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Abstract—Although deaf people represent over 5% of the
world’s population, according to what the World Health Organi-
zation stated in May 2022, they suffer from social and economic
marginalization. One way to improve the lives of deaf people is to
try to make communication between them and others easier. Sign
language, the means through which deaf people can communicate
with other people, can benefit from modern techniques in machine
learning. In this study, several convolutional neural networks
(CNN) models are designed to develop an efficient model, in
terms of accuracy and computational time, for the classification
of different signs. This research presents a methodology for
developing an efficient CNN architecture from scratch to classify
multiple sign language alphabets, which has numerous advantages
over other contemporary CNN models in terms of prediction time
and accuracy. This framework analyses the effect of varying CNN
hyper-parameters, such as kernel size, number of layers, and
number of filters in each layer, and picks the ideal parameters
for CNN model construction. In addition, the suggested CNN
architecture operates directly on unprocessed data without the
need for preprocessing to generalize it across other datasets.
In addition, the capacity of the model to generalize to diverse
sign languages is rigorously evaluated using three distinct sign
language alphabets and five datasets, namely, Arabic (ArSL), two
American English (ASL), Korean (KSL), and the combination of
Arabic and American datasets. The proposed CNN architecture
(SL-CNN) outperforms state-of-the-art CNN models and tradi-
tional machine learning models achieving an accuracy of 100%,
98.47%, 100%, and 99.5% for English, Arabic, Korean, and
combined Arabic-English alphabets, respectively. The prediction
or inference time of the model is about three milliseconds on
average, making it suitable for real-time applications. So, in the
future, it is easy to turn this model into a mobile application.

Keywords—Convolutional neural network (CNN); sign lan-
guage; Arabic sign language (ArSL); American sign language
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I. INTRODUCTION

The World Health Organization (WHO) stated in May
2022 that there are more than 360 million deaf people around
the world. 80% of those who are deaf live in developing
countries and use more than 300 sign languages [1]. Deaf
people who suffer from hearing problems have trouble in their
daily lives communicating with each other and with other
people. Also, they have lower chances of having an adequate
level of education.

Sign language is the means of communication between deaf
people and other people and consists of hand signs and gestures
for spelling letters and words. In the last two decades, many
researchers have investigated several machine learning models

for developing several sign language recognition models, e.g.,
Arabic [2], American [3], Korean [4], Indian, Chinese, and
others [5]. The approaches for sign language recognition can
be classified into two main categories: sensor-based and vision-
based [6]. In a sensor-based, the speaker wears gloves or
sensors, and the movement and body orientation are translated
into a time series of sensor readings depending on the word
or letter sign. Within the same category, several researchers
use Microsoft Kinect [7], developed by Microsoft, for sign
classification without wearing gloves or sensors. Microsoft
Kinect has three optical sensors. It provides three outputs: an
RGB image, an infrared (IR) image, or a depth image, and
defines up to 25 skeleton joints. Generally, the other hand, in
the vision-based approach [8], images are taken by a camera
and analyzed to determine the shape of signs intended by the
speaker. In this approach, a researchers use depth images and
skeleton joints to analyze the kinematic movement of the body
or hand to determine the word or alphabet character. In this
way, sign classification became easier. On sufficient number of
image examples for each sign should be collected to improve
classification performance.

Several methods for sign language recognition, utilizing
both traditional and deep learning techniques, have been
proposed in the literature [5]. Traditional techniques such as
Support Vector Machine (SVM) [9], Hidden Markov Model
(HMM) [10], and Random Forest (RF) [11] have all been tried
by many researchers for classifying sign language alphabet
recognition, but they have all yielded unsatisfactory results. On
the other hand, recent studies have shown that the CNN model
is one of the most commonly used models in sign language
recognition [6]. Surveys such as those conducted by Rastgoo
et al. have shown that many models have been suggested by
various researchers for sign language recognition with the help
of deep learning techniques [5].

A. Motivation

Many researchers have tried traditional machine learning
methods for classifying sign language alphabet recognition
models [12], but they have not provided satisfactory results.
Recently, the CNN model has been widely utilized in sign
language recognition, but it has not offered an efficient CNN
architecture, which is considerably more challenging due to
CNN’s numerous hyper-parameters. Moreover, the prediction
time, which is the time to predict a single sign and a critical
factor in practice, is usually ignored. In addition, although
CNN model hyper-parameters have a large effect on perfor-
mance and accuracy [13], they are not fully investigated. All
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these issues may affect model generalization for newly unseen
data. These are the primary motivations for us to study the
effect of selecting hyper-parameters in CNN and how we
can generalize the CNN architecture across several datasets.
The primary objective of this study is to provide a realistic,
straightforward, and efficient CNN architecture. In addition, it
can work on several sign language alphabets.

