
(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 14, No. 9, 2023

162 | P a g e

www.ijacsa.thesai.org

An Improvement for Spatial-Temporal Queries of

ATMGRAPH

ZHANG Zhiyuan1, HAN Boyang2

School of Computer Science and Technology, Civil Aviation University of China, Tianjin, China, 300300

Abstract—As a knowledge graph for the field of ATM (Air

Traffic Management), ATMGRAPH integrates aviation

information from various sources, and provides a new way to

comprehensively analyze ATM data, but the storage schema of

ATMGRAPH is inefficient for trajectory-related queries which

have typical spatial-temporal characteristics, thus cannot meet

the application requirements. This paper presents an improved

storage model of ATMGRAPH, specifically, we design a cluster

structure to connect trajectory points and spatial-temporal

information to speed up trajectory-related queries, and we link

flights, airports, and weather information in an effective way to

speed up weather-related queries. We create a dataset of about

10,000 real domestic flights, and build a knowledge graph of it

which contains about 11.66 million triplets. Experimental results

show that ATM knowledge graph constructed by this storage

model can significantly improve the efficiency of spatial-temporal

related queries.

Keywords—Air traffic management; knowledge graph; storage

model; spatial-temporal query; ontology

I. INTRODUCTION

With the rapid development of the economy, people are
willing to travel by air due to its efficiency and convenience.
The civil aviation industry generates a large amount of data
every day, coming from multiple departments such as airports,
airlines, Air Traffic Managements (ATMs) and meteorological
bureaus, with varying data forms and coding rules, make it a
great challenge for semantic data query and analysis. As
Aviation data are scattered in different systems, integrating
them into a big semantic database seems to be a good idea.
The most representative work is ATMGRAPH (Air Traffic
Management Knowledge Graph) constructed by NASA. This
KG (Knowledge Graph) integrates multiple aviation
information and is benefit for semantic data analysis. Flight
trajectory information accounts for the vast majority in
ATMGRAPH, it has obvious spatial-temporal characteristics,
and data analysis on trajectory is often about spatial and
temporal. However, in practical applications, ATMGRAPH
encounters great scale problems, especially when facing
spatial-temporal related data queries, i.e. its performance
decreases dramatically for huge data volumes.

There are few works to address this problem, in order to
fill this research gap, this paper conducts on spatial-temporal
query optimization of ATMGRAPH. A knowledge graph can
be logically divided into two layers: the data layer and the
schema layer. The data layer stores knowledge facts, and the
schema layer defines ontology to standardize a series of fact
expressions in the data layer [7].This paper designs an
improved storage model for ATMGRAPH to solve the

problem of slow and inefficient processing of spatial-temporal
related queries. Specifically, we design a cluster structure to
connect trajectory points and spatial-temporal information to
speed up trajectory-related queries, and we link flights,
airports, and weather information in an effective way to speed
up weather-related queries. Experimental results on real
aviation data show that the query efficiency using our model is
significantly improved in typical application scenarios.

The rest of this paper is organized as follows. Section II is
the related work. Section III is the problem definition, which
introduces NASA's original ATMGRAPH model and analyzes
its shortcomings in spatial-temporal related queries. In Section
IV, we introduce our improved ATMGRAPH model in detail.
Section V is the experimental results and discussion, and we
conclude our work in the final section.

II. RELATED WORK

With the rapid development of the global transportation
industry, air traffic flow has significantly increased. There
were lots of research works on air traffic management such as
airspace saturation, flight accidents, flight delays, and air
control difficulties. The Federal Aviation Administration
(FAA) used big data analysis to identify operational patterns,
which can support the identification and prediction of airport
data [2]. Rezo [3] introduced a paradox in aviation data
processing and proposed a probable solution. Dorota [4]
discussed the requirements of aviation data in Polish
regulations and gave a practical proposal. Keller et al. [5]
introduced a system for combining heterogeneous air traffic
management with semantic integration techniques, which
transforms data from disparate source formats into a unified
semantic representation of ontology-based triplets. Liu et al. [6]
implemented seamless communication and mutual
cooperation between civil aviation systems through
information sharing, which could support collaborative
decision-making of air traffic management and improve the
capacity of airspace systems. Lu et al. [7] proposed an
integration architecture of cloud computing and blockchain for
ATM systems, in which it pointed out the advantages of the
new technology architecture over the traditional architecture
of existing ATM systems. Europe and the United States are
trying to use ontology technology to integrate and fuse
aviation data from multiple sources, so as to provide a unified
data exchange mechanism with semantic information for all
participants in the aviation industry. For example, the Single
European Sky Program launched the BEST project

