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Abstract—Visual impairment indicates any kind of vision
loss including blindness. Individuals with visual impairments
face significant challenges when trying to perceive their sur-
roundings from a global perspective and navigating unfamiliar
environments. Existing assistive technologies predominantly fo-
cus on obstacle avoidance, neglecting to provide comprehensive
information about the overall environment. To address this
gap, the proposed system employs a customized Convolutional
Neural Network (CNN) model tailored to accurately predict
the type of outdoor ground terrain the user is traversing. This
information is then conveyed to the user audibly. It can also
detect the presence of puddles on the road and let the user know
whether the outside floor is wet (slippery). The proposed deep-
learning architecture is trained on images collected from sources
including the Stagnant Water dataset, the GTOS-Mobile dataset
and a custom dataset. The trained model is then integrated into
an Android app, providing visually impaired (VI) people with
effective surrounding perception capabilities, leading to better
travel and, ultimately, better living.

Keywords—Visually impaired; terrain identification; puddle de-
tection; deep learning

I. INTRODUCTION

Visual impairment encompasses a range of conditions that
can result in partial or complete loss of vision, including color
blindness, affecting over 250 million people worldwide. Such
individuals encounter difficulties while comprehending and
interacting with their environment due to their limited visual
contact with their surroundings. Physically moving around can
be particularly challenging for them as they struggle to identify
their location and navigate to different places.

For navigation, individuals with visual impairments often
utilize white canes or guide dogs, although the latter option can
be costly. However, despite the assistance provided by white
canes, the task of maneuvering through unfamiliar environ-
ments continues to pose a significant challenge. Conventional
navigation techniques primarily focus on obstacle avoidance
[1], which curtails the capacity of visually impaired (VI) indi-
viduals to engage with novel surroundings fully. Consequently,
many still face obstacles in gaining a holistic perception of
their environment.

Recent advancements in technology have paved the way
for the development of intelligent or augmented white canes
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that utilize image processing and deep learning techniques to
aid individuals with low vision in obstacle avoidance, object
detection [2], and indoor/outdoor navigation [3]. However,
these systems have a limitation in that they do not provide
a comprehensive perception of the surrounding environment.
For instance, while these canes assist in identifying objects and
navigating outdoors, they cannot provide information on the
terrain, which is crucial for individuals with visual impairments
to determine the floor they are walking on. By incorporating
terrain information into these systems, VI individuals can bene-
fit from a more comprehensive and seamless travel experience,
ultimately leading to an improved quality of life. This is
particularly important for elderly individuals with low vision.

The proposed method makes significant contributions to
assistive technology for VI individuals, with a strong focus on
human needs and safety. The main contributions are:

• Proposed a novel custom CNN for Comprehen-
sive Terrain Identification: An innovative lightweight
CNN has been created to recognize diverse terrains.
Through the integration of this CNN, an Android
application is developed for identifying different types
of terrain. This pioneering functionality effectively
addresses a significant deficiency in current systems,
delivering vital insights to VI users regarding the spe-
cific characteristics of the ground they are traversing.

• Hazard Detection: The system’s ability to detect road
puddles or wet floors is a key contribution that
sets it apart from conventional intelligent white cane
systems. By proactively alerting users to potential
hazards, the approach reduces the risk of slips, falls,
and accidents, ensuring a safer travel experience for
individuals with low vision, especially the elderly.

• Developed a dataset to train and test the proposed
model: A dataset is made by combining standard
datasets like the Stagnant water dataset, and the
GTOS-Mobile dataset, collecting images from Google
and images captured using a mobile phone.

• Real-time Audio Feedback: To promote effective com-
munication between the system and the user, the
integration of audio feedback proves invaluable. By
conveying information through auditory cues, the sys-
tem ensures that VI individuals receive timely updates
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about the terrain and detected hazards, allowing them
to make informed decisions promptly.

In summary, our approach introduces a novel lightweight
CNN with the ability to identify different terrains. We curate
a specialized dataset for training and model development.
Employing this innovative CNN, an Android application is
developed that offers terrain insights and alerts users through
audio feedback, particularly notifying them about possible
hazards such as slippery floors or puddles. This approach
prioritizes human needs, safety, and independence, with the
potential to revolutionize assistive technology and significantly
enhance the lives of individuals with limited vision, particu-
larly elderly users, leading to an overall improved quality of
life.