B. Contribution

In this paper, several CNN models are designed and
analyzed to develop an optimal model for sign language
recognition without any preprocessing.

• This research provided a method for selecting an
optimal CNN model by analyzing the results of vari-
ous hyper-parameters such as kernel size, number of
layers, and number of filters in each layer.

• In the beginning, this approach investigated how
changing the layer and filter numbers impacted ac-
curacy.

• Then, the model with the highest accuracy and the
fastest prediction time is chosen.

• In the end, we incorporate the impact of kernel size
and the number of hidden layers to pick the best
candidate.

• This approach operates directly on unprocessed data
to generalize it across several datasets.

• The proposed model is examined on four different
datasets, Arabic, American 2018, American 2012, and
Korean alphabets, to investigate its robustness against
data variation.

• In addition, the model is also tested on a combined
dataset of Arabic and American alphabets.

This paper is organized as follows: Section II provides a
literature review on Arabic, English, and Korean sign language
detection. In Section III, a detailed design of the proposed
CNN model is presented, including the selection of optimal
hyper-parameters for Arabic and English sign languages. The
proposed model is presented in Section IV. Several experiments
are then conducted in Section V to evaluate and compare the
proposed model to other state-of-the-art classification models
for three sign language alphabets. Finally, conclusions and
ideas for extending the current work are drawn in Section VI.

II. LITERATURE REVIEW

Sign language differs from country to country. For exam-
ple, there are Arabic, American, and Korean alphabets. In
the past decade, several research efforts have been made to
automate sign language processing. Some researchers used
traditional classifiers, while others used convolutional neural
networks or recurrent neural networks (RNNs).

Concerning Arabic sign language (ArSL) recognition, Al-
zohairi, Alghonaim, et al. [9], for example, presented an
SVM model to classify ArSL images. The authors, using a
smartphone camera, collected a dataset of 900 images for
30 alphabet characters and extracted features from images

using the histogram of oriented gradient (HOG) descriptor.
The model achieved a low accuracy of 63.5%. In addition,
Hasasneh and Taqatqa [14] proposed a model based on a
restricted Boltzmann machine and tiny images for 39 Arabic
alphabetic sign language groups.

Convolutional neural networks have also been applied
for ArSL recognition. For example, Alani and Cosma [15]
proposed two CNN models consisting of seven convolutional
layers and four pooling layers for the ArSL 2018 dataset. The
first one achieved an accuracy of 96.59%, while the second
one used some sampling techniques to improve the accuracy
to 97.29%. Also, Elsayed and Fathy [16] also implemented a
CNN containing five convolutional layers and three pooling
models for the Arabic alphabet and word recognition. They
used a premade dataset consisting of 54049 samples to evaluate
their model and produced a low accuracy of 88.87% for
alphabet pattern recognition.

On the other hand, several techniques for American Sign
Language (ASL) classification have been extensively studied.
This usually consists of a two-stage feature extraction and
a classifier. For instance, Aly, Aly, et al. [17] developed an
SVM model to classify the ASL alphabet using a dataset
collected by Microsoft Kinect from several users. The collected
data is preprocessed for segmentation and feature extraction
by the principal component analysis network (PCANet). This
model achieves an accuracy of 88.7%. Shin, Matsuoka, et
al. [12] proposed a model using SVM and light gradient
boosting machine (GBM) to classify the ASL alphabets using
the Massey alphabets dataset and the Kaggle alphabets dataset.
The results were 99.39% for Massey and 87.60% for Kaggle.

The CNN technique is also used for ASL classification. For
example, Fierro and Perez [8] built two CNN models for shar-
ing parameters and achieved 96% accuracy. This model was
fed by samples taken from the Kaggle dataset, which contains
29 subclasses. In addition, Abdulhussein and Raheem [13] also
built a CNN model for classifying 24 ASL characters after
preprocessing input images using image resizing, converting
images to grayscale, and edge detection. Their model achieved
an accuracy of 99.3%, and the training time was shorter
compared to its peers. Furthermore, Wardana, Rachmawati, et
al. [18] proposed a CNN model for the Kaggle ASL dataset,
achieving an accuracy of 99.81%. The data is divided 70% for
training, and the remainder of the dataset is equally divided
between validation and testing. Also, Can, Kaya, et al. [19]
suggested a CNN model for colored natural ASL pictures
and compared their accuracy with five well-known transfer
learning models, including VGG16, VGG19, ResNet50, and
DenseNet121, to obtain 99.91% superior to his peers.