(http://www.project-best.eu), which designed AIRM (ATM
Information Reference Model) and constructed an ontology

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 14, No. 9, 2023

163 | P a g e

www.ijacsa.thesai.org

model for aeronautical and meteorological information [8]. At
the same time, NASA constructed ATMONTO (ATM
Ontology), involving ATM core data such as aircraft, flight,

airport, airline, route, and navigation facility [9]. It includes

over 150 classes, over 150 datatype properties, and over 100
object properties. Based on ATMONTO, NASA also built
ATMGRAPH, a knowledge graph containing 260 million

triplets [10]. Many information of ATM has temporal and

spatial characteristics, e.g. when an airport is temporarily
closed due to snow conditions, the airport operation status in
KG should be changed to CLOSED, and the start and end time

should also be indicated. Therefore, Schuetz et al. [11]

proposed the concept of Contextualized Knowledge Graphs by
adding semantic dimensions such as time, space, and data
source in KG to solve the problem of information distribution

and acquisition for all participants in the aviation industry.

III. PROBLEM DEFINITION

As the latest achievement of symbolism, knowledge graph
is an important milestone of artificial intelligence. Knowledge
graph can provide valuable structured information by data
integration and standardization, and it has been widely used in
information retrieval, automatic question answering, decision
making and other fields, and it is also an important basic
technology to promote data mining and intelligent information
services [12]. With the growing scale of the knowledge graph,
data management issues become increasingly prominent [13].
KG is generally divided into general knowledge graph and
domain knowledge graph, and the latter usually needs to
carefully design the storage model according to the industry
data's characteristics in order to meet the retrieval
requirements under large-scale data.

Consider the following two representative queries in ATM：

 Find all flights passing through the ZBAAAR20 sector
of Beijing on July 20, 2022 and landing at Beijing
Capital International Airport under strong wind
conditions.

 Find which sector controlled the most flights between
9am and 10am on July 16, 2022.

ATMGRAPH consists of one month's flights
(approximately 100,000 flights) and weather data in the New

York metropolitan area ， which includes eight classes:

airspace structure and facilities, flight routes and procedures
about takeoff and landing, traffic management measures,
flight carriers and aircrafts related, airport and ground
operations, weather, sequence related, and spatial-temporal
related. Fig. 1 is a segment of ATMGRAPH, with a specific
flight instance at its center: UAL535, which took off at
00:19:00 on July 15, 2014. Connected to it includes the
departure and arrival airport of the flight, the carrier airline,

the aircraft model, the planned route and the actual route.
The lower part of the figure represents the track points of the
flight, each contains information such as time, longitude,
latitude, altitude, speed etc. (not listed in the figure for
brevity). Although there are classes about weather and sectors
in ATMGRAPH, getting the results of the two representative
queries above is very inefficient, cause it must check all points

one by one whether it matches the corresponding constraint.
For example, when querying the workload of a sector during a
certain period of time (i.e. the number of flights flying within
the sector during this time), at first we must find all track
points within that period of time, then for all of them we need
to check whether their positions are within that sector, and
finally output the corresponding flight information. Obviously,
these kinds of operations are quite inefficient.

BOEING-

757 model

222

Aircraft

N589UA

Flight

UAL535 on

2014-07-15

00：19：00

KLAX

Airport

KJFK

Airport

United

Airlines

Actual

Route for

UAL535 on

2014-07...

Planned

Route for

UAL535 on

2014-07...

has aircraft model

aircraft flown

arrival airport departure airport

operated by

has planned route has actual route

TrackPoint

for

UAL535 at

2014-07-15

00：19：...

hasFirstItem … …hasFirstItem

hasnextItem

… …

hasnextItem

Fig. 1. Flight information storage segment.

This paper designs an improved storage model, which not
only considers the strongly correlated characteristics between
flight and weather information, flight and spatial-temporal
information, but also links the trajectory points with spatial-
temporal entities, so as to speed up spatial-temporal related
queries. Experimental results on real flight data show that our
proposed model greatly improves the query speed for
representative queries and for some queries which the original
model may take hours, our model can finish them in just a few
seconds.