The structure of the paper is as follows: In Section II,
we delve into the most recent advancements in intelligent
tools designed[9] proposed a system explicitly for individuals
with visual impairments. Section III provides a comprehensive
explanation of our proposed methodology. We outline the
datasets utilized in this study in Section IV. The experimental
validation and outcomes of our proposed system are detailed
in Section V. Finally, Section VI[9] proposed a system serves
as the conclusion of this paper.

II. RELATED WORKS

Vision forms one of the most important sense organs, which
gives vital information about surroundings. Our sense of sight
is responsible for 80 percent of what we perceive. Vision
enables humans to interact with their surroundings. One of
the side effects of vision loss is a lack of confidence in one’s
ability to travel safely. The placement of tactile ground surface
indicators, unsafe sidewalks, and the presence of barriers on
sidewalks are key challenges in comprehending the outdoor
difficulties experienced by VI individuals [4]. This section
reviews some of the critical works in the field of guiding
aids for VI people. This analysis is split into related works
regarding existing smart white canes and terrain recognition.

A. Robotic White Cane

The white cane is the most frequently used aid by individu-
als with visual impairments. Its main function is to help users
assess their environment for possible dangers. Additionally,
it aids in signaling to others that the user is blind, ensuring
they receive appropriate assistance. In recent years, numerous
enhanced versions of the white cane have emerged, offering
a range of capabilities. Many of these innovations concentrate
on tasks such as avoiding obstacles, identifying objects, and
facilitating outdoor navigation.

Anwar et al. [1], introduces a smart cane equipped with
an alarm to aid individuals with visual impairments when
navigating challenging paths. An RF remote transmitter and
receiver make it a unique electronic stick. It is equipped with
an ultrasonic sensor and a buzzer. The VI person’s walking
path is detected using an ultrasonic sensor. At the same time,
a global positioning system (GPS) paired with a voice stick
for navigation, allows users to learn their present location
and distance from their destination via voice commands.
However, this system is constrained to the local vicinity only.
[5] proposed a smart walker navigation system that assists

VI individuals with difficulty walking. It is utilized for two
purposes: local obstacle detection in the spatial information
setting, and guided navigation for achieving the desired goal.
Vibrotactile signals provide obstacle information or navigation
commands to the user.

A voice-activated electronic stick whose goal is to give
users the confidence to move around in new situations was
introduced by [6]. This enhanced model comprises global
system for mobile communications (GSM), GPS , and Ul-
trasonic technology. It also employs biological authentication
and incorporates an emergency trigger in the alarm system. [7]
proposed an enhanced white cane that aids the blind commu-
nity in guiding by providing results for all 270 degrees from
the smart security walking stick’s position. Ultrasonic sensors
with a wide beam angle assist in a variety of obstacle detection
applications. It performs well at identifying obstructions in the
user’s path within a three-meter range. This technology is low-
cost, lightweight, and energy-efficient, with a noticeable quick
response time.

The traditional VI aiding technologies addressed the ob-
stacle avoidance problem alone. Information about the terrain
is also vital for safe and smooth navigation for the VI person.
A generative adversarial network (GAN) model named Disco-
GAN is created by [8] to effectively translate ground images
into a tactile signal that can be presented by an off-the-shelf
vibration device. In this way, it can provide a global perception
of the surroundings. The research [9] proposed a system based
on DeepLabv3+ that is an improved semantic segmentation
network. The technology can be used on a mobile phone to
assist VI people in both indoor and outdoor settings. The
training dataset is preprocessed with an illumination-invariant
transformation to reduce the impact of variations in light.
Bashiri et al. introduced a novel framework in their study [10],
employing deep neural networks to facilitate indoor navigation
for visually impaired individuals.

Existing literature for puddle detection mainly uses object
detection models. Some of the existing smart white canes
include puddle or water detection using a moisture sensor. But
if the battery is not charged, this will not work which is the
main disadvantage faced by these augmented canes [11].

B. Ground Terrain Recognition

The quality of the terrain dataset, the feature extraction
method, and the classification algorithm for terrain features
are the key factors that affect the performance of a terrain
image recognition system [12]. These aspects are comple-
mentary, necessitating optimization and control throughout, to
improve the terrain classification and generalization capacity
of a new algorithm. Moreover, there exists a lack of publicly
available terrain classification datasets for research purposes.
The literature related to terrain recognition explained here used
proprietary datasets in their study.

