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Abstract—Cloud computing has gained prominence due to its 

potential for computational tasks, but the associated energy 

consumption and carbon emissions remain significant challenges. 

Allocating Virtual Machines (VMs) to Physical Machines (PMs) 

in cloud data centers, a known NP-hard problem, offers an 

avenue for enhancing energy efficiency. This paper presents an 

energy-conscious optimization approach utilizing the Giant 

Trevally Optimizer (GTO) which is inspired by the hunting 

strategies of the giant trevally, a proficient marine predator. Our 

study mathematically models the trevally's hunting behavior 

when targeting seabirds. The trevally's approach involves 

strategic selection of optimal hunting locations based on food 

availability, including pursuing seabird prey in the air or seizing 

it from the water's surface. Through extensive simulations, our 

method demonstrates superior performance in terms of 

skewness, CPU utilization, memory utilization, and overall 

resource allocation efficiency. This research offers a promising 

avenue for addressing the energy consumption challenges in 

cloud data centers while optimizing resource utilization for 

sustainable and cost-effective cloud operations. 
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I. INTRODUCTION  

The flexibility of cloud computing enables the provision of 
infrastructure, platforms, and software services. It has gained 
increasing popularity in private and public institutions due to 
its pay-per-use pricing scheme [1]. Cloud computing offers 
numerous advantages, such as scalability, flexibility, and cost 
efficiency. However, one pressing issue associated with cloud 
computing is its significant energy consumption [2]. Cloud 
data centers, which host the infrastructure and servers 
powering the services, consume a substantial amount of energy 
to handle computing tasks and store vast amounts of data. This 
energy-intensive operation contributes to environmental 
concerns, including carbon emissions and strain on power grids 
[3, 4]. To mitigate this problem, efforts are underway to 
develop energy-efficient practices such as server consolidation, 
virtualization, and green data center designs. By addressing the 
energy consumption challenge, cloud computing can become 
more sustainable and cost-effective while minimizing 
environmental impact [5]. According to the 2020, state of the 
data center report, data centers exhibit rack densities of 8.2 
kW, with the potential to achieve 43 kW per rack through the 
implementation of effective water-cooling methods [6]. In the 
United States alone, data centers consume an estimated 140 
billion kWh of energy annually [7]. In contrast, the global 
energy consumption of data centers is projected to range from 

200 TWh to 500 TWh [8], accounting for approximately 1% of 
global electricity consumption. Predictions from [9] indicate 
that by 2030, data centers are expected to consume 3-13% of 
the world's electricity [10]. 

The convergence of Internet of Things (IoT), smart grids, 
meta-heuristic algorithms, machine learning, Artificial 
Intelligence (AI), association rule mining, and urban public 
transportation plays a pivotal role in revolutionizing the 
landscape of cloud computing. IoT sensors and devices 
generate an unprecedented volume of data, which smart grids 
harness to optimize energy distribution [11-13]. Meta-heuristic 
algorithms are essential for efficiently allocating resources in 
cloud data centers to manage this influx of data [14, 15]. 
Machine learning and AI algorithms analyze this data, 
predicting energy demands and enabling proactive resource 
allocation in cloud infrastructure [16-18]. Additionally, 
association rule mining identifies patterns and correlations 
within IoT-generated data, aiding in predictive maintenance 
and energy optimization [19]. Urban public transportation 
systems leverage IoT for real-time data collection and route 
optimization. Cloud computing serves as the backbone for 
processing, analyzing, and delivering information to 
commuters and traffic management systems, enhancing urban 
mobility [20]. 

Inefficient utilization of computing resources in cloud data 
centers is a significant concern that leads to excessive energy 
consumption. Despite the growing demand for cloud services, 
many data centers operate at low resource utilization levels, 
with an average utilization of less than 30%. This inefficiency 
leads to a significant amount of energy being consumed by idle 
nodes, accounting for more than 70% of the peak energy 
consumption [21]. This wastage of energy results in increased 
ownership costs and reduced returns on investments in cloud 
infrastructure. Cloud service providers increasingly recognize 
the importance of enhancing energy efficiency in their data 
centers. They are actively seeking strategies to optimize 
resource utilization and minimize energy wastage in order to 
meet the growing demand for sustainable operations. By 
implementing energy-efficient practices and optimizing 
resource allocation, they aim to achieve a more sustainable and 
cost-effective operation while meeting the increasing demands 
of cloud services [22]. 