IV. IMPROVED STORAGE MODEL

Although there are already eight major classes in
ATMGRAPH to represent various knowledge in ATM field,
some of them are relatively independent, making it difficult to
obtain results using a single query statement involving
multiple classes. The nodes of flight trajectories in
ATMGRAPH account for nearly 70% of the entire graph, and
each track point is only connected in chronological order
using the hasNextTrackPoint relationship. This kind of storage
model not only occupies a large amount of storage space but
also reduces query efficiency. On the premise of being
consistent with the original structure of the ATMGRAPH, this
paper extends it to express more spatial-temporal information
without taking up more storage space.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 14, No. 9, 2023

164 | P a g e

www.ijacsa.thesai.org

Fig. 2 illustrates our improved storage model, where
ellipses represent the newly added classes and dashed edges
represent the newly added relationships. TimeInterval is a new
class for standard time segment, which connects the
Trackpoint class through belongToTimeInterval relationship
to express track points with the standard time segment
information. The relationship belongToSector connects the
Trackpoint class with the Sector class representing which
sector the track point is located in. The new class
WeatherInterval represents weather conditions of each airport
in different time periods, and it also connects to the Flight
class through two new edges: hasArriveWeather and
hasDepartureWeather. The class ActualRoute represents the
actual flight route, which contains the first and last track
points of the trajectory through the edge of hasFirstTrackpoint
and hasLastTrackpoint.

Trackpoint

ActualRoute

AirportFlight

belongToTimeInterval

Sector

belongToSector

hasFirstTrackpoint hasLastTrackpoint

hasActualRoute

hasArriveAirport

hasDepartureAirport

hasWeatherhasDepartureAirport

hasArriveWeather

TimeInterval

WeatherInterval

Fig. 2. Improved storage model of ATMGRAPH.

Through this storage model, track points has a direct
connection to time and sector information, thus alleviates the
problem of inefficient spatial-temporal related queries in the
original ATMGRAPH. At the same time, weather information
also has a direct connection to flights, which can solve the
problem of slow query speed for weather and flight related
queries.

A. Standard Time Interval

In the real world, many facts have time attributes, which
play an important role in knowledge graph [14]. For example,
the fact represented by a triplet (Steve Jobs, diedIn, California)
is that Steve Jobs died in California, which occurred on
October 5, 2011; The fact (Ronaldo, playing for A.C. Milan)
was only valid between 2007 and 2008. In air transportation,
when an aircraft performs a complete flight mission, time

information cannot be ignored. In our experiment, the flight
data comes from ADS-B, which broadcasts real-time
information including aircraft position, speed, identification
code, flight number, and air-ground status to ATC (Air Traffic
Control system) or other aircrafts through the air-to-air and
air-to-ground data links [15]. Table I shows an ADS-B data
fragment that contains three track points of flight EPA6206
during its mission on July 27, 2020. The specific information
includes the flight number, aircraft number, and the current
position (longitude, latitude, altitude), speed, heading, and
data transmission time expressed in UTC (Universal Time
Coordinated).

In ATM data analysis, usually we do not care much about
the instantaneous state of an aircraft at a specific time point,
and the time unit in queries is mostly hours or days. For
example, finding the number of flights flying at altitudes
above 6000m from 8:00 to 10:00 on July 10, 2022. To quickly
retrieve the flight status of many flights within a same time
segment, creating standard time intervals seems to be a
feasible and effective method. This paper takes ten minutes as
a standard time interval. If it is too long, it will lead to too
many track points within a time interval, which will affect the
query performance. If it is too short, it will cause too many
TimeInterval nodes in the graph, and waste the storage space.
Track points belonging to a same time interval are all linked to
the TimeInterval entity representing that time segment,
forming a cluster structure. Fig. 3 shows some track points of
flight KNA8202 and flight CSZ9106 during the time interval
from 7:00 to 7:10 on July 18, 2022. It can be seen that this
cluster structure can gather all track points within the standard
time interval without damaging the original relationships in
the graph. Due to the fact that each track point is connected to
its corresponding standard time interval node, related track
points can be directly retrieved, without checking all track
points one by one to judge whether they meet time constraints.
This provides a more efficient way for time related query tasks.