Terrain identification is critical for outdoor mobile robot
gait planning, speed control, and observation of the surround-
ings, among other things. The study [13] opted for a system in
which an outdoor mobile robot is built that runs on a terrain
dataset and extracts the high-level elements of the terrain
image from MobileNet and DenseNet using the migrating
learning approach. Extent-of-Texture information proposed by
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[14] is another unique way to ground-terrain recognition,
which employs a CNN backbone feature extractor network to
extract relevant information from ground terrain images and
to model the extent of texture and shape information locally.
The research [15] proposed a differential angular imaging
Network (DAIN), where small angular variations in image
capture provide an enhanced appearance representation that
significantly improves recognition. The features of materials
recorded in the angular and spatial dimensions are encoded
in this innovative network architecture. A Deep Encoding
Pooling network [16] is another method for ground terrain
categorization. Semantic scene comprehension is critical for
gaining a better grasp of the surroundings. The study [17]
proposed a system based on a combination of the efficient
residual factorized network(ERFNet) and the 3D point cloud
with a pyramid scene parsing network (PSPNet). The above-
mentioned models are complex models for which accuracy
can be further improved. Furthermore, most of them have not
been implemented in real time. Recently, Intelligent Vehicles
(IV) methodologies have been applied to the development of
navigation assistive systems for VI people.

The analysis of existing literature highlights significant
research gaps in the field. Most robotic white canes prioritize
addressing obstacles, overlooking the potential of offering a
comprehensive understanding of the environment, especially
in unfamiliar routes. Presently, there’s a lack of systems
that can effectively notify users about hazards like puddles,
wet and slippery floors. Additionally, the accuracy of current
ground floor classification systems could be enhanced. The
primary objective of our proposed system is to furnish users
with real-time information about outdoor ground conditions,
particularly alerting them to road puddles and wet floors,
through a custom CNN model that accurately predicts terrain.
This crucial information is conveyed audibly to enhance user
safety and experience.

III. METHODOLOGY

The prevailing terrain recognition models predominantly
feature intricate deep-learning architectures. Nonetheless, for
individuals with visual impairments, conveying terrain details
through an Android app holds more promise. This research
strives to forge a path towards a simplified and computa-
tionally streamlined deep-learning model tailored for terrain
recognition systems. To realize this vision, a direct approach
is adopted, entailing the deployment of a specialized CNN
model. Additionally, an Android application is meticulously
crafted to enhance accessibility for VI individuals, facilitating
seamless access to crucial terrain information.

A custom dataset consisting of five image classes, namely
cement, grass, road, wet floor, and puddles has been created
to help VI people better understand their terrain and be alerted
of any potential hindrances. This dataset is a combination of
GTOS-Mobile (Ground Terrain Outdoor Services) [18] data,
Google images, IEEE Stagnant Water dataset, and ground
terrain images captured using a mobile phone. An Android
app has been developed which uses a custom-built CNN to
detect ground terrain and provides audio feedback to the user
with directions based on the detected features in real-time.

The proposed pipeline consists of three main steps, namely
data pre-processing, CNN model design, and Android app

development. The images obtained from various data sets are
resized to the same dimension in the pre-processing phase and
are then augmented before feeding to the custom CNN. The
pre-processing steps used were resizing, and gray scaling. The
data augmentation involves random flip, random zoom, and
random rotation. After model training, test data prediction and
evaluation are done using the trained deep learning model. Fig.
1 shows the flow diagram of the proposed system for ground
terrain detection. It represents the schematic of the proposed
system.

A. Custom CNN

The Custom CNN architecture is comprised of five convo-
lutional layers as depicted in Fig. 2. Detailed insights into the
layer structure and parameter specifics can be found in Table
I. The initial convolution layer block consists of two sets of
convolution layers, each comprising 16 filters. The subsequent
block contains two sets of convolution layers with 32 filters
each, followed by a third block with a convolution layer
featuring 64 filters. These layers employ the same padding
scheme, along with ReLU activation and Max pooling. The
filter size utilized in each of these convolutional layers is 3x3.