Finally, for Korean alphabets (KSL), Na, Yang, et al. [20]
presented an SVM model for classifying 31 signs consisting
of 14, 10, and 7 consonants, vowels, and double vowels,
respectively. This dataset was collected from 15 participants
who wore gloves while taking images. The tri-axial accelerom-
eter signals were used to segment the sign gesture while the
user was performing it. This model achieves a segmentation
accuracy of 98.9%, which is superior to its peers, which
used multiple sensors for segmentation. This model achieved
a mean recognition accuracy of 92.2% for the Korean alpha-
bet. Multiclass SVM was designed with six different kernels
(e.g., linear, quadratic, and cubic) and optimized through
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accuracy comparison. The quadratic kernel produced the best
classification rate among the others. In contrast, Yeo and
Shin [21] proposed a model for 12 classes of consonant
and vowel letters. The model was designed by combining
electromyography (EMG), accelerometers, and gyro sensors to
build a multi-variate Gaussian model and maximum likelihood
estimation through Bayesian theory for classification. As a
result, accuracy rates of 99.13% and 99.97% were achieved
for consonants and vowels, respectively.

Most researchers aimed to improve the performance of the
CNN by studying the influence of preprocessing techniques
such as filters [22] or other techniques (e.g., cropping, adding
noise, and data normalization) [23]. Despite the preprocessing
success in some cases, there is no way to generalize it for all
datasets. Therefore, in the proposed model, preprocessing is
not utilized to examine the power of the CNN, test the effect
of its parameter in the original data, and test the model against
dataset variation.

All the aforementioned traditional or modern techniques for
sign language recognition models were trained and tested on
a single dataset and ignored the diversity of various sign lan-
guages. In addition, some researchers used a small, collected
dataset to train their models, so they could not be generalized.
They also neglect prediction time, although it is a critical
factor in real-time applications. Finally, even though the CNN
technique was used, the CNN parameters were not studied
sufficiently to achieve optimal accuracy and a reasonable
prediction time. The main contribution of this paper can be
summarized as follows: First, an efficient CNN sign language
recognition is developed by studying the effect of CNN hyper-
parameters to achieve higher accuracy compared with its peers
using original data without any preprocessing. Second, the
proposed model is trained on three sign language alphabets,
namely, English, Arabic, and Korean, to evaluate its robustness
against data variation. Third, the model is trained and tested to
classify numerous sign languages by combining two different
sign language datasets, namely Arabic and English. Finally,
the prediction time is carefully considered during the design
of the proposed model.

III. METHODOLOGY OF CNN HYPER-PARAMETERS
SELECTION

A CNN is one of the most popular techniques in deep
learning (DL) that is successfully used in classification prob-
lems [24] and has high success rates in several problems such
as hand gestures and object detection [25]. CNN consists of
convolution, pooling, and fully connected layers. The convolu-
tion layers are the main layers in CNN, as they are responsible
for creating a feature map using a set of filters whose number
is a design parameter, or hyper-parameter [26]. Convolution is
a linear multiplication operation between the input image and a
filter whose size (the kernel size is another hyper-parameter) is
smaller than the input image [27]. This results in an activation
map (feature map) whose size is less than the input image and
whose count is the same as the number of filters used in this
operation. The size of the feature map is calculated according
to Eq. 1.

outputsize =
N −Nf

stride
+ 1 (1)

Fig. 1. Flow diagram of the methodology framework for the selection of
CNN hyper-parameters.

where N is the width or height of the input image, Nf is
the filter’s width or height, and the stride is the pixel size
between each convolution [28]. The size of the feature map
in Eq. 1 must be an integer number; otherwise, padding is
employed. Padding is the process of increasing the image’s
size without changing its content. The input image, after being
convolved repeatedly with filters, shrinks in volume spatially.
Shrinking too fast is not good; it does not work well. Pooling
combines the nearby units to reduce the input size for the next
layer. It includes maximum pooling and average pooling. Using
the pooling layer directly after the convolution layer is not
necessary, but its type and location are also a hyper-parameter
whose settings are set empirically using expertise. The result
of repeated convolution and pooling is that the list of features
(a vector of features) is the input for the last layer of CNN
(the number of convolutional layers is a hyper-parameter). The
fully connected layer classifies the input to the best class [29].

The multiple hyper-parameters that CNN uses to make the
process of picking an architecture much more challenging [30].
In this section, a detailed study is conducted for the optimal
selection of CNN model hyper-parameters, namely kernel size
(Ks), the number of filters (Nf ), the number of convolution
layers (L), and the number of fully connected hidden layers,
to achieve optimal accuracy in a reasonably short time for
ArSL. The steps of the methodology are summarized in Fig.
1. Initially, this method looked at the effect of varying the
layer and filter numbers on precision. Secondly, a model is
selected based on its speed and accuracy of prediction. Finally,
the influence of kernel size and the number of hidden layers
is considered to select the optimal CNN architecture. The
methodology is discussed in detail in the following subsec-
tions.

A. Selecting the Number of Layers and Filters Per Layer

The number of filters Nf in each convolution layer affects
the test time because the more filters used, the more compu-
tational time is required. This occurs because the output of a
convolution layer, i.e., the number of activations maps, equals
the number of filters used in that layer [31]. The number of
filters to be used in each layer is chosen according to Eq. 2.

