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Abstract—Addressing the limitation of conventional single-

scene image denoising algorithms in filtering mixed 

environmental disturbances, and recognizing the drawbacks of 

cascaded image enhancement algorithms, which have poor real-

time performance and high computational demands, The 

composite weather adaptive denoising network (CWADN)  is 

proposed. A Cascade Hourglass Feature Extraction Network is 

constructed with a visual attention mechanism to extract 

characteristics of rain, fog, and low-light noise from authentic 

natural images. These features are then transferred from their 

original real distribution domain to a synthetic distribution 

domain using a deep residual convolutional neural network. The 

generator and style encoder of the adversarial network work 

together to adaptively remove the transferred noise through a 

combination of supervised and unsupervised training, this 

approach achieves adaptive denoising capabilities tailored to 

complex natural environmental noise. Experimental results 

demonstrate that the proposed denoising network yields a high 

signal-to-noise ratio while maintaining excellent image fidelity. It 

effectively prevents image distortion, particularly in critical 

target areas. Additionally, it adapts to various types of mixed 

noise, making it a valuable tool for preprocessing images in 

advanced machine vision algorithms such as target recognition 

and tracking. 

Keywords—Image denoising; domain adaptation; generative 

adversarial network; autoencoder  

I. INTRODUCTION 

Haze, rain, and low illumination are the three types of 
natural noises that have the greatest impact on the detection 
accuracy of machine vision. These noises will destroy the 
optical information in the original image through global 
blurring, superimposed noise, and information desalination, 
bringing a great challenge to all-weather target detection 
tasks.[1], [2]. Therefore, the denoising methods for the above 
three natural noises have become the key research directions of 
domestic and foreign scholars in the field of image denoising. 
Among them, the study [3] directly learns and estimates the 
mapping function between the noisy image and its noise-free 
counterpart and cooperates with the bilateral rectified linear 
unit (BReLU) to reduce the search space and improve the 
convergence, to realize the end-to-end training and interference 
process of the dehazing network. Based on the transmittance 
parameters and atmospheric light of the scattering model, the 
research in [4] directly learned the residual information 
between the haze image and the haze-free image by using 

smooth dilated convolution and threshold fusion sub-networks 
to realize image dehazing. The study in [5] pass a binary rain 
mask to the multi-task network for learning, and the negative 
rain layer generated by iteration is compared with the input, 
which reduces the effect of rain noise on the original image. 
Based on the reverse stacking denoising strategy, the study in 
[6] use a dataset marked with the rain size to train a multi-task 
network and realizes image denoising through the obtained rain 
noise features, [7] use Retinex theory, the reflectance image 
under ideal illumination is multiplied by the noisy low-
illumination image, and the low-illumination noise is directly 
removed by guided filtering, which solves the problem that the 
traditional low-illumination denoising algorithm over-enhances 
or under-enhances some areas. Enhanced question in study [8] 
constructed an unsupervised network EnlightenGAN, which 
can be trained in a large number of imprecisely matched 
images to establish a mapping relationship, which overcomes 
the problem of low-illumination noise denoising accuracy 
when the dataset is insufficient. The study in [9] designed a 
dual-branch unit endowed with physics-aware, complemented 
by a course learning contrast regularization approach. This 
research underscores the significance of fine-tuning various 
negative samples within the contrast regularization process. 
These insights offer valuable concepts for leveraging 
multimodal contrastive regularization techniques to enhance 
image quality. 

However, because the environmental noise in nature 
appears in the form of mixed accompaniment, that is the three 
kinds of noises of haze, rain and low illumination may be 
generated at the same time in different weather and will be 
mapped on the original image in the form of mixing in any 
proportion. The interference of noise on image information will 
become more complicated. The above algorithms all adopt the 
directional denoising strategy, and it is difficult to achieve an 
optical result when it comes to mixed noise in real scenes. 
Therefore, researchers gradually focus their research on the 
field of adaptive denoising that is more in line with actual 
needs and can integrate various physical models of weather 
noise. The research in [10] applied the strategy of Neural 
Architecture Search in reinforcement learning to image 
restoration to generate the most suitable denoising network 
structure, and at the vector level, Denoising the output results 
of Encoders), giving the algorithm the ability of adaptive 
filtering of compound noise; The study [11] introduced an 
attention mechanism (Spatial Attention Mechanism, SAM) and 
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cross-multi-stage feature fusion in the encoding and decoding 
process of the network. The mechanism (Cross-stage Feature 
Fusion, CSFF) avoids the loss of target feature information 
before and after denoising. It takes into account the functions 
of efficient denoising and target information transfer. Although 
these composite noise-denoising deep neural networks have 
good image processing capabilities, their overly complex 
structures lead to high demands on computing resources. The 
training difficulty and convergence speed are not ideal. At the 
same time, a large number of supervised learning links make 
this kind of network must be supported by abundant real noise 
datasets to obtain better training results. When the real noisy 
images of the actual scene are difficult to obtain, the noise 
reduction accuracy of this kind of network will be greatly 
improved. These problems will limit the versatility of 
denoising algorithms in real environments. Providing all-
weather adaptive denoising capabilities for platforms such as 
space vehicles and ground-based photodetectors is difficult. 