This paper introduces a novel strategy for cloud computing 
resource allocation based on the Giant Trevally Optimizer 
(GTO). By adopting a cloud-based model, data can be 
processed, recorded, and retrieved simultaneously, ensuring 
efficient resource allocation. This approach optimizes resource 
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allocation by considering the user's request while maintaining 
system performance. Task assignment to virtual machines 
(VMs) is primarily determined by factors such as cost, 
deadline, and runtime. The structure of the paper is outlined as 
follows: Section II offers a detailed review of existing cloud 
resource allocation techniques. Section III elaborates on the 
proposed algorithm, providing details on its methodology. 
Section IV presents the experimental results obtained by 
implementing the algorithm. Finally, Section V provides a 
comprehensive summary of the paper and offers suggestions 
for future research directions in the field of cloud resource 
allocation. 

II. RELATED WORK 

Hanini, et al. [23] introduced a novel approach that 
combines a virtual machine utilization scheme with a 
mechanism to regulate access to the virtual machine monitor 
for incoming requests. The number of active virtual machines 
is determined based on the workload, while the access control 
is determined by the number of requests. A mathematical 
model is utilized to describe the studied process and parameter 
values, and a power consumption model is developed and 
assessed. The evaluation of the proposed mechanism includes 
the use of numerical data to assess the quality of service (QoS) 
parameters. Additionally, the impact of the method on energy 
consumption behavior is thoroughly analyzed. The results of 
this analysis indicate a positive and beneficial influence of the 
proposed mechanism. Cloud computing brings forth various 
valuable services but also introduces security concerns related 
to user information privacy and the optimization of virtual 
machine allocation to enhance resource utilization. Dubey and 
Sharma [24] aim to address these challenges by developing a 
secure VM allocation algorithm based on an extended version 
of the Intelligent Water Drop (IWD) algorithm, which 
leverages natural phenomena. The implementation of their 
proposed algorithm was conducted using the CloudSim 
simulation toolkit. To evaluate its effectiveness, a comparison 
was performed against established VM allocation policies in 
the field of cloud computing. The experimental results from the 
simulations demonstrated that the proposed VM allocation 
policy outperformed existing approaches. 

Samriya, et al. [25] have introduced a novel algorithm 
called the multi-objective Emperor Penguin Optimization 
(EPO) algorithm to optimize the allocation of virtual machines 
in a heterogeneous cloud environment, focusing on resource 
utilization. The proposed approach incorporates elements from 
the Particle Swarm Optimization (PSO), Ant Colony 
Optimization (ACO), and Binary Gravity Search (BGS) 
algorithms to ensure its suitability for virtual machines in data 
centers. A comprehensive evaluation of the proposed system 
was conducted using a JAVA simulation platform, which 
demonstrated its energy efficiency and significant advantages 
compared to other strategies. The results revealed that the 
EPO-based system effectively reduces energy consumption, 
minimizes SLA violations, and enhances QoS requirements, 
thereby providing a capable cloud service. 

Devi and Kumar [26] have introduced a new VM allocation 
approach that effectively addresses SLA violation concerns and 
optimally allocates VMs to the most suitable hosts using the 

Improvised Grey Wolf Optimization (IGWO) algorithm. It 
considers various host characteristics, including CPU 
utilization and power consumption, to determine the most 
appropriate hosts for VM allocation. Additionally, the host's 
unused CPU and RAM resources are evaluated to maximize 
resource utilization. The experimental evaluation involved a 
random dataset with different virtual machines, and the 
proposed method was evaluated in comparison with existing 
methods such as ACO and Power-Aware Best Fit Decreasing 
(PABFD). The results demonstrate that the approach 
significantly minimizes the number of VM migrations, reduces 
SLA violations, and improves energy consumption. 
Consequently, the proposed VM allocation method promotes a 
green computing environment by consuming less power and 
maintaining a higher level of SLA compliance. 