The process of adding standard time intervals is as follows:
Create all standard time intervals in the graph, and then
calculate the corresponding TimeInterval for each track point
according to UTC Time, and connect it with the relationship
belongToTimeInterval. After that, the above query can be
solved through a single Cypher query statement:

match(n:Trackpoint)-[r:belongToTimeInterval]-
(m:TimeInterval)

where n.height >= 6000

and m.startTime >= 2022/07/10 08:00:00

and m.endTime <= 2022/07/10 10:00:00

TABLE I. ADS-B DATA SEGMENT

Fnum UTC Time Latitude Anum Angle Speed Height Longitude

EPA6206 2022/7/27 11:59:16 30.5709 B204N 21 361.14 1013.46 103.94346

EPA6206 2022/7/27 11:59:31 30.61871 B204N 22 355.584 1226.82 103.96566

EPA6206 2022/7/27 11:59:46 30.63263 B204N 22 357.436 1325.88 103.97208

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 14, No. 9, 2023

165 | P a g e

www.ijacsa.thesai.org

2022/07/18

07:00:00-

2022/07/18

07:10:00

KNA8202

2022/07/18

07:08:32

KNA8202

2022/07/18

07:08:21

CSZ9106

2022/07/18

07:05:18

CSZ9106

2022/07/18

07:05:01

CSZ9106

2022/07/18

07:04:48

KNA8202

2022/07/18

07:08:12

belongToTimeInterval

belongToTimeInterval

Fig. 3. Temporal cluster structure based on TimeInterval.

B. Spatial Sector Clusters

Spatial is an essential attribute of geographic data, which is
mainly used to describe the spatial features of geographical
entities, including position, shape, and spatial relationships
[16]. Sector is a major geospatial entity in ATMGRAPH,
usually formed as a polygon with height range, and the
polygon is consisted of multiple points with longitude and
latitude coordinates connected from head to tail. Sector is a
fundamental unit of air traffic management services and is an
important component for airspace planning and allocation [17].
In the field of ATM, many typical queries focus on the
workload of a sector over a period of time (i.e. the number of
flights in that sector within a specific time period). For
example, finding the workload of sector ZBAAAR18 from
8:00 to 10:00 on July 10, 2022.

Traditional way to answer this kind of question in
ATMGRAPH is to check trajectory points one by one if it is
located in the given sector, which is very time consuming. To
address this, this paper takes the sector as a central node and
connects all track points within the sector to it, thus forming a
cluster structure. When executing above queries, we only need
to search the corresponding sector first, and find all track
points connected to it. After filtering out duplicate flight
numbers, the query results can be obtained immediately. Due
to the fact that adjacent trajectory points may belong to two
different sectors, how to determine whether a track point is
within a sector? The ray crossing number method is generally
used to determine whether a point falls inside a polygon.
Specifically, firstly we draw a ray emitted from that point, and
then we calculate the number of intersections between the ray
and the polygon boundary: if the number of intersections is
odd, then the point is inside the polygon, otherwise it is
outside the polygon. In Fig. 4, a ray passes through an
irregular polygon, and if the starting point of the ray is located
in the thin line section, it has an even number of intersections
with the polygon, and if it is located in the thick line section, it
has an odd number. According to the above method, the points
in the thick line section are inside the polygon, and the points
in the thin line section are outside.

Fig. 5 shows a cluster structure fragment centered on
sector ZBAAAR18 in the Beijing flight control area, with
surrounding nodes of trajectory points. The names displayed
in the nodes are the flight numbers and instantaneous times.

Similar to the temporal cluster, this structure also does not
disrupt the original track point connection relationship in the
graph. When conducting a query about workload of an air
traffic control sector, it is possible to directly find the Sector
node and use the belongToSector relationship to reversely find
its connected track points, and it is not necessary to calculate
the position of each track point any more, thus greatly
reducing the query time.

outside

inside out

in

in

out
in

out

out

Fig. 4. Ray crossing number method to determine whether a point is inside

the polygon.

ZBAAAR18

CES5104

2022/07/21

09:08:12

CES5107

2022/07/22

12:43:28

CES5104

2022/07/21

09:08:00 CES5104

2022/07/21

09:07:44

CES5107

2022/07/22

12:43:37

CES5107

2022/07/22

12:43:51

belongToSector

belongToSector

Fig. 5. Spatial cluster structure based on sector.