In order to solve the problems of the above algorithms and 
improve the adaptability and all-weather computing efficiency 
of the image denoising algorithm in the denoising task for 
complex natural environments, this paper proposes a denoising 
method for the free mixed environment noise of rain, haze and 
low illumination. Noise neural network, the innovations of this 
network are: (1) An end-to-end image denoising network based 
on domain transfer is proposed, which realizes rain, haze, low 
illumination and three kinds of mixed noise images under a 
single structure. (2) Integrate multi-stage autoencoder structure 
and multi-domain transfer strategy to achieve directional 
separation and targeted denoising of an unknown proportion of 
mixed noise. (3) Based on domain adaptive generative 
confrontation module, effectively reduce the difference 
between noisy synthetic data and real noisy data is eliminated, 
and the traditional denoising algorithm training process is free 

from the dependence on a large number of real noisy data sets. 
Based on the above methods and characteristics, the denoising 
network proposed in this paper achieves a high signal-to-noise 
ratio and image structure consistency in multi-type mixed noise 
filtering tasks and achieves high-quality denoising and 
information restoration for complex natural environment noise. 

II. PROPOSED METHODS 

This paper draws extensive inspiration from the multi-level 
architecture of MPRNet [12], which strikes a balance between 
preserving local and global information. It introduces the 
concept of projecting any natural environmental image into 
multiple modes, followed by individual processing and 
subsequent integration. The composite weather adaptive 
denoising network (CWADN) designed in this paper is 
composed of a separation module, a denoising module and a 
conversion module, and its network structure is shown in 
Fig. 1. 

CWADN comprises three integral components: the Multi-
stage Progressive Separation Network (MPSN), the Multi-
domain Translation Denoise Network (MTDN), and the 
Domain Adaptation Translation Network (DATN). In the 
denoising process, CWADN initially takes images containing 
complex real-world composite noise as input into the multi-
level autoencoder of MPSN. Subsequently, MTDN leverages 
the noise distribution within the image space as a feature and 
transfers the three distinct noise images to the synthetic domain 
for generation. Finally, DATN restores these three transformed 
images, consolidates the acquired results, and accomplishes the 
denoising task. Through these methodologies, CWADN 
achieves adaptive and precise denoising, as well as the 
restoration of target image information for original images 
captured in real-world scenarios featuring natural compound 
noise. 

 

Fig. 1. The framework of our proposed network. 
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III. NETWORK DETAILS 

A. Multi-Stage Progressive Separation Network 

For any noisy image shot in a natural environment, it can 
be regarded as the result of the original noise-free image. Iori is 
affected by three kinds of noise: rain, haze and low 
illumination, and different types of noise have different effects 
on Iori. The image quality degradation process can be expressed 
as: 

)(⊙)(⊙)( oridarkdarkorihazehazeorirainrainn INININI 
 (1) 

Where ⊙ is the mixing operation of noise, Ni and λi are the 
noise degradation sub-function and the noise component 
weight coefficient under the conditions of rain, haze, and low 
illumination (i= {rain, haze, dark}), respectively. When there is 
no certain kind of noise, the trade-off λi equals to 0, and when 
the image is an ideal noise-free image, all λ are 0. 

Due to the diversity and unpredictability of the combination 
of each proportional coefficient λi of the composite noise in the 
natural environment, it is difficult for the conventional 
denoising network to fit the image quality degradation function 
with a certain coefficient, and it is impossible to learn the 
mapping relationship between In and Iori or complete image 
restoration. To solve this problem, we design a multi-stage 
progressive separation network (MPSN) to separate the 
composite noise and sequentially extract the low-illumination 
noise component Ndark, the haze noise component Nhaze and the 
rain noise component Nrain, and the different noise components 

are limited to their own domain according to their 
characteristics. MPSN is composed of three cascaded Channel 
Attention Autoencoder Module (CAAM), and its network 
structure is shown in Fig. 2. 