Nf = 2k; k = 2, 3, 4, 5, ... (2)

to achieve the best accuracy within a reasonable prediction
time. Also, the number of convolution layers has a vital role in
the classification time in the ArSL problem. Because the image
size was 64 by 64, the maximum number of convolutions with
stride 2 would be 6. So, the number of layers is varied between
1 to 6, and tests are repeated 50 times to determine the best
number of layers that gives the best average test time.
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Fig. 2. Test time as a function of the number of layers and number of filters
per layer.

TABLE I. ACCURACY AND TEST TIME FOR ARSL USING DIFFERENT
NUMBERS OF LAYERS AND FILTERS PER LAYER

L Nf =4 Nf =16 Nf =128

Nf Acc(%) TS (ms) Acc (%) TS (ms) Acc (%) TS (ms)

L = 2 95.4770 0.3793 96.8450 0.8819 96.586 8.9003

L = 4 95.2921 0.3606 97.6707 0.7986 98.52 8.8196

L = 6 56.6182 0.3598 96.1794 0.7969 98.5827 8.9013

Acc is the accuracy and TS is the Test time in milliseconds //

In this study, several CNN models are built with different
combinations of layers and filters per layer. The test time
is estimated without training, as shown in Fig. 2. It can be
realized that the test time increases with the number of filters
per layer but decreases as the number of layers increases. This
is because the number of extracted features from CNN (the
last layer of CNN) decreases.

On the other hand, to take accuracy into account and decide
the optimal number of layers and filters per layer, the CNN
models with all combinations of layer numbers 2, 4, and 6
and filter numbers 4, 16, and 128 were trained. Table I shows
the test time and accuracy in classifying the ArSL dataset.
As can be seen from Table I, although a CNN with 4 filters
per layer has the least amount of time, its accuracy is inferior
compared to that obtained using 16 or 128 filters. Therefore,
it is clear that the number of filters per layer should be at least
16. Considering the number of layers, it is noted that accuracy
obtained using more than 4 layers either drops (Nf = 4 or 16)
or is not significantly improved (Nf = 128). Based on these
observations, the number of layers in the proposed model is
set to 4. For this number of layers, the accuracy improved
with the increase in the number of filters. Unfortunately, this
comes at the expense of a significantly longer prediction time.
Therefore, in the proposed model, instead of using 128 filters
in all layers, the number of filters in the four layers is set
respectively to 32, 64, 128, and 128. This reduces the total
prediction time while maintaining acceptable accuracy at the
last two layers.

B. Selecting the Kernel Size

Kernel size, which is usually taken as an odd number less
than 10, also affects the features produced by the convolution
[32]. Therefore, kernel sizes of 3, 5, 7, and 9 are trained for
the ArSL classification problem. During this experiment, 10

TABLE II. TRAINING, TEST ACCURACY, TRAINING, AND TESTING TIME
VS. CNN KERNEL SIZE

Ks Tr Acc (%) Ts Acc (%) Tr time (h) TS time (ms) Std (Ts)

3x3 100 98.55 3.39 2.6621 4.4920 x 10−5

5x5 100 98.71 5.02 3.5870 1.1804 x10−4

7x7 100 98.87 6.62 8.0030 1.0546 x10−4

9x9 100 98.77 9.27 11.8441 1.5197 x10−4

Tr is training, Ts is test and std is the Standard deviation.

TABLE III. TEST ACCURACY, TRAINING AND TESTING TIME VS. CNN
FULLY CONNECTED HIDDEN LAYER

Hidden No. Tr Acc(%) Ts Acc(%) Tr time(h) Ts time(ms) std(Ts)

0 100 98.3362 4.155 2.8157 3.0857 x 10−5

1 100 98.5457 4.385 2.8760 3.3840 x 10−5

2 100 98.7183 4.360 2.8893 3.4234 x 10−5

3 100 98.5580 4.455 2.9107 1.7433 x 10−5

Tr is training, Ts is test and std is the Standard deviation.

runs are performed, and the average results are reported in
Table II. As it can be seen, kernel size has a slight effect on
the accuracy of training and testing. In contrast, the training
time and test time increase nonlinearly with kernel size. Based
on these observations, the optimal kernel size would be 3x3,
as it achieves the minimum training and testing times while
maintaining the same accuracy.

C. Selecting the Number of Fully Connected Hidden Layers

CNN always ends with a fully connected network that
contains hidden layers whose number is considered a hyper-
parameter [33]. The network with 0, 1, 2, and 3 hidden layers
is trained in ArSL to investigate the best number of hidden
layers. Each model is trained and tested ten times, and the
average results are reported in Table III. As can be noted, fully
connected two hidden layers achieve the best test accuracy
with slightly higher test and training times. By adding the last
output layer to the two hidden layers, three fully connected
layers are considered in the proposed CNN model.