Xing, et al. [27] have formulated a VM allocation problem 
that aims to minimize the network bandwidth resources 
consumed by VMs and the total amount of power consumed by 
Physical Machines (PMs). To tackle this challenge, they 
propose the energy- and traffic-aware ACO (ETA-ACO) 
algorithm, which incorporates three innovative strategies for 
improved performance. The first strategy involves a two-step 
PM selection process that prioritizes PMs with lower power 
consumption and selects PMs that consume the least 
bandwidth. In the second strategy, VMs are arranged in 
descending order according to traffic demand. The third 
strategy generates a new solution by distributing components 
of optimal solutions across multiple solutions. Simulation 
outcomes validate the effectiveness of these three strategies in 
adapting ETA-ACO to the VM allocation problem. Addressing 
the challenging and critical issue of VM allocation for highly 
reliable cloud applications, Sheeba and Uma Maheswari [28] 
propose an improved Firefly algorithm-based approach. A K-
means clustering algorithm is used to reduce migration time. 
Moreover, for optimal cluster selection in VM placement, 
adaptive PSO with the coyote optimization algorithm is 
applied. The suggested method is evaluated by examining the 
number of VMs, packet size, execution time, and transmission 
overhead. Under different constraints, the proposed method 
achieves improved performance and an optimal virtual 
machine placement scheme. 

We have selected GTO as the basis for our research into 
VM allocation within cloud computing environments due to its 
unique and promising attributes that set it apart from other 
optimization algorithms. GTO draws inspiration from the 
hunting tactics of the giant trevally, a natural predator known 
for its exceptional hunting prowess in targeting seabirds and 
other prey. This distinctive approach to optimization allows us 
to model the allocation of VMs with a fresh perspective. The 
key benefits of GTO lie in its ability to effectively navigate 
complex optimization spaces, adapt to dynamic resource 
allocation scenarios, and converge towards superior solutions. 
Unlike conventional algorithms, GTO excels in its capacity to 
strategically select the optimal allocation locations for VMs 
based on factors such as food availability, mirroring the 
trevally's hunting strategy. Furthermore, GTO dynamically 
adapts to its pursuit, seizing opportunities whether they arise in 
the air or near the water's surface, mirroring the trevally's agile 
tactics. This adaptability makes it exceptionally well-suited to 
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the inherently dynamic and multifaceted challenges of VM 
allocation in cloud data centers. Moreover, GTO offers the 
advantage of enhanced exploration and exploitation 
capabilities, striking a delicate balance between exploiting 
known promising solutions and exploring new allocation 
possibilities. 

III. ENERGY-AWARE VM ALLOCATION APPROACH 

A virtualization strategy based on the GTO is discussed in 
this section. Resource allocation in cloud environments 
depends on the architecture of the system, which allows 
different methods of access to the resources. Datacenter 
infrastructure can be provisioned by using a variety of methods 
and schemes. Fig. 1 illustrates the suggested architecture for 

energy-efficient resource allocation, comprising three 
fundamental elements: service providers, users, and data center 
resource management. Users submit their requests to the cloud 
service provider first, and then the broker returns a response 
based on the user's requirements, the date line, and the 
operation of the resource services. The Cloud Information 
System (CIS) resource manager reviews the broker's request as 
soon as it reaches the data center, assesses its suitability, and 
makes the appropriate decision. Requests are accepted by CIS 
based on the availability of the system and are passed on to the 
allocation scheme to determine the global optimal solution. 
GTO is responsible for the initial placement of VMs as well as 
monitoring the solution. 

 

Fig. 1. Resource allocation model. 

A. Giant Trevally Optimizer 

GTO draws inspiration from nature, mimicking the 
behavior and strategies of giant trevallies in their pursuit of 
seabirds. The giant trevally belongs to the Jack family of 
marine predators. It is also known as the giant kingfish. The 
giant trevally, known as a dominant predator in its habitats, 
employs sophisticated hunting techniques that demonstrate its 
intelligence and adaptability. The giant trevally exhibits a 
hunting behavior that can be observed both in solitary 
individuals and in coordinated group efforts. It is most 
effective for predators to capture schooled prey when they are 
grouped. In a group or school, the leader, or first predator, is 
the most effective at capturing prey. When hunting, the giant 
trevally employs a remarkable strategy where it launches itself 
out of the water to surprise and capture its prey, often targeting 
seabirds. 

