program executes the big data application’s main() class 
and generates the SparkContext [32]. SparkContext is capable 
of using various big data resource managers. Tests in this study 
use Yet Another Resource Negotiator (YARN) as the 
distributed cluster manager [33]. 

SparkContext helps communicate application jobs 
containing code in various forms such as Python and JAR files 
to the executors on the worker or secondary nodes in the 
cluster. YARN has two primary high-level components labeled 
the NodeManager and ResourceManager. Secondary nodes in a 
big data cluster managed by YARN each have a NodeManager. 
Its function is to manage containers on each server. Containers 
encompass resources such as network, disk, CPU, and 
memory. These are allocated properly to facilitate task 
execution. The YARN ResourceManager consists of the 
ApplicationsManager and the Scheduler. While the Scheduler 
determines the necessary resources for each application the 



(IJACSA) International Journal of Advanced Computer Science and Applications, 

Vol. 14, No. 9, 2023 

994 | P a g e  

www.ijacsa.thesai.org 

ApplicationsManager identifies which container the application 
will use and subsequently monitors their task execution [33]. 

Apache Spark and HDFS replicate between three secondary 
big data servers. The secondary or worker nodes labeled 
SparkTwo, SparkThree, and SparkFour contain executor 
processes. An executor process remains throughout the runtime 
of tasks that each worker is allocated by the cluster manager. 
Every application receives its own executor process and/or 
processes as necessary. The driver program on SparkOne is 
configured to listen for executor process communications from 
the secondary nodes until the job is completed. Per Apache 
Spark documentation in [32], when possible, the driver 
program should be on the same local area network as the 
worker nodes due to the latter communication. In the 
experimental network design, the worker nodes are physically 
distanced. Therefore, Spark is optimized to open local remote 
procedure calls on the worker LANs [32]. 

E. Attack Systems 

Although the cybersecurity servers ran on the same 
hardware as the big data servers, they used different software. 
CyberOne, CyberTwo, CyberThree, and CyberFour each 
delineate a server used to carry out cyber-attacks on the big 
data cluster. The software includes the Kali Linux operating 
system running the 5.14 kernel. Kali Linux is an open-source 
operating system based on Debian Linux. It is designed for 
numerous information security objectives such as reverse 
engineering, forensics, pen testing, and research [34]. 

F. Intrustion Detection and Prevention Systems 

Consistent with Fig. 1, the baseline IDS and IPS systems 
are located between the cyber-attack and big data systems. 
Regardless, the authors manipulate the placement of these 
systems throughout each experimentation. As a simulated 
construct in the research methodology, the authors propose that 
IDS and IPS architecture placement predicts data streaming 
performance between worker nodes. Performance evaluation of 
this potential construct is an important step toward advancing a 
future IDPS placement framework for physically distanced big 
data systems. 

The authors implemented Snort and Suricata, two popular 
open-source IDS and IPS systems. Snort is developed by Cisco 
Systems. It serves as a leading intrusion detection engine and 
rule set for Cisco next-generation firewalls and IPSs. Its 
mechanisms for detecting and preventing security threats 
continue to evolve. However, a fundamental capability during 
this writing is the formation of rules. In contrast to traditional 
methods such as signature-based detection, rules focus on 
vulnerability detection [35]. Suricata is developed by the Open 
Information Security Foundation (OISF). Similar to Snort, 
Suricata can use rules to detect and block cyber-attacks [36]. 

Version 2.9.7 of Snort ran with libpcap version 1.9.1 and 
version 8.39 of the payload detection rules. Suricata testing 
uses version 6.0.6 with the emerging threats open ruleset. The 
authors customized the latter default Snort and Suricata rulesets 
to secure the distributed nodes. The rulesets are parallel in 
count and type (e.g. alert, drop) to control significant variations 
in resource contention. Suricata and Snort use the same rules in 
the tests, except for minor incompatibilities. Where 

incompatible, the rules are adjusted to perform the same action 
in both IDSs at parallel throughput rates. 