In the autoencoder network based on the full convolution 
layer, although the continuous convolution operation can 
enrich the semantic information of the feature map, it also 
causes the gradual loss of the texture information in the 
original image, which makes the deconvolution operation 
unable to correct the decoding process and accurately restored 
details of the image. Therefore, we add a Channel Attention 
Block (CAB) [13] to all convolution and deconvolution 
operations in all CAAM to reduce information loss in key areas 
of interest. The input feature map group of CAB is denoted as 
X= [x1, x2, …, xn], where xn is the feature map of the n channel 
with size H×W. The frequency information of features is 
included in xn, and its high-frequency features can better 
represent the edge and detail information in the image. 
Therefore, the global average pooling obtains the global feature 
frequency zn by scaling the size of xn to 1×1. Then, in order to 
extract the channel feature of zn and obtain the weight 
coefficient through the activation operation, CAB will adjust 
the weight of xn to obtain the final feature xn * with the 
attention mechanism. This process can be expressed as: 
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Fig. 2. Channel attention autoencoder Module for our network. 
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Fig. 3. Spatial attention module for our network. 

Where i and j represent a pixel's horizontal and vertical 
position coordinates in the current image, respectively; σ and ϕ 
represent the sigmoid activation function and the channel 
feature extraction process, respectively, and ⨂ is the 
corresponding multiplication on pixel-wise. Through the above 
attention mechanism, MPSN can assign higher weights to 
feature channels with high-frequency information in the 
reconstruction process so as to preserve the texture details of 
the region of interest. 

In addition, we introduce a Spatial Attention Module [14] 
between each two CAMM to enhance the transfer and fusion of 
information between different stages. As shown in Fig. 3, SAM 
obtains the noise component Ni by performing channel 
dimension reduction on the input feature map Fin and adding it 
pixel-by-pixel with the noise-free image Iori. At the same time, 
SAM extracts features from Iori and activates it to obtain the 
attention mask M and then linearly changes Fin to obtain the 
output feature map Fout as the input of the next stage. The 
process is expressed as: 
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where, the W1, W2, and W3 represent three convolution 
operations, respectively. After passing through the SAM 
module, Fout contains ground truth information, which can 
improve the texture feature representation ability of the 
subsequent separated images. Due to the constraint of the 
attention mask, the transmission of invalid information to the 
next stage is suppressed. After the original noisy image is 
separated by MPSN, three images containing only a single type 
of independent noise can be obtained, which effectively solves 
the problem that the composite noise image quality degradation 
function is difficult to fit and limits the scope of the solution 
space, and facilitates the subsequent denoising network. 

B.  Multi-Domain Translation Denoise Network 

At present, the image restoration methods using image 
translation mainly regard the noisy image and the noise-free 
image as two independent domains and use the generator to 
learn the mapping relationship between them to realize image 
denoising. Still, this method can only remove a single type of 
noise. In order to realize the adaptive removal of multiple types 
of composite noise under a single model, inspired by 
StarGANv2 [15], we construct a multi-domain translation 
network (MTDN), including generator G, style encoder E and 
discriminator D, three main parts which are shown in Fig. 4. 

 
Fig. 4. The framework of multi-domain translation network. 
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We take the samples of noisy images, which include rain, 
haze and low illumination as the source domain Xsrc, that is, 
Xsrc= {Nhaze, Nrain, Ndark}, and the noise-free images as the target 
domain Xtrg=Iorg, by learning the mapping function between 
Xsrc and Xtrg to realize the removal of many different types of 
noises. E extracts features from the target domain image xtrg 
(xtrg∈Xtrg), and obtains the style code s containing the high-
dimensional feature information of the noise-free image. G 
extracts the high-dimensional semantic information c of the 
original noise image xsrc (xsrc∈Xsrc) through internal coding, 
integrates c and s in the decoder, and decodes the reconstructed 
image of xrec. As a multi-task discriminator, D is composed of a 
binary classifier and a multi-classifier. The multi-classifier is 
used to determine whether the xrec has the characteristics of a 
noise-free image, that is, whether the denoising process is 
complete; the binary classifier evaluates the image quality of 

the xrec, that is, whether the reconstructed image has higher 
restoration. Through the above process, MTDN can achieve 
directional denoising for various types of noises and effectively 
retain the original image's texture, details and other 
information. 

C. Domain adaptation translation network 

Due to the inability to obtain a large number of real noisy-
clean paired datasets, both MPSN and MTDN can only be 
trained on synthetic datasets. However, the spatial distribution 
and texture features of environmental noise in the synthetic 
dataset are different from those in the real dataset. This makes 
the model trained on the synthetic dataset generalize well to the 
real-world samples and reduces the denoising performance. In 
order to solve the above problems, we use DATN to improve 
the adaptability of the model in different datasets.  

 
Fig. 5. The framework of domain adaptation translation network. 