Similarly, to other population-based meta-heuristic 
algorithms, GTO generates random initialization solutions 
termed giant trevallies. A potential or candidate solution to an 
optimization problem is represented by each giant trevally. 
These vectors, seen from a mathematical perspective as 
members of a population, make up the algorithm's population 

matrix [29]. Eq. (1) is used to model the GTO population 
members. 
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𝑁 × 𝐷𝑖𝑚 (1) 

where, Xi represents the ith candidate solution of GTO, N 
denotes the number of GTO members, Dim denotes the number 
of decision parameters and xi,j indicates the value of the jth 
variable provided by the ith candidate solution. When the 
population's size and dimensions are determined, they will not 
change during the experiment. Eq. (1), as originally presented, 
continues to serve as the foundational model for representing 
the GTO population members. It encapsulates the critical 
elements of the algorithm, wherein each giant trevally, 
symbolizing a potential solution, contributes to the algorithm's 
population matrix. Eq. (1) remains constant and integral 
throughout the GTO process. Every trevally in the solution 
space of the problem is assigned a random position prior to its 
operation. All feasible regions must be covered by this random 
assignment in the N×Dim search space, as indicated in Eq. (2). 
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𝑋𝑖,𝑗 = 𝑀𝑖𝑛𝑖𝑚𝑢𝑚𝑗 + (𝑀𝑎𝑥𝑖𝑚𝑢𝑚𝑗 − 𝑀𝑖𝑛𝑖𝑚𝑢𝑚𝑗) × 𝑅  (2) 

where, R represents a random number between 0 and 
1, Minimumj and Maximumj indicate the limits of the described 
problem for the jth dimension, i.e., the minimum and maximum 
values of population members. Each member of the GTO 
population is a potential solution to the VM allocation 
problem. Consequently, each candidate solution can be 
evaluated in terms of its objective function. In accordance with 
Eq. (3), these values are represented by a vector: 

𝐹 =

[
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⋮
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𝐹𝑁]

 
 
 

=
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𝐹(𝑋1)

⋮
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⋮
𝐹(𝑋𝑁)]

 
 
 
 

𝑁 × 1 (3) 

where, Fi refers to the ith member's value of the objective 
function, as well as F represents the vector that contains these 
values.  

The GTO algorithm simulates the giant trevallies' behavior 
while hunting for seabirds. To calculate the optimal 
optimization procedure of the suggested GTO algorithm, three 
steps are required: extensive search using Levy flight, choosing 
the hunting area, as well as jumping out of the water to chase 
and attack prey. The first and second steps represent the 
exploration phase of the GTO, as well as the third one 
represents the GTO's exploitation phase. Due to their nature, 
giant trevallies can travel long distances in search of food. 
Therefore, Eq. (4) is used in this step to simulate the foraging 
movements of giant trevallies. 

𝑋(𝑡 + 1) = 𝐵𝑒𝑠𝑡𝑃 × 𝑅 + ((𝑀𝑎𝑥𝑖𝑚𝑢𝑚 − 𝑀𝑖𝑛𝑖𝑚𝑢𝑚) × 𝑅 +
𝑀𝑖𝑛𝑖𝑚𝑢𝑚) × 𝐿𝑒𝑣𝑦(𝐷𝑖𝑚)    (4) 

where X(t+1) denotes the position vector of the next-
iteration giant trevally, BestP signifies giant trevallies' current 
search space determined by their best position, R refers to a 
random number ranging from 0 to 1, Levy(Dim) stands for the 
Levy flight, a non-Gaussian stochastic process whose step sizes 
follow the Levy distribution. The algorithm is able to perform a 
global search due to its occasional large steps. Moreover, the 
levy flight increases the diversity of the population, prevents 
premature convergence, and enhances the ability to jump out of 
local optimal solutions. The recent literature has demonstrated 
that many animals, including marine predators, exhibit the 
behavior of Levy flight. Eq. (5) is used to calculate the levy 
(Dim). 

𝐿𝑒𝑣𝑦(𝐷𝑖𝑚) = 𝑠𝑡𝑒𝑝 ×
𝑢×𝜎

|𝜐|
1

𝛽⁄
 (5) 

where step refers to the step size, set to 0.01 in this 
case, β represents the Levy flight distribution index, a variable 
ranging from 0 to 2, set to 1.5 in this study, u as well 
as 𝜐 correspond to random numbers normally was distributed 
between 0 and 1. σ is derived from Eq. (6). 

𝜎 = (
Γ(1+𝛽)×𝑠𝑖𝑛𝑒(

𝜋𝛽

2
)

Γ(
1+𝛽

2
)×𝛽×2

(
𝛽−1

2 )
)  (6) 

Giant trevallies determine and choose the best hunting area 
based on the number of food (seabirds) present in the chosen 
search space. This behavior is mathematically simulated by Eq. 
(7). 