D. Study the Time Complexity of CNN’s Prediction Time

In this section, the time complexity of CNN’s prediction
time is derived. The number of operations in a single convo-
lution layer depends on the size of the image (N x N), the
kernel size and the number of filters per layer. The number of
convolutions is performed for each pixel in the image, so the
time complexity is proportional to the total number of pixels in
the image (N2). Each pixel is multiplied by a window of size
Ks x Ks. This is done for each filter; so, the time complexity
for a single convolution layer is given by Eq. 3.

Tconv = O(N2K2
sNf ) (3)

The feature map output from a single convolution layer is equal
to the image multiplied by the number of filters in this layer.
To reduce the dimension of the feature map, a Max-pooling
layer is applied with a 2x2 window in the feature map of size
N x N x Nf , whose time complexity can be expressed as Eq.
4.

Tmp = O(4N2Nf ) (4)
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For L layers, the time complexity in Eq. 4 can therefore be
written as Eq. 5.

TL = O((N2K2
sNf + 4N2Nf )L) (5)

where time complexity is linear in L. For fully connected lay-
ers, the feature maps are generated from the final convolution
layer and the size of the input layer. The max-pooling layer
decreases the size of the image by one-fourth (for a stride
of 2). So, the final feature map size is N2/4L, and the time
complexity of the first fully connected layer would be Eq. 6.

TFC = O(
N2Nf

4L
) (6)

So, the total time complexity would be calculated as shown in
Eq. 7.

O((N2K2
sNf + 4N2Nf )L+

N2Nf

4L
+ TimeofOtherFC)

(7)
The time for other fully connected layers is dropped in big-O
notation from Eq. 7 as they are constant terms. Therefore, the
time of fully contented dropped and all constants are dropped
as shown in Eq. 8.

T = O(K2
sN

2NfL+
N2Nf

4L
) (8)

From Eq. 8, it can be concluded that the time complexity of the
CNN model is linearly proportional to Nf, the square of Ks,
and nonlinear with L. Furthermore, to investigate the validity
of Eq. 8, three examinations are made by building several CNN
models, changing one parameter at a time, and averaging the
test time over 50 runs. The procedure can be stated as follows:

• Varying the Ks from 1 to 19, while fixing the layer
number at 4 and the number of filters at 16. Fig. 3
shows the measured test time as a function of the Ks.
As it can be seen, the relationship can be fitted using
a quadratic polynomial, which means that the time
complexity of the CNN model is proportional to the
square of Ks.

• Investigating the effect of the number of layers L on
test time (at Ks = 3, Nf = 16). Fig. 4 shows that
the time decreases as the number of layers increases
up to 4 layers. Above 4 layers, the time starts to
increase slightly. This experiment shows that the test
time is inversely proportional to the number of layers,
and a good fit can be obtained using a fifth-degree
polynomial.

• Examining the effect of the number of filters Nf on
test time (at Ks = 3, L=4). Fig. 5 shows that the test
time is linearly proportional to the number of filters
and can be fitted using a linear equation.

From Eq. 8 and the previous experiments of CNN, it is noted
that the time complexity of the CNN model increases as the
kernel size and number of filters increase. Moreover, the Ks

significantly affects the test time because it is in proportion to
the square of the Ks. On the other hand, the test time decreases
as the number of layers increases.

Fig. 3. Test time verse CNN Ks.

Fig. 4. Test time verse CNN layer numbers (L).

IV. THE PROPOSED SL-CNN MODEL

In this section, the architecture of the proposed model
is designed to achieve high performance and less prediction
time. Also, to make the model operate directly on raw data to
generalize it across several datasets and data robustness.The
architecture of the proposed SL-CNN model is presented next
and summarized as shown in Fig. 6. Based on the analysis of
the experimental results in Section III, the proposed SL-CNN
model is designed using four layers with a kernel size of 3
x 3. In addition, filter numbers ranging from 32 to 128 were
also tested to achieve optimal accuracy and prediction times.
The proposed SL-CNN model consists of four convolutional
(Conv) layers, four max pooling (MP) layers, three fully
connected layers, and two dropout layers, as shown in Fig. 7.
The pooling layer has a Relu activation function. Additionally,
7 batch normalization (BN) layers are used to achieve a
stable distribution of the activation values through training and
normalizing the input layers [34]. Also, each convolution layer
is followed by a Relu function layer.
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Fig. 5. Test time verse CNN filter numbers Nf .