The structure of DATN is shown in Fig. 5, which is 
composed of three translation modules with the same structure, 
corresponding to three different types of noise, respectively. 
DATN takes CycleGAN [16] as the core framework, which 
contains two generators, GS2R, GR2S and two discriminators, DR 
and DS. The generator GS2R takes the synthetic noise Nsyn as 
input and uses the spatial distribution characteristics of noise in 
the real noise image Nrea as the learning object to reconstruct 
Nsyn. The discriminator DR compares the difference between the 
reconstructed image and Nrea and uses it as an indicator to 
constrain GS2R. During training, GS2R improves its domain 
adaptation ability by continuously increasing the similarity 
between the generated image and Nrea. Similarly, the same 
process will be used for training and calculation for GR2S and 
DR. Therefore, DATN can realize the mutual translation 
between real and synthetic noise images through a large 
number of unpaired datasets, thereby improving the 
generalization performance of CWADN in real noise samples. 

D. Loss function 

In order to obtain the best training effect of each functional 
module and improve the convergence ability and subsequent 
calculation accuracy of network denoising learning, this paper 
analyzes the loss of each sub-network in the proposed 
CWADN according to the task types and structural 
characteristics of different functional modules. The function 
has been specially designed. 

Image separation Losses 

We expect MPSN to separate three different kinds of noise 
Ni from composite noise. We train the MPSN in a supervised 
manner due to the synthetic training samples. Firstly, we 

calculate the mean square loss between MPSN result 
out

iN  

and ground truth 
gt

iN  

L
mse

MPSN = N
i

out - N
i

gt

2

2

 (4) 

Where i = {haze, rain, dark} represents the three noise 
conditions under haze, rain and low illumination, respectively. 
In order to prevent the noise separation process from 
destroying the information of non-noise areas in the original 

image, we use structural loss
MSPN

ssimL to constrain the distortion 

between 
out

iN and
gt

iN , and judge the image quality after 

noise separation. 

L
ssim

MSPN =1- SSIM(N
i

out ,N
i

gt )
 (5) 

Where SSIM is the image similarity calculation rule, which 
is based on the distribution of image data in the mean, variance 

and covariance, compared the difference between 
out

iN and
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gt

iN in lighting, contrast, and image structure, the computing 

process can be defined as: 
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Where out
 and gt  represent the mean of 

out

iN
and 

gt

iN
, 

2

out
 and 

2

gt  represent the variance of 

out

iN
and 

gt

iN
, 

,out gt  is the covariance of 

out

iN
and 

gt

iN
. c1 and c2 are tiny 

decimals, L is the dynamic range of pixel values. When the 
SSIM value equals to 1, it represents that the MPSN has strong 
image noise separation and quality restoration capabilities. 
Therefore, the total loss of MPSN can be expressed as follows: 

LMSPN = l
mse
L
mse

MSPN + l
ssim
L
ssim

MSPN

 (7) 

Where mse
 and ssim

 represent the trade-off of 

MSPN

mseL
 

and 

MSPN

ssimL
respectively. 

Image denoising Losses 

For MTDN, unsupervised training can enable the network 
to achieve denoising by reconstructing images. Still, the 
reconstructed images lose texture details, affecting the 
accuracy of subsequent target recognition, tracking and other 
advanced machine vision [17]. To solve this problem, we 
combine supervised and unsupervised learning, adopting a 
semi-supervised learning method to train MTDN. The 
unsupervised training process uses a generative adversarial 

loss. The style encoder dnE  maps the target domain image 

trgx  to the corresponding style code ( )dn trgs E x , and the 

generator dnG  integrates the original domain images srcx  and 

s. After reconstruction and denoising, the image ( , )dn srcG x s

is combined with the discriminator dnG  to get the adversarial 

loss of the denoising network, which is defined as: 

 (8) 

MTDN realizes the adaptive removal of various types of 

noise by learning the mapping function between srcx  and trgx . 

However, when only introduce an adversarial loss in the 
training process; it will cause the generator to confuse the 
discriminator to get a higher score, which will reduce the 
problem of the diversity of generated images, called mode 
collapse. In order to solve this problem, we add the cycle 

consistency loss; after translating image dnG to the source 

domain again, the result should be consistent with source 

domain image srcx , that is ( ( , ), *)dn dnsrc srcx G G x s s ，the 

above process can be expressed as: 

 (9) 

Where s* is the style code of the source domain image, that 

is, * ( )dn srcs E x . In addition, in order to make the style 

code s better guide the image reconstruction process, we 
introduce the style reconstruction loss on the basis of the 
above, which is similar to the cycle consistency loss. The style 

code s of the noise-free image is obtained after dnG ; when it is 

encoded by dnE  again, the output result should be less 

different from s, that is, * ( ( , ))dn dn srcs E G x s  , the style 

reconstruction loss is defined as follows: 

 (10) 

Through the above unsupervised loss, MTDN can recover 
images affected by three different noises of rain, haze and low 
illumination, respectively, and can effectively preserve the 
content information of the images. In order to further retain the 
details of the denoised image, we introduce a supervised loss 
based on the unsupervised loss to calculate the mean square 
error between the denoised image and its noise-free counterpart 
Iori and preserve the underlying texture information of the 
image by minimizing the pixel-by-pixel difference between the 
two. 