𝑋(𝑡 + 1) = 𝐵𝑒𝑠𝑡𝑃 × Α × ℛ + 𝑀𝑒𝑎𝑛𝐼𝑛𝑓𝑜 − 𝑋𝑖(𝑡) × ℛ   (7) 

where A refers to a parameter that controls position change 
in the range of 0.3 and 0.4, Xi(t) indicates the location of the ith 
giant trevally in a given frame of time t (at the present 
iteration). Mean_Info confirms that all of the information from 
the previous points has been utilized by these giant trevallies 
and is determined by Eq. (8). 

𝑀𝑒𝑎𝑛𝐼𝑛𝑓𝑜 =
1

𝑁
∑ 𝑋𝑖(𝑡)𝑁

𝑖=1   (8) 

Trevally starts chasing its prey during the attacking the 
GTO's phase. At this point, the trevally attacks the bird by 
jumping out of the water and catching it. During chasing and 
attacking prey, GTO presumed that giant trevallies experience 
visual distortion, which is primarily caused by the refraction of 
light. Refraction of light occurs as light travels from one 
material to another, where its direction changes at the interface. 
As depicted in Fig. 2, the light from point A in the first medium 
enters the second medium at the intersection point S. Hence 
refraction occurs and arrives at point B at the end of the 
process. The light bends toward the normal as it enters the 
denser medium as light travels from a rare medium, like air, to 
a denser medium, like water. There must be an angle between 
the incident and refracted rays at the point of refraction. Light 
rays are also affected by the medium in which they are 
traveling. Snell’s law clarifies this connection using refractive 
indices, fixed values for certain media. 

 
Fig. 2. Refraction of light principle. 
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Fig. 3. Visual distortion in GTO. 

As shown in Fig. 3, the giant trevally acts as an observer, as 
well as the bird behaves as an object. Due to the refraction of 
light, birds appear taller than their actual height, as indicated by 
the dashed line. 

The relationship between the angle of incidence and the 
angle of refraction can be predicted using Snell's law. If we 
know the angle of incidence, we can determine the angle of 
refraction and vice versa. This relationship is demonstrated by 
Eq. (9), which represents Snell's law. 

𝜂1𝑠𝑖𝑛𝜃1 = 𝜂2𝑠𝑖𝑛𝜃2  (9) 

where, η1=1.0002 and η2=1.3 represent air's and water's 
absolute refractive indices, respectively. θ1 and θ2 refer to 
angles of incidence and refraction, respectively. θ2 denotes a 
random number between 0 and 360, derived from Eq. (10). 

𝑠𝑖𝑛𝜃1 =
𝜂2

𝜂1
𝑠𝑖𝑛𝜃2   (10) 

Eq. (11) is used to calculate the visual distortion. 

𝜈 = sin(𝜃1
∘) × 𝒟   (11) 

where, sin stands for the sine of a variable in degrees, and 
D refers to prey-attacker distance, determined by Eq. (12). 

𝒟 = |(𝐵𝑒𝑠𝑡𝑃 − 𝑋𝑖(𝑡))|  (12) 

where, BestP indicates the best solution gained so far, 
representing the prey's location. Eq. (13) is then used to 
simulate giant trevally behavior during jumping as well as 
chasing. 

𝑋(𝑡 + 1) = ℒ + 𝜈 + ℋ  (13) 

where, ℒ is the launch speed for simulating the pursuit of 
the bird, as determined by Eq. (14), and ℋ is the jump slope 

function used by the algorithm for the adaptive transition from 
exploration to exploitation, derived from Eq. (15). 

ℒ = 𝑋𝑖(𝑡) × sin(𝜃1
∘) × 𝐹_𝑜𝑏𝑗(𝑋𝑖(𝑡)) (14) 

ℋ = ℛ × (2 − 𝑡 ×
2

Τ
)  (15) 

In Eq. (15), R stands for a random number used to denote 
the various motion senses of the giant trevally during the 
exploitation step, t signifies the current iteration, and T refers to 
the maximum number of iterations. 