After resizing the images, the first layer is a grey image
of size 64 x 64. The second is the convolution layer that
convolutes the input image with 32 filters whose sizes (3 x
3) produce 32 feature maps (FM) or activation maps, which
equal the number of filters. Each activation map has the same
dimension as the input image. The next layer is the batch
normalization map, which accelerates deep network training
by reducing internal covariate shifts [34]. Each convolution
layer is followed by the Relu activation function. The fifth
layer is max pooling with pool size (2 x 2), which decreases
the activation map dimension to avoid the over-fitting problem
and decreases the computation operation. The next two layers,
layers 10 and 14, are the same as layer 2, but with filter sizes
of 64, 128, and 128, respectively. Layers 7, 11, 15, 19, 23,
and 27 are the same as layer 3. Layers 9, 13, and 17 have the
same construction as layer 5.

The model ends with a fully connected neural network
consisting of three layers. The first layer (layer 18) contains
1024 neurons and is activated by the Relu activation function.
The dropout layer randomly sets input elements to zero with
a 50% probability. The following layer is hidden in the
fully connected network like the previous layer but with 512
neurons. The final layer is the output layer, which has X
neurons that differ from one dataset to another (in the ArSL,
ASL, KSL, and ArSL-ASL datasets, there are 32, 29, 14, and
61 neurons, respectively), representing the number of classes.
The SoftMax activation function activates this layer. The SL-
CNN model is learned in a supervised manner using the Adam
optimizer for parameter optimization.

V. EXPERIMENTAL RESULTS AND DISCUSSION

In this section, an extensive set of experiments is conducted
to evaluate the performance of the proposed CNN model in
sign language classification. First, three sign languages are
considered, namely: Arabic sign language (ArSL), American
English sign language (ASL), Korean sign language (KSL),
and the combined Arabic-English sign languages.

Fig. 6. The proposed structure of the SL-CNN model.

Fig. 7. Layers details of the SL-CNN model.

A. Dataset Description

The datasets used in this work consist of a set of images,
each of which corresponds to a single-sign character that is
introduced to the classifier in a static manner. In this work, the
sequential or dynamic case is not considered. In a classification
problem, the datasets can be classified based on the distribution
of images in each class in the training data into balanced
and imbalanced datasets [35]. In balanced datasets, each class
has the same number of training images. On the other hand,
in imbalanced datasets, the number of training examples is
not equal. The proposed SL-CNN model is trained and tested
for three different sign language alphabets with the following
five datasets: Arabic (imbalanced), two English (balanced),
Korean (imbalanced), and combined Arabic-English (imbal-
anced). These sign language alphabets are briefly described
next.

1) ArSL Alphabet: This dataset, also called ArSL 2018,
contains 54,049 images of Arabic sign language alphabets
with 32 characters. Fig. 8 shows a sample of ArSL 2018 and
its classes. This dataset was gathered from 40 participants of
various ages and is imbalanced, as illustrated in Fig. 9. Images
have various dimensions and variances that may be removed
using preprocessing techniques to eliminate noise and center
the image [36]. The dataset is divided into 70% for training,
and the remainder is divided equally between validation and
testing, as shown in Table IV. The data is rearranged randomly
for each experiment.

2) ASL Alphabet: In this study, two different English
alphabets datasets are considered.
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Fig. 8. Sample signs from the ArSL 2018 Arabic sign language dataset.

Fig. 9. Number of images in each class in ArSL dataset.

a) Kaggle dataset (ASL 2018): The 2018 update of the
American Sign Language (ASL) alphabet dataset, available
on Kaggle’s data science repository, contains 29 classes for
alphabet characters. Each class contains 3000 images captured
with the intent to make a dataset for each character [37]. The
dataset is divided into 70% for training, and the remainder is
divided equally between validation and testing. Table IV shows
the number of images for each partition. The data is rearranged
randomly for each experiment.

b) Massey dataset (ASL 2012): The last version of the
Massey dataset, introduced in January 2012, contains 1815
images of 26 ASL alphabet gestures [38]. Each class contains
70 images, so the data is balanced. The dataset is divided
into 85% for training, and the remainder is divided equally
between validation and testing, as shown in Table IV. The
data is rearranged randomly for each experiment.

3) Arabic-English dataset: The Arabic-English dataset
combines the ArSL 2018 and ASL 2018 datasets, and the
model deals with them as one dataset. The dataset contains
61 classes; each class has a different number of images,
dimensions, and colors. Fig. 10 shows the number of images
in each class. The combined dataset is divided into 70%
for training, and the remainder is divided equally between
validation and testing, as shown in Table IV.

4) KSL consonant letters: Korean consonant letters are also
available on Kaggle and were last updated in June 2021. It
contains 14 classes for consonant Korean alphabet characters
[39]. The data is supported by 21962 images for training
and validation and 3790 for the test. The images in the

Fig. 10. Number of images in each class in the Arabic-English dataset.

Fig. 11. Number of images in each class in the KSL dataset.