L
mse

MTDN =||Gdn(xsrc ,Edn(xtrg )) - Iori ||
2

2

 (11) 

In summary, the overall loss function of MTDN Loss can 
be expressed as follows: 

LMTDN = L
adv

MTDN + lstyL
sty

MTDN + lcycL
cyc

MTDN + lmseLmse
MTDN

 (12) 

Where, λsty, λcyc, and λmse are trade-off weights. During the 
training process, MTDN minimizes loss to realize the targeted 
removal of rain, haze and low illumination on the basis of 
retaining the target texture information. 

E. Image translation Losses 

Noise Ni can be divided into real noise Nrea
i
 and synthetic 

noise Nsyn
i
 that is Ni= {Nrea

i
, Nsyn

i
}, The training datasets of 

MPSN and MTDN are all synthetic samples, due to the 
problem of domain shift between different datasets; the 
removal effect of the model for real noise has decreased, so the 
loss function of DATN mainly solves the difference between 
the real noise domain and the synthetic noise domain. DATN 
contains three parallel transformation sub-networks, each of 
which is composed of generators GS2R, GR2S and 
discriminators DS, DR. For the real noise image xrea 
(xrea∈Nrea

i
), the GR2S(xrea) transformed by the generator can be 

closer to the synthetic noise image xsyn (xsyn∈Nsyn
i
). The 

adversarial loss can be expressed as: 
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LMTDN = L
adv

MTDN + lstyL
sty

MTDN + lcycL
cyc

MTDN + lmseLmse
MTDN

 (13) 

Similarly, the adversarial loss function of xsyn to xrea 
translation can be expressed as: 

 (14) 

In addition to the same principle as the denoising module, 
DATN adopts cycle consistency loss to alleviate the mode 
collapse problem. For the real noisy image xrea, after 
sequentially passing through GR2S and GS2R, the result 
should be close to the input image, that is, xrea ≈ GR2S (GS2R 
(xrea)), then the cycle consistency loss of DATN can be defined 
as: 

 (15) 

In order to further improve the details of the generated 
image and enhance the texture feature information of the 
image, we introduce the perceptual loss to measure the distance 
of the image before and after transformation in the perceptual 
feature space; it will not only be limited to the pixel space and 
the feature extraction will be carried out on the two through the 
convolutional neural network, but the transformed image will 
be constrained from the high-dimensional space to make it 
more stylistically the target domain image. 

 (16) 

Where, C, H, and W represent the feature map's channel 
number, height and width, respectively; φ is the feature 
extraction network. In this paper, VGG16 is used as the 
network basis, and the high-dimensional perceptual 
information provided by perceptual loss is used to enhance the 
high-frequency information of the converted image so as to 
improve the reconstruction effect of image details. 

In addition, the dark channel Dc (In) of the image with 
noise can represent the approximate location of the noise 
distribution in space [16], so this paper proposes the dark 
channel consistency loss, which limits the dark channel of the 
image before and after transformation. The L1 loss is used to 
ensure the consistency of the dark channels of the two so as to 
strengthen the network's ability to learn the law of noise 
distribution. Dark channel consistency loss is defined as: 

 (17) 

Where Dc is the dark channel computing process that can 
be defined as: 

D
c
(I ) = min

yÎW (x)
[ min
cÎ{r ,g ,b}

I c(y)]
 (18) 

Where x, y represents the coordinates of the pixel point; 

( )cI y represents the colour channel of the image I; W(x) 

represents the sliding window where the pixel point x is 
located. Therefore, the overall loss of DATN is defined as: 

LDATN = L
adv

DATN (GR2S ,DS )+ L
adv

DATN (GS2R ,DR ) + L
cyc

DATN (GR2S ,GS2R )+ L
pect

DATN + L
dc

DAYN

 (19) 

In summary, DATN can alleviate the domain shift problem 
and improve the generalization of models trained on synthetic 
samples in real scenarios. So far, the design of all loss 
functions of CWADN has been completed. By training the 
network to achieve the best convergence of the loss function, 
the adaptive denoising and information restoration of 
composite noise in images captured in real scenes can be 
realized. 

IV. IMPLEMENTATION 

In order to verify the adaptive denoising and image 
information restoration capabilities of the designed CWADN, 
this paper uses the noisy dataset to train and test the network. It 
compares its computing performance with the current state-of-
the-art denoising algorithms to prove the feasibility, accuracy 
and practicality of CWADN. 