B. User Request Model 

Users request resources, commonly referred to as VMs, 
from the data center via a broker or cloud provider. Each 
resource (VM) consists of a variety of components coordinated 
to fulfill a certain function. UR stands for users' requests. It is 
possible for users to submit multiple UR requests at the same 
time, which are executed on a First-Come-First-Served (FCFS) 
basis. VMs encompass three categories of resources: storage, 
memory, and CPU. i and s indicate the number of resources 
and their measuring capacities. Eq. (16) can be used to express 
the request mathematically. 

𝐴𝑖 ⊂ 𝑈𝑅𝑎𝑛𝑑𝑎𝑠
1, 𝛽𝑠

1, 𝛾𝑠
1 ⊂ 𝐴𝑖 

𝑎𝑠
1, 𝛽𝑠

1, 𝛾𝑠
1 ⊂ 𝐴𝑖 ⊂ 𝑈𝑅 ⇒ 𝑎𝑠

1, 𝛽𝑠
1, 𝛾𝑠

1 ⊂ 𝑈𝑅 (16) 

Eq. (17) and Eq. (18) will be used to express the request for 
a single resource in this case. 

𝑈𝑅1 = 𝐴𝑖   (17) 

𝐴𝑖 = (𝑎𝑠
1, 𝛽𝑠

1, 𝛾𝑠
1)   (18) 

where, i represents the number of resources required, when 
a user submits multiple requests, they are represented by Eq. 
(19) and Eq. (20).  

𝑈𝑅𝑛 = ∑ = 𝐴𝑖 = 𝐴1 + 𝐴2 + 𝐴3 + ⋯𝐴𝑛

𝑛

𝑖=1

 

= (𝑎𝑠
1, 𝛽𝑠

1, 𝛾𝑠
1) + (𝑎𝑠

2, 𝛽𝑠
2, 𝛾𝑠

2) + ⋯+ (𝑎𝑠
𝑛 , 𝛽𝑠

𝑛, 𝛾𝑠
𝑛) (19) 

𝑈𝑅𝑛 = ∑ (𝑎𝑠
𝑖 ) + ∑ (𝛽𝑠

𝑖)𝑛
𝑖=1 + ∑ (𝛾𝑠

𝑖)𝑛
𝑖=1

𝑛
𝑖=1  (20) 

C. Resource Utilization and Energy Model 

CPU and memory utilization are calculated using Eq. (21) 
and Eq. (22), where i represents the number of tasks assigned 
to n VMs. rpuijk and rmuijk represent the CPU and memory 
utilization of k tasks running on j VMs on the ith node, 
respectively. 

𝑅𝑃𝑈𝑖 = ∑ ∑ 𝑟𝑝𝑢𝑖𝑗𝑘
𝑙
𝑘=1

𝑛
𝑗=1   (21) 

𝑅𝑀𝑈𝑖 = ∑ ∑ 𝑟𝑚𝑢𝑖𝑗𝑘
𝑙
𝑘=1

𝑛
𝑗=1  (22) 

The power consumption of the ith PM in terms of memory 
and CPU utilization can be calculated using Eq. (23), where t is 
the unit of time and C is the number of memory units. 

𝑃𝐶𝑖 =
(𝑅𝑃𝑈𝑖)(𝑅𝑀𝑈𝑖)

𝐶
× 𝑡  (23) 

Another objective of this research is to optimize the time 
required to assign VMS to relevant hosts. Allocation operations 
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are influenced by the capacity of the hosts. A numerically 
generated data set is generated for each source between 0.1 and 
10 milliseconds. The total allocation time is calculated by 
adding the CPU time associated with each host using Eq. (24). 

𝑇𝑖𝑚𝑒 = ∑ 𝑇𝑖
𝑛
𝑖=1    (24) 

D. step-by-step algorithmic explanation 

The proposed VM allocation approach follows the 
following steps: 

 Initialization: Initialize the GTO algorithm by 
generating a population of random solutions, referred to 
as "giant trevallies." Each giant trevally represents a 
potential solution to the VM allocation problem. Define 
parameters: N (number of giant trevallies), Dim 
(number of decision parameters), and set the population 
size and dimensions. 

 Random position assignment: Assign each giant trevally 
a random position within the feasible search space of 
the problem, ensuring coverage across the N×Dim 
search space. 

 Objective function evaluation: Evaluate the objective 
function for each giant trevally, representing the quality 
of their respective VM allocation solutions. This result 
in a vector F containing these objective function values. 

 Exploration phase: Simulate the exploration behavior of 
giant trevallies by employing Levy flights. This phase 
allows for extensive search and occasional large steps. 
Update the position of each giant trevally using Eq. (4), 
where Levy flight is used to determine the next 
iteration's position. 