TABLE IV. DATA DIVISION BETWEEN TRAINING AND TESTING

Dataset Total images training images val images test images

ArSL 54049 37835 8110 8114

ASL2018 87000 60900 13050 13050

ASL2012 1815 1555 130 130

Arabic-English 141049 98735 21150 21164

KSL 25752 18671 3291 3790

Korean dataset are imbalanced distributed, as shown in Fig.
11. Training data is divided into 85% for training and 15% for
validation, as shown in Table IV. Data is randomly fed to the
network at each iteration.

B. Experimental Setup

The experiment was conducted using MATLAB® 2020
Deep Learning Toolbox running on a 2.60 GHz Intel i5 CPU
with 8 GB RAM, Intel 4 K graphics, and AMD Radeon
7500M/7600M series.

To evaluate the robustness of the model against randomiza-
tion and avoid bias towards certain parameters, the experiment
was conducted ten times; in each trial, the dataset was ran-
domly divided into training and testing, and the results were
averaged [15]. Also, the dropout layer is added to avoid the
overfitting problems [40]. The effectiveness of the proposed
model is evaluated on five datasets: (1) the ArSL 2018 dataset;
(2) the ASL 2018 dataset; (3) the ASL 2012 dataset; (4) the
ArSL-ASL combination; and (5) the KSL 2021 dataset. The
accuracy defined as Eq. 9 is used to evaluate the classification
performance, where FC and TC denote the total number of
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TABLE V. CLASSIFICATION ACCURACY, TRAINING AND TEST TIME

Dataset Tr Acc(%) Ts Acc(%) Tr time(h) Ts time(ms) std for Ts

ArSL 2018 100 98.7799 3.93 2.6698 0.1436

ASL 2018 100 100.00 6.46 3.1746 0.1433

ASL 2012 100 100.00 0.2558 1.4912 0.4876

ArSL-ASL 100 99.4897 10.5 3.0440 0.4066

KSL 2021 100 100.00 2.60 2.7319 0.0737

where Tr means training and Ts means test

Fig. 12. Training and validation accuracy for ArSL.

false and correct instances of the test. Also, the sensitivity
for each class is expressed as Eq. 10 and is used to express
the evaluation of the performance for each class individually,
where TCc and TFc are the numbers of correct and false
instances in each class.

Accuracy =
TC

FC + TC
∗ 100 (9)

TCc =
TCc

FCc + TCc
∗ 100 (10)

C. Performance Evaluation of the Proposed SL-CNN Model

The proposed model was trained for 15 or 20 epochs,
and the proposed algorithm achieves high accuracy at epoch
number 15. Table V summarizes the training accuracy, test
accuracy, training time, test time, and standard deviation for
test time with 15 epochs for the proposed SL-CNN model on
ArSL 2018, ASL 2018, ASL 2012, the combination between
them (ArSL-ASL) datasets, and 20 epochs for KSL 2021. Fig.
12 to 16 show the training and test accuracies and the start
of the loss function to converge for ArSL 2018, ASL 2018,
ASL 2012, ArSL-ASL, and KSL, respectively. It is noted from
the table that the training accuracy for all datasets is 100%,
and the test accuracy is 100% for ASL 2018, ASL 2012, and
KSL, as well as 98.8% and 99.5% for ArSL and the combined
dataset. In addition, the training and test times are different
from one dataset to another. Figs. 17, 18, 19, and 20 show the
confusion matrices for ArSL, ASL 2018, ASL 2012, and KSL.
The diagonal of the confusion matrix refers to the number of
the correct element obtained by the model, while off-diagonal
predictions are false.

D. Comparison with Other Models

In this section, we make a comparison between the SL-
CNN model and other models published in other articles. The

Fig. 13. Training and validation accuracy for ASL 2018.

Fig. 14. Training and validation accuracy for ASL 2012.

Fig. 15. Training and validation accuracy for ArSL-ASL.

Fig. 16. Training and validation accuracy for KSL.
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Fig. 17. Confusion matrix for ArSL.

Fig. 18. Confusion matrix for ASL 2018.

Fig. 19. Confusion matrix for ASL 2012.

Fig. 20. Confusion matrix for KSL.

TABLE VI. COMPARISON OF THE RESULTS BETWEEN THE PROPOSED
MODEL AND OTHER PREVIOUS ARTICLES FOR ARSL

Author Method Dataset Samples Acc(%)

Latif, et al. [41] CNN ArSL 2018 54049 97.6

Elsayed, et al. [16] CNN ArSL 2018 54049 88.89

Alani,, et al. [15] CNN ArSL 2018 54049 97.29

proposed SL-CNN CNN ArSL 2018 54049 98.47

M. Zakariah, et al. [42] EfficientNetB4 ArSL 2018 54049 95.0

Rehab, et al. [43] VGGNet ArSL 2018 54049 97.0

comparison is divided into three parts ArSL, ASL, and KSL.
It is noted that the proposed SL-CNN model outperforms its
peers because each parameter of the CNN model structure
has been carefully selected, as mentioned in Section III, and
doesn’t depend on preprocessing techniques to improve the
accuracy of the application like others; but it works on raw
data. For the ArSL 2018 dataset, the proposed SL-CNN model
achieves 98.47% accuracy, outperforming other CNN models
proposed in the literature, e.g. [16], [41] and [15] as shown in
Table VI. It should be noted that the proposed model uses raw
data without any preprocessing. It should be highlighted that
the models by [42] and [43] employed modern classification
approaches (Transfer learning) but obtained poor accuracy
when compared to the proposed SL-CNN model.