After these convolutional layers, a flattening layer is intro-
duced, followed by a fully connected layer consisting of 128
filters, employing ReLU activation. Ultimately, a dense layer
is incorporated, with the number of classes serving as a param-
eter. In summary, the Custom CNN model includes 560,000
trainable parameters, featuring five convolutional layers with
associated Maxpooling layers and ReLU activation. It further
incorporates a fully connected layer utilizing a dropout rate
of 50%, followed by an output dense layer with the number
of classes as a parameter. The model employs the sparse
categorical cross-entropy loss function, particularly useful for
multi-class image classification tasks. This loss function quan-
tifies the cross-entropy loss between predictions and labels.
Importantly, its utilization of integer representations for labels
instead of vector representations contributes to efficiency in
memory and computation. The mathematical formulation of
this entropy function is:

LCE = −
n∑

i=1

ti log (pi)

where ti is the truth label and pi is the Softmax probability
for the ith class and n represents the number of classes.

The architecture of the Custom CNN is depicted in Fig.
2. To make the test results more accurate, we fine-tuned the
CNN model so that it could better understand the test data.
By doing this, the model became better at recognizing different
features in the test images. This process involves making small
improvements to how the model learns from the given data.
The combination of the CNN’s design, how it extracts features,
and the fine-tuning process all work together to create a strong
model that can accurately identify and classify images. The
images were resized to dimensions of 64 × 64 pixels and a
batch size of 15 is selected empirically. The number of filters
within the fully connected Layer is fixed as 128.

IV. DATA COLLECTION

We curated an exclusive dataset tailored to our proposed
system. This dataset comprises diverse visual representations
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Fig. 1. Flow diagram of the proposed system for ground terrain detection.

Fig. 2. Architecture of the proposed custom CNN for identifying ground terrain.

TABLE I. LAYER STRUCTURE DETAILS OF MODIFIED CUSTOM CNN

Layer Input Kernels Output Parameters
Conv1 64× 64× 3 16 64× 64× 16 448
Conv2 64× 64× 16 16 64× 64× 16 2320
Maxpool1 64× 64× 16 - 32× 32× 16 -
Conv3 32× 32× 16 32 32× 32× 32 4640
Conv4 32× 32× 32 32 32× 32× 32 9248
Maxpool2 32× 32× 32 - 16× 16× 32 -
Conv5 16× 16× 32 64 16× 16× 64 18496
Maxpool3 16× 16× 64 - 8× 8× 64 -
Flatten 8× 8× 64 - 4096 -
Dense1 4096 128 128 524416
Dense2 128 - 5 645

of outdoor ground surfaces, such as concrete, grass, and
asphalt-covered stone. Additionally, it incorporates imagery
depicting wet patches and puddles. Our dataset draw images
from the GTOS-Mobile dataset [18] for ground terrain infor-
mation, while images featuring puddles and damp floors were

sourced from the IEEE Stagnant Water dataset [19]. Further-
more, we enriched the dataset with video footage recorded
using a mobile device.

A. GTOS-Mobile Dataset

The GTOS-Mobile dataset [18] encompasses 81 videos
that showcase terrain categories similar to those found in the
GTOS dataset. These videos were captured using a handheld
mobile phone, introducing a variety of lighting conditions
and viewpoints. The dataset comprises an extensive collection
of 100,000 images distributed across 31 distinct classes. Af-
ter a meticulous curation process we extracted 6066 frames
by employing a temporal sampling rate of approximately
1/10th of a second. However, the emphasis is placed solely
on the crucial ground terrain categories. Owing to concerns
surrounding image clarity, data pertaining to sand and soil
from the GTOS-Mobile dataset is deemed less dependable,
prompting its exclusion from consideration. Consequently, for
the purpose of outdoor terrain recognition, the analysis narrows
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down to the inclusion of the cement, grass, and stone-asphalt
classes extracted from this dataset. Fig. 3 shows sample images
extracted from this data set.

Fig. 3. Images from GTOS-Mobile dataset.

B. Stagnant Water Dataset

The dataset [19] comprises images with dimensions of
256×256 pixels captured using a mobile device. This dataset
comprises a total of 1976 annotated photos and encompasses
two categories, namely moist surfaces and bodies of water.
The dataset is further divided into distinct categories: Indoor,
Outdoor, and Raw data. The raw data category comprises
unprocessed images, each accompanied by a specified range of
resolutions. Puddle detection presents a range of complexities
due to fluctuations in lighting conditions, diverse image capture
angles, and the presence of reflections on puddle surfaces. To
tackle these challenges, approaches such as data augmentation
and the collection of images from a diverse range of angles
and lighting conditions have been implemented. Fig. 4 shows
sample images from the Stagnant Water dataset.