 Choosing the hunting area: Giant trevallies select their 
hunting areas based on the number of seabirds (food) in 
those areas. This is simulated using Eq. (7), which 
determines the new position based on a combination of 
the best search space and previous positions. 

 Chasing and attacking prey (exploitation phase): During 
this phase, giant trevallies pursue and attack prey, 
simulating their behavior when capturing seabirds. 
Visual distortion is considered due to the refraction of 
light, which affects the perceived size of prey. This is 
calculated using Snell's law Eq. (9) to determine the 
angle of refraction. The position update during the 
chase is determined by Eq. (13), where L represents the 
launch speed, ν is the visual distortion, and H is the 
jump slope function. 

 Iteration and convergence: Repeat the above steps for a 
specified number of iterations or until convergence 
criteria are met (as defined by T, the maximum number 
of iterations). 

IV. EXPERIMENTAL RESULTS 

In this section, we conduct a comparison between the 
performance of our proposed resource allocation algorithm and 
previous approaches. Additionally, we perform several 
experiments to evaluate the effectiveness of our algorithm. The 

suggested algorithm is implemented and simulated using 
Matlab simulator 2016b. To assess the effectiveness of the 
optimization algorithm, we utilize key performance indicators 
such as skewness, CPU utilization, memory utilization, and 
resource utilization. These metrics allow us to quantitatively 
evaluate the efficiency of our algorithm and make comparisons 
with other algorithms. 

 Skewness: Skewness measures the asymmetry or 
unevenness in a probability distribution. It provides an 
indication of the uneven utilization of multiple 
resources on a server. The concept of skewness is 
derived from the observation that if a PM runs 
numerous memory-intensive virtual machines with a 
light load, resources may be lost due to insufficient 
memory to accommodate an additional virtual machine. 
Skewness quantifies the unevenness in resource 
utilization across a server by applying Eq. (25). Here, R 
represents the resource utilization of the nth virtual 
machine, and A represents the average resource 
utilization. 

𝑊 = (
𝑅𝑛

𝐴
− 1)2  (25) 

 CPU utilization: This metric represents the average 
amount of CPU consumed by all servers while handling 
user requests. It is computed using Eq. (26), where Hi 
denotes the total number of available CPU resources 
and Ei represents the CPU resources requested for task 
execution. 

𝐶 = ∑
𝐸𝑖

𝐻𝑖

𝑦
𝑖=1   (26) 

 Memory utilization: Memory utilization refers to the 
fraction of the memory resource that is used over time 
for processing all submitted tasks. It is calculated using 
Eq. (27), where vi represents the total available memory 
and ui indicates the memory requested for task 
execution. 

𝑀 = ∑
𝑢𝑖

𝑣𝑖

𝑦
𝑖=1   (27) 

 Resource utilization: Resource utilization is defined as 
the ratio of the number of allocated resources to the 
total number of available resources. It provides an 
assessment of how effectively resources are utilized and 
is calculated accordingly. 

𝑅 =
𝐶

𝑊
    (28) 

The proposed method exhibits performance enhancements 
compared to existing approaches when considering 15 virtual 
machines. Specifically, when compared to PSO [30], genetic 
[31], and GWO [32] algorithms, the proposed algorithm 
consistently outperforms them, as depicted in Fig. 4. It 
achieves lower skewness values faster and maintains them 
even with increased iterations. This superiority is attributed to 
the proposed algorithm's ability to adapt swiftly and accurately 
to different datasets, thanks to its improved learning rate and 
parameter tuning. As a result, it enables more efficient 
optimization and better overall performance. 
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Fig. 4. Skewness comparison. 

 
Fig. 5. Resource utilization comparison. 

Fig. 5 demonstrates that the proposed algorithm utilizes 
more resources than existing techniques within the same 
number of iterations, indicating its enhanced efficiency and 
ability to achieve superior results with less iteration. 
Furthermore, Fig. 6 illustrates that the proposed algorithm 
exhibits improved memory utilization efficiency, requiring 
significantly less memory than existing techniques for the same 
number of iterations. Finally, Fig. 7 presents that the proposed 
algorithm accomplishes tasks more efficiently than existing 
models like GA, GWO, and PSO, as it achieves task 
completion in less time with the same number of iterations. 