A. Dataset 

Due to the lack of various types of natural weather noise 
image datasets so far, and it is impossible to get a real paired 
dataset, we design and build a synthetic natural noise dataset, 
namely Campus. The dataset contains 1009 images taken on 
Campus as noise-free samples. It augments the data through 
random cropping, inversion, etc., and according to the 
atmospheric physical model, by applying rain, haze and lower 
brightness on the noise-free samples. The method completes 
the construction of synthetic noise datasets. At the same time, 
in order to verify the self-adaptive denoising capability of 
CWADN for composite noise, we randomly generate three 
decimals with a sum of 1 as the proportional weight in the 
Campus dataset and mix the three noises of rain, haze and low 
illumination to generate different noises like Synthetic noise 
datasets with different types of noise and matching different 
natural environments. Finally, the obtained 2500 images are 
paired with the set noise type labels {clean, haze, rain, dark, 
compound}. Part of the paired data is shown in Fig. 6. In 
addition, we also randomly selected 1000 samples from the 
real datasets RESIDE, LOL, and SPA to further verify the 
computing power of the CWADN conversion module. 

B. Training Details 

The verification platform of this paper is a computer 
equipped with an NVIDIA GeForce RTX 3080 GPU. The 
algorithm is written in the Tensorflow framework and uses 
ADAM as the training optimizer. The batch size is set to 1, and 
the size of the input image is set to 256×256. The training 
process adopts two-stage training. In the first stage, MPSN, 
MTDN and DATN are trained, respectively. We train MPSN 
firstly, the epoch is set to 100, λmse=1.0, λssim=0.5, and the 
learning rate is set to 2×10

-4
; Then train the denoising network 

MTDN, with a total of 20k iterations, λsty, λcyc, λmse are 1.0, 1.0, 
0.8, respectively, and the learning rate decays linearly from 10

-
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4
 to 10

-6
; Finally, the conversion module DATN is trained, and 

the epoch is set to 150, The learning rate is set to 2×10
-4

. The 
second stage uses a small amount of real data sets to fine-tune 
the network and supervises the results of the current 
mainstream denoising algorithms as paired real data. In this 
process, all the models trained in the first stage are imported, 

and then the transformation and denoising network parameters 
are frozen. Only the parameters of the MPSN are updated for 
50 epochs. In the second training process, the real paired 
dataset we used is the results from the mainstream denoise 
algorithms. 

 

Fig. 6. Samples of the Campus dataset. 

V. RESULTS ANALYSIS 

A. Qualitative Experiment 

In this paper, in the real rain, fog, and low illumination 
scenarios, CWADN and mainstream algorithms in various 
fields (refer to DCP [18], Cycle GAN, AOD-Net[19] for 
dehazing capability; reference RESCAN [20] for dehazing 
capability, PReNet[21], CycleGAN for deraining capability; 
low illumination enhancement capability is compared with 
CycleGAN, EnlightenGAN, and Zero-DCE[22]), and the 
algorithm designed in this paper will be compared from the 
perspectives of intuitive visual qualitative and image data 
quantification respectively. The denoising results and 
computing power are analyzed and judged. 

Fig. 7, 8, and 9, respectively, show each algorithm's 
intuitive visual solution effects in processing images that are 
degenerated by real haze, rain, and low illumination. Fig. 7 
shows the result of the haze removal test of the real sample, 
from which it can be seen that after DCP calculates the area 
where the pixel value is close to the atmospheric light value 

and the sky area with low contrast, the image after the haze 
removal will have colour spots and colour shift problems; The 
image processed by CycleGAN loses more detailed 
information, and the restored image has low clarity; the image 
after AOD-Net dehazing is dark as a whole, and the fog noise 
in some areas is not completely removed; compared with the 
above algorithm, the saturation and brightness of the image 
after denoising by CWADN designed in this paper are more 
natural, and the details of the image are better restored. 

Fig. 8 shows the real sample's comparison test of the rain 
removal effect map. The test image will have rain noise, haze 
noise and mixed rain and haze noise at the same time. It can be 
seen from the test results that CycleGAN can filter rain noise 
and has a certain ability to remove fog noise, but the 
reconstruction of image texture information is relatively vague; 
Compared with RESCAN, the rain removal effect of PReNet is 
significantly improved, but it does not have the ability to 
remove rain and fog; compared with other algorithms, 
CWADN has the ability to remove composite noise, it also has 
a suppressive effect on haze while removing the rain. 

 
Fig. 7. Comparison of dehazing results on the real-world samples. 
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Fig. 8. Comparison of deraining results on real-world rain samples. 

 

Fig. 9. Comparison of low-light enhancement results on real-world low-light samples. 

 

Fig. 10. Comparison of composite noise removal results on Campus dataset. 

Fig. 9 shows the low-light enhancement test results under 
the real sample. It can be seen that the brightness improvement 
of CycleGAN in some areas is not obvious enough; the 
saturation of the image enhanced by Zero-DCE is improved, 
but the overall brightness is low; after EnlightenGAN and 
CWADN are enhanced. The image achieves good results in 
both saturation and brightness. 