C. Custom Dataset

A unique dataset was compiled by capturing images using a
Redmi Note 7 mobile phone with a 12-megapixel camera. This
dataset encompasses 150 images for each distinct category: ce-
ment, grass, stone-asphalt, puddle, and wet floor. Images taken
by VI persons using mobile phone might not exhibit flawless
quality. Intentionally, the custom dataset includes both shaky
and low-quality images, mimicking real-world conditions. This
deliberate inclusion aims to provide the training process with
a more realistic representation of the environment. The images
from this custom dataset are depicted in Fig. 5.

The final dataset contains 16763 files belonging to five
classes. The images are acquired from the GTOS-Mobile
dataset, Stagnant water dataset and images captured using our

Fig. 4. Images from stagnant water dataset.

Fig. 5. Images from custom dataset.

own mobile device. The training data is split into train data and
validation data with a validation split 20%. A total of 12973
files is used as training set, 3243 files for validation, and 759
files as test dataset. Table II shows number of images in each
class of custom dataset.

V. RESULTS AND DISCUSSION

The CNN model proposed for terrain classification un-
derwent a comprehensive training process to realize the re-
quired customized model for accurate terrain detection. The
training utilized a specialized dataset encompassing a variety
of outdoor terrains, including cement, stone-asphalt, grass, as
well as distinct classes for puddles and wet floors. In the
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TABLE II. NUMBER OF IMAGES IN EACH CLASS OF CUSTOM DATASET

Class Train dataset images Test dataset images

Cement 7550 174

Grass 3100 196

Puddle 1659 114

Stone-asphalt 2370 154

Wetfloor 2084 121

initial stages of training, validation accuracy surpassed 95%,
while testing accuracy remained below 70%, indicative of an
overfitting scenario. To address this challenge, a combination
of techniques including early stopping, dropout, and data
augmentation was employed, resulting in a notable reduction
of this accuracy gap.

Efforts were directed towards enhancing testing accuracy
through layer-wise modifications in the CNN architecture.
These refinements led to a remarkable increase in testing
accuracy to 98%. The Adam optimizer, with a default learning
rate of 0.001, was leveraged to optimize the modified Custom
CNN model. Training the model for 300 epochs with Early
Stopping set at 50 epochs based on minimum validation loss
yielded promising outcomes.

The accuracy and loss curves of the Custom CNN model
are visually depicted in Fig. 6, illustrating the progressive
improvement achieved during the training process. Meanwhile,
Fig. 7 presents the confusion matrix, offering insights into
the model’s performance across various terrain classes. It is
important to note that the observed oscillations in the curves
can be attributed to the utilization of an imbalanced dataset
in this study. Future work could involve mitigating such
oscillations by considering a slightly lower learning rate or
implementing exponential decay learning rate strategies. The
learning rate, a pivotal parameter in optimization, requires a
balanced selection that ensures a trade-off between conver-
gence speed and overshooting tendencies. As evidenced by
validation loss values ranging from 0.1 to 0.4, finding this
optimal balance remains a crucial consideration.

Further advancements were achieved by enriching the
puddle class with additional images sourced from the Stagnant
Water dataset. This augmentation elevated the model’s valida-
tion accuracy to an impressive 98%, while testing accuracy
reached 94%, as depicted in Fig. 8. The confusion matrix
revealed that, post-enhancement, instances of misclassification
emerged wherein puddles were sometimes classified as wet
floors. It is worth noting that road puddles and wet floors
both fall under the puddle category. The mispredictions of this
nature do not significantly impact system functionality, as the
system’s role is to provide audio feedback advising users to
proceed cautiously in case of detected puddles or wet floors.

The proposed CNN model demonstrates the remarkable
potential for real-time terrain classification. The results high-
light avenues for further refinement, including domain transfer
implementations. The integration of this model into practical
applications, particularly those necessitating immediate feed-
back for user safety, underscores its relevance and efficacy in

Fig. 6. Accuracy and loss curves of the custom CNN model.