GTO in the context of VM allocation within cloud 
computing environments introduces a unique set of trade-offs 
and benefits that distinguish it from other optimization 
algorithms. While it may appear that GTO consumes more 
computational resources within the same number of iterations 
compared to some existing techniques, a closer examination 

reveals that the unique strengths of GTO can significantly 
outweigh the increased resource usage, ultimately leading to 
improved performance, efficiency, and sustainability in various 
aspects of VM allocation. GTO's use of extensive search 
techniques, such as Levy flights, might lead to higher resource 
consumption in terms of computation power and time. 
However, this trade-off is justified by its ability to explore a 
wider solution space, often resulting in superior VM 
allocations. The increased resource usage can be considered an 
investment in finding more energy-efficient and effective 
allocation solutions. GTO strikes a balance between 
exploration (discovering new allocation possibilities) and 
exploitation (refining promising solutions). This duality is vital 
in tackling the NP-hard problem of VM allocation. While some 
algorithms might prioritize one over the other, GTO excels in 
both, thereby enhancing the likelihood of finding optimal or 
near-optimal allocations. 
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Fig. 6. Memory utilization comparison 

 

Fig. 7. CPU utilization comparison 

GTO's ability to adapt its search behavior, mirroring the 
trevally's hunting tactics, allows it to respond effectively to 
changing conditions and evolving VM allocation demands. 
This adaptability is especially valuable in dynamic cloud 
environments. GTO's exploration phase, facilitated by Levy 
flights, enables it to perform global searches, effectively 
avoiding local optima. This global perspective ensures that VM 
allocations are not limited to suboptimal solutions, ultimately 
improving resource utilization and efficiency. GTO's 
incorporation of visual distortion due to the refraction of light 
is a unique feature that enhances its performance. This 
consideration ensures that VM allocations are not only optimal 
but also take into account real-world conditions, leading to 
more reliable and realistic allocation solutions. GTO's 
exploration phase increases the diversity of the population, 
preventing premature convergence. This diversity is crucial in 
avoiding stagnation and enabling the algorithm to jump out of 
local optima, which can be a common issue in other 
optimization techniques. 

V. CONCLUSION 

This paper introduced an energy-conscious optimization 
approach based on the GTO for VM allocation. It has been 
compared to existing methods, including GWO, genetic, and 
PSO algorithms. The experimental results and performance 
evaluations have demonstrated the superiority of the proposed 
algorithm in several aspects. Firstly, the proposed algorithm 
consistently outperforms other algorithms in terms of 
skewness. It achieves lower skewness values more rapidly and 
maintains them even with increased iterations. This 
improvement is attributed to the algorithm's enhanced learning 
rate and parameter tuning, allowing it to adapt more effectively 
to different datasets. Furthermore, the proposed algorithm 
exhibits improved resource utilization efficiency by effectively 
utilizing a greater number of resources compared to existing 
techniques within the same number of iterations. This indicates 
its enhanced efficiency and ability to achieve better results with 
less iteration. Moreover, the algorithm demonstrates superior 
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memory utilization efficiency by requiring significantly less 
memory compared to existing techniques for the same number 
of iterations. This feature is valuable in resource-constrained 
environments where memory usage optimization is crucial. 
The findings highlight the promising performance and potential 
of the proposed GTO-based approach for VM allocation in 
cloud computing environments. Future research directions can 
explore the algorithm's applicability in different scenarios and 
consider additional parameters to address the complexities of 
diverse cloud computing environments. 

While our study leverages the GTO to address VM 
allocation challenges in cloud computing, it is essential to 
acknowledge certain limitations. Firstly, GTO's resource-
intensive nature, particularly in terms of computation, may 
pose practical constraints in real-time cloud environments 
where swift decision-making is crucial. Secondly, the 
effectiveness of the GTO algorithm may vary depending on the 
specific characteristics of a given cloud data center, such as 
size, workload, and infrastructure, which could limit its 
universality. Additionally, our study primarily focuses on 
energy efficiency and resource utilization aspects, potentially 
overlooking other critical performance metrics relevant to 
cloud service quality. Furthermore, while we account for visual 
distortion in VM allocation, the real-world applicability and 
accuracy of this consideration warrant further exploration. 
Despite these limitations, our research provides valuable 
insights into enhancing cloud sustainability and efficiency, 
offering a foundation for future investigations in the field. 
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