For the ASL, the proposed model is compared to the
models proposed in Kaggle datasets [[8], [12], [18]] and [[12],
[44], [45]] on the Massey dataset, which is shown in Table VII.
The result of other state-of-the-art in literature [17] and [13] on
collected but not publicly available datasets are also reported in
Table VII. The CNN models proposed in [[46], [19]] achieved
higher accuracy on selected images from the MNIST dataset.
However, the proposed SL-CNN model is applied to all images
in the recent Kaggle dataset, and the two versions of Massey
beat all the previously suggested CNN models. Interestingly,
the proposed model not only outperforms published models on
ASL 2018 and ASL 2012 but also achieves 100% accuracy,
in accordance with the recent results published on Kaggle
[37]. It should be noted that the model by [47] achieved also
100% accuracy, however, on the Massey dataset 2011. Also,
the model proposed in [13] got 99.3 % accuracy for ASL
classification, but they used a collected dataset consisting of
240 images only.

Finally, for the Korean sign language, state-of-the-art meth-
ods in the literature are performed on collected but not
publicly available datasets, as reported in VIII. The proposed
model achieved 100% test accuracy for consonant characters,
compared to the models by [20] who achieved 92.2% for vowel
and consonant characters, and [21] who achieved 99.31% and
99.97% for vowel and consonant characters, respectively.

VI. CONCLUSION AND FUTURE WORK

This paper proposes an approach to designing and ana-
lyzing an efficient CNN model for sign language recognition
named SL-CNN based on a detailed study of CNN hyper-
parameters, i.e., kernel size, number of layers, and filtering
number in each layer. The performance of the proposed model
was investigated for four sign language datasets (ArSL 2018,
ASL 2018, ASL 2012, and KSL 2021), and one dataset was
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TABLE VII. COMPARISON OF THE RESULTS BETWEEN THE PROPOSED
MODEL AND OTHER PREVIOUS ARTICLES FOR ASL

Author Method Acc (%) Dataset Samples

Aly, et al. [17] PCANet and SVM 88.7 collected 60000

Raheem , et al. [13] CNN 99.3 collected 240

Taskiran, et al. [47] CNN 100 Massey 2011 900

A. Mannan, et al.[46] CNN 99.67 MNIST 35000

C. Can, et al. [19] CNN 99.91 MNIST 35000

Shin, et al. [12] SVM 99.39 Massey 2012 1815

Rastgoo, et al. [44] CNN 99.31 Massey 2012 1815

Rahman, et al. [45] CNN 99.95 Massey 2012 1815

Proposed model CNN 100 Massey 2012 1815

Shin, et al. [12] SVM 87.6 ASL 2018 87000

Wardana, et al. [18] CNN 99.81 ASL 2018 87000

Fierro, et al. [8] CNN 96 ASL 2018 87000

Proposed model CNN 100 ASL 2018 87000

TABLE VIII. COMPARISON OF THE RESULTS BETWEEN THE PROPOSED
MODEL AND OTHER PREVIOUS ARTICLES FOR KSL

Author Method Dataset Classes Acc (%)

[20] SVM collected

31

(14

consonants,

10vowels,

and

7double

vowels)

92.2% (both)

[21]

Gaussian

Modeling

and

Likelihood

Estimation

collected
12

(6consonants,

6vowels)

99.31%

(vowel)

99.97%

(consonant)

Proposed CNN Kaggle 14 (consonant) 100% (consonant)

obtained as a merge of the first two datasets (ArSL and ASL
2018). Table VIII shows the comparison of the results between
the proposed model and other previous articles for KSL. The
results show that the proposed SL-CNN model outperforms
the other models in terms of classification accuracy for all
datasets. In summary, the proposed model achieved accuracy
for 98.8%, 100%, 99.5%, 100% and 100% for ArSL2018, ASL
2018, combining both, ASL 2012 and KSL 2021, respectively
without resorting to any data preprocessing. As suggestions
for future work, it is interesting to investigate the performance
of the proposed model on sign language datasets consisting of
words and sentences. Another possibility is to implement the
proposed model in, e.g., an educational system for people who
suffer from hearing problems.
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