Snort and Suricata run on the same server hardware and 
operating systems as the big data servers. A second NIC allows 
the servers to act as gateways between trusted and untrusted 
networks. The servers communicate between the local area 
networks using Transport Layer Security (TLS) and Secure 
Shell (SSH) Protocols. Ubuntu server 20.04.3 LTS is 
configured using OpenSSH version 8.2 and OpenSSL version 
1.1.1. 

G. Benchmarks 

The authors developed custom benchmarks to identify how 
big data clusters perform under various IDS physically 
distanced network architectures. The benchmarks perform two 
significant network load functions, 1) streaming unstructured 
data to the Spark big data cluster and 2) flooding the Spark 
nodes via DDoS attacks. Network and system benchmarking 
uses version 16m of the nmon source code to measure network 
performance. Originally developed by IBM, nmon is an open-
source Linux project that monitors system resource utilization. 
Performance metrics include CPU, disk, memory, and 
networking [37]. 

The authors follow the design science methodology [25] to 
design and implement an IDS placement experiment for 
physically distanced big data systems. Next, the authors 
construct a series of tests to determine how IDS locations 
influence real-world distributed worker nodes. 

IV. RESULTS 

Each of the tests followed an eight-step process, 1) network 
architecture is determined and implemented, 2) IDPS locations 
are identified and configured, 3) IDPS customized rulesets are 
implemented, 4) the big data system cluster is started and 
tested as operational, 5) data streams to the cluster are invoked, 
6) DDoS attacks are executed, 7) the benchmarks are run, and 
8) the researchers maintain and monitor the testing 
environment for anomalies. Each of the tests was repeated 
three times to ensure saturation existed in the results. 

A. Test 1 Perimeter-Based Security Results 

Fig. 1 illustrates the IDPS placement location for the first 
test. The cloud represents the leased line between the 
geographical sites. Below the cloud icon is the selected IDPS 
solution followed by the Apache Spark cluster. Network 
architecture in the first test follows Cisco Systems’ best 
practices for a collapsed data center and LAN core [38]. Within 
this design, a hardware-based IDPS is situated between the 
public untrusted and private trusted networks. Test one 
includes a traditional perimeter Cisco Systems IDPS. 
Individual Spark nodes are networked in a single VLAN 
connected through the collapsed core. 

In contrast to the network architecture in Fig. 1, CyberOne 
through CyberFour servers are not deployed for tests 1-3. In 
each of these tests, typical network traffic is present void of 
any DDoS attacks. 

Benchmark metrics are specific to the big data systems 
unless otherwise specified. During the data stream, HDFS is 
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writing 128 MB blocks to disk on all three Spark worker nodes 
at a constant rate. Inconsequential wait time exists on disk 
reads and writes. Average CPU utilization per thread or 
“CPU%” on the big data worker nodes is 4.3% during the first 
test. The average time a process waits for an input-output (I/O) 
to complete or “wait%” is 0.3. The average number of 
processor context switches per second is 1,728, identified as 
“PWps” hereafter. 

The authors measured network performance between each 
of the Spark nodes using four metrics. Metrics are captured on 
the worker node network interface cards. The first performance 
variable measures the average number of all network packet 
reads per second (APRps). The second variable captures the 
average number of all network packet writes per second 
(APWps). The measure “APIORkBs” refers to the amount of 
network I/O read traffic in kB per second sent between the 
servers. The fourth metric, “APIOWkBs,” indicates the amount 
of network I/O write traffic in kB per second sent between the 
servers. 

Fig. 3 illustrates the average network I/O (KB/s) on each 
Apache Spark node in tests 1-3 while Fig. 4 demonstrate the 
average network I/O (KB/s) on each Apache Spark node in 
tests 3-6. 

In the perimeter-based network architecture, the average 
APRps reads per second are 637 across all Spark worker nodes. 
The average APWps writes per second are 620. The average 
APIORkBs read traffic between all Spark worker nodes is 80 
while APIOWkBs is 78. The authors reconfigured the network 
architecture in the subsequent test to provide further insight 
into IDPS placement impact on distributed big data systems. 

 
Fig. 2. Perimeter-less security network architecture. 