In addition, to further verify the composite noise removal 
capability of CWADN, we also use the composite noise images 
in the Campus dataset for testing. In this test, EnlightenGAN, 
AOD-Net and PReNet were selected for comparison, and the 
test results are shown in Fig. 10. It can be seen that the image 
restored by EnligtenGAN is overexposed; the overall 
brightness of the denoising result of AOD-Net is low, and the 

removal effect of dense haze is not ideal; PReNet can 
effectively remove the rain noise in the image, but there is still 
a lot of haze noise residual. The above three algorithms cannot 
effectively remove the image's compound noise. We propose 
that CWADN is closer to the labelled data image regarding 
overall visual effect and texture detail retention, which verifies 
CWADN's denoising ability on composite natural environment 
noise. 

To sum up, through testing on real and synthetic natural 
noise samples, it can be seen that the CWADN proposed in this 
paper can remove various types of natural environment noise 
and various types of mixed noise in any proportion, and its 
noise adaptive denoising ability can reach even exceeding the 
effect of some mainstream algorithms, the total subjective 
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image performance verifies the mixed noise adaptive denoising 
capability of CWADN. 

Intuitive visual qualitative analysis can only judge the 
denoising and image restoration capabilities of the algorithm 
from the perspective of macroscopic morphology, and this 
process is only for the denoising task with the human eye as 
the observation terminal. For advanced machine vision 
algorithms such as target recognition and tracking, subsequent 
calculations need to be performed from the pixel-level data 
direction after image denoising is completed. In order to further 
verify the denoising and information restoration capabilities of 
CWADN at the digital image level, we will further carry out 
quantitative analysis and evaluation of denoised image data on 
the basis of the above denoising results. 

B. Quantitative Test 

We use Peak Singal to Noise Ratio (PSNR) and Structural 
Similarity (SSIM) as evaluation indicators to quantitatively 
verify CWADN and comparison algorithms on three public 
datasets of SOTS, Rain100H and LOL. The results are shown 
in Table I, Table II and Table III, respectively. In addition, this 
paper also tested the effect of each algorithm in removing 
composite noise on the Campus dataset, and the results are 
shown in Table IV. 

TABLE I.  QUANTITATIVE COMPARISON OF DEHAZING RESULTS ON 

SOTS 

Method PSNR SSIM 

DCP 15.49 0.64 

CycleGAN 14.65 0.48 

AOD-Net 19.06 0.85 

Our method 19.21 0.84 

TABLE II.  QUANTITATIVE COMPARISON OF DERAINING RESULTS ON 

RAIN100H 

Method PSNR SSIM 

CycleGAN 24.22 0.77 

RESCAN 26.36 0.79 

PReNet 26.77 0.86 

Our method 26.72 0.86 

TABLE III.  QUANTITATIVE COMPARISON OF LOW-LIGHT ENHANCEMENT 

RESULTS ON LOL 

Method PSNR SSIM 

CycleGAN 7.83 0.15 

Zero-DCE 14.86 0.59 

EnlightenGAN 17.48 0.68 

Our method 16.51 0.63 

It can be seen from the results in the table that in the 
dehazing results on the SOTS dataset, the PSNR of CWADN is 
19.21dB, which is the best, and the SSIM index is slightly 
lower than that of AOD-Net; in the rain removal experiment of 
Rain100H, CWADN and PReNet. The SSIM achieved the best 
value of 0.86 among all comparison algorithms; in the low-
light enhancement comparison results of LOL, the two 
indicators of EnlightenGAN achieved the best results, and the 
two indicators of CWADN were slightly lower than those of 
EnlightenGAN. In the noise-free results, CWADN achieves the 

best results in both PSNR and SSIM, with 25.48dB and 0.88, 
respectively. In Table I, Table II, and Table III, although some 
indicators of the CWADN designed in this paper are slightly 
lower than the current mainstream algorithms, the gap between 
the indicators of CWADN and the mainstream optimal 
algorithms is small, and the intuitive visual performance and 
image data calculation are not consistent. No impact. At the 
same time, Table IV verifies that CWADN has achieved the 
best performance in the complex noise denoising task, which 
proves that the algorithm has the ability of all-weather adaptive 
denoising and is more practical, generalization and denoising 
than other mainstream algorithms, adaptability. 