Fig. 7. Confusion matrix of the custom CNN model.

Fig. 8. Confusion matrix of the model after enhancing the puddle dataset.
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real-world scenarios.

A. Android Application Results

The central objective behind the proposed system is to
enhance the capabilities of conventional robotic white canes by
introducing a comprehensive understanding of the surrounding
environment. This innovation aims to empower individuals
with visual impairments (VIs) by seamlessly integrating global
insights into their daily navigation. Rather than augmenting the
white cane with additional hardware and algorithmic compo-
nents, a more user-friendly approach involves encapsulating
this functionality within an Android application.

To achieve this goal, a fundamental Android application
was developed as a preliminary step to assess the real-time
behavior of the proposed deep learning model. This under-
taking laid the groundwork for subsequent domain transfer
implementations. The transition from a deep learning model
stored in the .h5 format to a .tflite model was a pivotal
phase. The choice between a quantized or unquantized model
depended on size considerations. The deep learning model,
which clocked in at 2MB in its original form, maintained
this size when converted into an unquantized .tflite model.
Opting for a quantized eight-bit .tflite model reduced the size
to 500KB. However, this reduction in size through quantization
came at a trade-off with accuracy.

The development of the Android application was facilitated
by the widely used Android Studio framework, which supports
the Java programming language and is well-suited for mobile
device applications. After a thorough simulation process, the
deep learning model with the lowest validation loss was saved
using model checkpointing. To ensure optimal performance
on mobile devices, this selected model was converted to
an unquantized .tflite model. By doing so, the .tflite model
retained a manageable size of 2MB, enabling its seamless
integration into the Android application.

The proposed system’s core concept revolves around ex-
tending the functionality of robotic white canes through a
user-friendly Android application. By encapsulating complex
insights into a lightweight .tflite model, individuals with visual
impairments can gain an enhanced understanding of their
surroundings, thereby advancing their autonomy and safety in
navigation.

The initial phase of development involved creating a basic
version of the Android App, which serves as a foundation
for evaluating the system’s real-time performance. This App
captures images and employs the deep learning model to
predict the type of terrain and identify the presence of puddles
or wet floors. The primary objective of this basic App version
is to gain insights into the system’s behavior under real-world
conditions.

For testing purposes, the App’s user interface includes two
buttons, as illustrated in Fig. 9. One button captures an image
in real time, while the other allows users to select an image
from their gallery. These preliminary App results serve as a
foundation for domain transfer evaluations. It is important to
emphasize that the basic version of the app is not tailored for
individuals with visual impairments (VIs). To address this, an
advanced Android app was developed to provide continuous

Fig. 9. Android application Interface. Image shows screenshot of the android
app, created for testing purposes.

video monitoring and audio feedback, ensuring its suitability
and effectiveness for VI users.

VI. CONCLUSIONS

In recent decades, advancements in technology have led
to the development of robotic and augmented white canes
tailored for individuals with visual impairments (VIs). These
innovations primarily focus on object detection, obstacle avoid-
ance, and navigation. The major challenge involves provid-
ing VI individuals with a comprehensive understanding of
their environment to facilitate improved interaction with their
surroundings during travel. The central aim of the proposed
system is to furnish VI individuals with an encompassing
perception of their surroundings. This is achieved through
the identification of diverse ground terrains, encompassing
cement, grass, and asphalt, along with the detection of road
puddles and wet floors. To realize this, a Custom CNN is
employed as a deep learning model for a multi-class image
classification challenge. The system culminates in conveying
vital information to users through audio feedback.

Following an intensive training regimen, the deep learning
model achieves commendable performance, boasting a test-
ing accuracy of 94% and an impressive validation accuracy
of 98%. To facilitate domain transfer, an Android app was
meticulously designed, enabling real-time testing to assess the
robustness of the proposed system in various scenarios.

The future trajectory of the proposed system holds signifi-
cant promise. Plans encompass the expansion of more ground
terrain classes to broaden the system’s scope and versatility.
Additionally, there are intentions to tailor the Android app
for individuals with low vision impairments, incorporating
continuous video monitoring. This enhancement ensures ac-
curate terrain and puddle identification, even under varying
illumination conditions. The App’s connection with users will
be fortified through intuitive audio feedback, reinforcing its
accessibility and usability.
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