B. Tests 2-3 Perimeter-less Security Results 

 Fig. 2 demonstrates the big data network designed for 
tests two and three. Network architecture uses a modified 
perimeter-less design proposed by Kotantoulas [39]. In contrast 
to the traditional perimeter IDPS location in Fig. 1, every big 
data worker node is in a zero trust network. The authors 
designed an SD-WAN trust boundary to secure each big data 
node. The boundary consists of Snort and Suricata intrusion 

detection and prevention security gateways. Similar to the 
virtual software defined perimeter (vEPC) proposed by Bello et 
al. [40], this study’s zero trust software-based system acts as a 
security gateway for all distributed servers. Sparkone through 
Sparkfour are designed to operate securely in most cloud 
architectures in this model by integrating an SDN security 
stack on each physically distanced server. The integrated IDPS 
gateways control and authorize incoming and outgoing 
network communication. The design emulates the trust 
boundary surrounding the cloud edge in [39] using the SSH 
and TLS protocols. Gateways authenticate and connect the 
distributed systems using a 3072-bit key generated by the 
Rivest–Shamir–Adleman (RSA) algorithm. 

Benchmark results for test 2 with Snort SDN gateways 
show the wait% is 0.413% and CPU% is 12.54%. Results from 
this study show that CPU resource consumption is over two 
times greater in the zero trust architecture than the perimeter 
network design. Test 3 with Suricata SDN gateways results in 
11.05% CPU% and 0.342% wait%. Similar to the perimeter-
less design in test 2, test 3 used considerably more CPU 
resources than test 1. Despite similar rulesets, Suricata SDN 
gateways used slightly less CPU than Snort. 

In the test 2 perimeter-less network architecture the average 
APRps reads per second are 2,198 across all Spark worker 
nodes. The average APWps writes per second are 653. The 
average APIORkBs read traffic between all Spark worker 
nodes is 298 in test 2, APIOWkBs is 82. 

 
Fig. 3. Tests 1-3 spark per node network I/O in KB/s. 

The test 3 network architecture had similar results to test 2. 
The average APRps reads per second are 2,120 across the 
distributed Spark systems. The average APWps is 611. 
APIORkBs between the big data servers is 289 and 
APIOWkBs is 77. Fig. 3 illustrates the average network I/O 
(KB/s) on each Apache Spark node in tests 1-3. These results 
indicate that network traffic and network I/O are nominal when 
writing to HDFS in all network architectures within this study. 
In contrast, the number of packets the systems have to read is 
higher in the perimeter-less network architectures. APRps is 
over three times higher in tests 2 and 3 than in test 1. 
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C. Test 4 Perimeter-Based DDoS Attack Results 

Test 4 uses the network architecture (Fig. 1), parallel to test 
1. Perimeter-based intrusion detection and prevention systems 
protect the internal LANs of the Spark nodes. CyberOne 
through CyberFour are active in test 4. The cyber servers are 
configured to flood the big data cluster with unlimited TCP 
SYN handshakes. 

Benchmark results for the big data servers during the DDoS 
attacks parallel test 1 in test 4. In test 4, the IDPSs prevented 
additional CPU load and network load on the big data servers. 
In the test case, the hardware IPSs successfully blocked the 
DDoS attacks. 

D. Tests 5-6 Perimeter-less DDoS Attack Results 

Tests 5 and 6 are similar to tests 3 and 4. However, DDoS 
attacks are administered on the big data cluster. Tests 5-6 use 
the (Fig. 2) perimeter-less security network architecture. Test 5 
uses the Snort-based SDN security boundary, while test 6 uses 
Suricata. CyberOne through CyberFour are active in tests 5 and 
6. The cyber servers execute DDoS attacks on the big data 
cluster by flooding the servers with unlimited TCP SYN 
handshakes. 

Snort and Suricata security gateways successfully protect 
the big data systems from DDoS attacks in a zero trust network 
in tests 5 and 6; however, at the expense of local computational 
resource increases. Results for test 5 with Snort SDN gateways 
show the wait% is 0.308% and CPU% is 13.8%. CPU resource 
consumption increases on average over 1% on the big data 
servers during the DDoS attacks. Test 6 with Suricata SDN 
gateways results in 11.95% CPU% and 0.337% wait%. DDoS 
attacks increased average CPU% by 0.9% across big data 
systems. Suricata SDN gateways used slightly less CPU than 
Snort SDN gateways during the DDoS attacks. 