To sum up, the CWADN proposed in this paper shows 
good denoising and image restoration capabilities in 
quantitative experiments, some quantitative detection 
indicators of denoising exceed the current mainstream 
algorithms, and the rest performance is on par with the 
mainstream algorithms. In addition, the experiments on the 
Campus dataset show that the ability of CWADN to remove 
mixed noise breaks through the limitation that traditional 
algorithms are difficult to remove composite noise. Combined 
with the intuitive visual qualitative analysis results, it is proved 
that the algorithm in this paper has good noise adaptive 
filtering and information restoration capabilities in single-type 
noise directional denoising, multi-type noise denoising and 
mixed noise denoising tasks, which verifies the performance of 
the algorithm that is feasibility, practicality and efficiency. 

C. Ablation Study 

In order to verify the effectiveness of the components 
added in MPSN and the loss function added in DATN, a series 
of ablation experiments are established in this paper. Therefore, 
a series of ablation experiments are established to test different 
feature extraction strategies and loss function convergence 
methods. The effects on MPSN and DATN are, respectively, to 
verify network performance improvement by the method 
introduced in this paper. 

The effectiveness of the components added in the 
separation network versus the loss function added in the 
transformation module. 

For MPSN, this paper uses UNet as the basis and gradually 
increases CAB, SAM and multi-stage strategies. The 
performance impact of different feature extraction strategies on 
MPSN is shown in Table IV. 

It can be seen from Table IV that after the introduction of 
CAB, SAM and multi-stage strategies in MPSN, the network 
performance in PSNR and SSIM is increased by 5.5% (1.555) 
and 0.43% (0.004), respectively, compared with the standard 
UNet, which proves that the effectiveness of the feature 
extraction enhancement strategy introduced in this paper. 

TABLE IV.  ABLATION RESULTS FOR SEPARATION NETWORK 

Method Multi-stage SAM PSNR SSIM 

UNet - - 28.649 0.936 

UNet+CAB - - 28.661 0.821 

UNet+CAB √ - 28.685 0.852 

UNet+CAB √ √ 30.206 0.94 
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TABLE V.  ABLATION RESULTS FOR TRANSLATION NETWORK DATN 

Loss PSNR SSIM 

Ladv 13.012 0.463 

Ladv +Ldc 13.961 0.496 

Ladv +Lpect 23.389 0.923 

Ladv +Ldc +Lpect 25.632 0.943 

For DATN, based on the unsupervised adversarial loss 
Ladv, this paper adds the perceptual loss Ldc and the dark 
channel consistency loss Lpect designed in this paper. The test 
results are shown in Table V. 

It can be seen from Table V that the two added loss 
functions are helpful to the improvement of network 
performance, and when the two loss functions of Ldc and 
Lpect are added at the same time, PSNR and SSIM are nearly 
doubled compared with the original network. To sum up, by 
introducing different feature extraction strategies and loss 
functions into MPSN and DATN, this paper effectively 
enhances the network denoising performance and convergence 
state and has a significant improvement effect. 

 Schemes follow another format (see Fig. 2). If there are 
multiple panels, they should be listed as (a) a Description of 
what is contained in the first panel; (b) a Description of what is 
contained in the second panel. Figures should be placed in the 
main text near the first time they are cited. A caption on a 
single line should be centered. 

VI. CONCLUSIONS 

In this paper, the composite weather adaptive denoising 
network (CWADN) is introduced to address the challenge 
posed by complex mixed weather interference on natural 
imaging. CWADN leverages cascaded autoencoders with an 
attention mechanism to effectively separate distinct noise 
components within mixed noise. Through the adoption of an 
image translation strategy, a multi-domain denoising network 
is constructed, enabling adaptive denoising across various 
noise types. The adaptive domain network structure narrows 
the gap between real and synthetic noise, thereby enhancing 
the model's generalization capability in real-world scenarios. 
This approach combines both supervised and unsupervised 
techniques during training, yielding excellent results. 
Experimental findings demonstrate the algorithm's 
effectiveness in removing single-type and multi-type random 
mixed noises in real shooting environments while preserving 
detailed information in key areas of interest. In comparison to 
traditional algorithms, CWADN exhibits significant 
improvements in both PSNR and SSIM metrics, highlighting 
its robust adaptive denoising and image information restoration 
capabilities. 

VII. LIMITATIONS AND PROSPECTS 

While the white-light image enhancement under complex 

weather conditions is explored in this paper, however，it has 

been hampered by the limited availability of diverse white-
light images captured in varying weather conditions within the 
same scene. The constrained data volume and scene uniformity 
have resulted in limited generalization of the training 
outcomes. Future work aims to address these challenges 
through extensive data collection efforts, particularly during 

nighttime, to curate datasets essential for algorithms in this 
domain. 

Furthermore, considering the difficulties associated with 
training GAN networks and the inherent blurriness and 
uncertainties in generated images, the intention is to replace 
them with state-of-the-art diffusion models in subsequent 
research. Additionally, the introduction of LLM and video 
comprehension models into the framework is expected to yield 
superior image generation results, potentially enhancing the 
quality of generated images and overall performance. 
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