Within the test 5 perimeter-less network architecture the 
average APRps reads per second are 4,762 across all 
distributed by data secondary nodes. The average APWps 
writes per second are 626. The average APIORkBs traffic 
between the distributed systems is 425. APIOWkBs is 79. 

 

Fig. 4. Tests 4-6 spark per node network I/O in KB/s. 

The Suricata gateways in test 6 have average APRps reads 
per second of 4,311 across the distributed Spark systems. 
Average APWps is 661. APIORkBs between the big data 
servers is 416 and APIOWkBs is 81. Fig. 4 demonstrates the 
average network I/O (KB/s) on each Apache Spark node in 
tests 3-6. 

E. Test 7 Perimeter-Based DDoS Attack Results 

Test 7 shares the same network architecture as test 1 and 
test 4, illustrated in Fig. 1. To decipher how the DDoS attacks 
affect the big data servers in the perimeter-based network 
architecture without IDPS protection, test 7 repeats test 4 but 
allow all network traffic from CyberOne through CyberFour to 
the big data cluster. When the DDoS attacks are allowed 
through the perimeter IPSs in the Fig. 1 network architecture, 
results show an average CPU% of 17.9% across all distributed 
big data systems. Predictably, network packets increase in test 
7 compared to tests 1 and 4. APRps is 2,895 while APIORkBs 
is 518. Test 7 has the highest APIORkBs of all network 
benchmarks performed in this study. 

F. Discussion of the Results 

The results illustrate that network traffic and network I/O 
have marginal differences when writing to HDFS in the 
network architectures studied. CPU resources and network 
traffic read by the operating systems increased in zero trust 
network architectures. The most substantial differences were 
between tests 4 and 5. During the DDoS attacks, the big data 
servers required more CPU resources in the perimeter-less 
security network architecture. In test 5, APIORkBs are 
considerably higher at 425 than test 4 at 80. This additional 
traffic is partly due to the SDN security boundaries necessary 
to protect the systems in a zero trust network environment. 

Shifting compute resources closer to individual devices 
may be necessary as network security perimeters dissipate. 
However, zero trust architectures in the experimental 
environment reduced cluster performance. Therefore, 
additional research is beneficial to optimize the design of 
perimeter-less network environments. 

G. Limitations 

Several environmental factors limit the results. Site-to-site 
networks were on leased 200 Mbps connections. Future studies 
might consider leased lines capable of establishing more robust 
data streams to the distributed nodes. A subsequent restriction 
is the number of architectures and communication technologies 
tested. Similar to the architecture in [40], gateways allow for IP 
Security (IPsec) or Transport Layer Security (TLS) protocols. 
Future IDPS SDN gateways could add this layer of encryption 
in a software-defined security boundary between geo-
distributed big data systems. The outlined limitations 
emphasize the need for future research to investigate more 
extensive network architectures and IDPS technologies for big 
data system security. 

V. CONCLUSION 

As the volume of data expands, organizations require big 
data systems to perform large-scale data analytics. One of 
several needs for these systems is effective intrusion detection 
and prevention strategies. This paper builds a review of the 
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literature on methods used to reduce cybersecurity threats in a 
range of network architectures that big data systems operate. 
Findings from literature suggest intrusion detection and 
prevention systems can respond to certain security attacks. 
However, a potential disadvantage of capable security systems 
is the impact on big data system cluster performance. Using a 
design science approach, the authors develop an eight-step 
process to benchmark big data systems in varying network 
architectural environments. The new benchmark process is 
tested on real-time big data systems running in perimeter-based 
and perimeter-less network environments. During DDoS 
cyber-attacks, perimeter-based network architectures 
outperformed perimeter-less network architectures. This 
underlines the importance of optimizing the design of zero trust 
architectures for distributed big data systems. 
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