The process of adding spatial sector nodes is as follows:
First, import the information of all sectors into the knowledge
graph, then use ray crossing number method to calculate each
track point to judge its relationship to the sectors, and finally
connect each track point with its sector through the
belongToSector relationship. With the spatial cluster structure,
it is very easy to answer sector related queries. For example,
when solving the query mentioned in this section, we can
obtain the results in Neo4j by a single Cypher query statement:

match(n:Trackpoint) -[r1:belongToTimeInterval]-
(m:TimeInterval)

where m.startTime >= 2022/07/10 08:00:00

and m.endTime <= 2022/07/10 10:00:00

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 14, No. 9, 2023

166 | P a g e

www.ijacsa.thesai.org

with n match(n)-[r2:belongToSector]-
(o:sector{ name:’ZBAAAR18’})

return count(distinct(n.fnum))

After adding temporal and spatial clusters to ATMGRAPH,
all track points are connected with their corresponding
temporal and spatial information. Fig. 6 shows a segment
about the connection relationship between TimeInterval,
sector and Trackpoint of our improved knowledge graph. At
this point, when considering a query like 'Which sector
controlled the most flights between 9:00 am and 10:00 am on
July 16, 2022', we can simply find the six TimeIntervals that
represent this period of time, filter out all the track points
within them, and then count the number of flights included in
each sector to obtain the final results.

C. Airport Nodes with WeatherIntervals

Weather conditions are very important for aircraft takeoff
and landing. For the first representative query mentioned in
Section II about finding all flights that pass through the
ZBAAAR20 sector and land at Beijing Capital International
Airport (BCIA) under strong wind conditions on July 20, 2022,
the usual processing method requires two query operations
(querying the time span of strong wind conditions at BCIA
that day, and querying all flights that land at BCIA that day)
and one comparison operation (check those flights one by one
if its landing time is in the time period of strong wind). If the
weather information when an aircraft arrives at or departures
from an airport is directly stored in the knowledge graph, then
the speed of answering such questions will be significantly
improved.

This paper adds weather information to each airport based
on the class WeatherInterval, and each flight is also directly
connected to its weather information during departure and
arrival. Considering that weather generally does not change
frequently in a short period of time, unlike TimeInterval, the
span of the WeatherInterval is set to 12 hours. As shown in
Fig. 7, flight CHH7810 landed at Beijing Capital International
Airport on July 18, 2022, and the weather when landing was
rainy. Airports may have different weather conditions at
different time periods and are connected to WeatherInterval by
the relationship of hasWeather. Flights are also connected to
WeatherInterval by relationships of hasArriveWeather and
hasDepartureWeather. Using the new schema, when
processing queries related to weather conditions, there is no
need to match the landing time and corresponding weather
information of flights one by one anymore, and it can be
obtained directly through WeatherInterval. For the typical
query mentioned in this section, we can obtain the results in
Neo4j by a single Cypher query statement:

match(n:flight)-[r:arriveAirport]-(m:Airport{code{’PEK’})

where n.endtime >= 2022/07/20 00:00:00

and n.endtime < 2022/07/21 00:00:00

with n match(n)-

[:hasArriveWeather]- (:weatherInterval{weather：’strong

wind’})

Fig. 6. A fragment of our improved ATMGRAPH.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 14, No. 9, 2023

167 | P a g e

www.ijacsa.thesai.org

Beijing
capital

international
airport

Rainy
2022/07/18

00:00:00-
12:00:00

Sunny
2022/07/25

00:00:00-
12:00:00

Cloudy
2022/07/18

12:00:00-
24:00:00

Strong wind
2022/07/17

00:00:00-
12:00:00

Sunny
2022/07/22

12:00:00-
24:00:00

CHH7810

arriveAirport

hasWeather

hasWeather

hasArriveWeather

...

Fig. 7. A fragment of flights, airports and WeatherIntervals.

V. EXPERIMENTAL RESULTS AND DISCUSSION

The experimental environment is a 64bit Windows system
(Intel i7-7700HQ CPU, 16GB memory), 4.2.2 community
version Neo4j, implemented using Python language.

We crawled ADS-B data from varflight website
(https://www.variflight.com) about 10,000 flights from July
16 to 27, 2020. The data of airports, flight information regions,
and sectors are from AIP (Aeronautical Information
Publication), and weather data is randomly set. Using these
data, we built ATMGRAPH of two versions: NASA's original
version and our improved version, with the latter containing
5.5 million nodes and 11.66 million relationship edges. We
then evaluate their performance using three typical query
cases, and the results are shown in Table II. The evaluation
metric is query time. The first query case is only temporal
related, the second query case is spatial-temporal related, and
the third query case is about time, airport, and weather
condition.

Table II shows the comparison results between NASA's
original ATMGRAPH and our improved version on
commonly used spatial-temporal related queries. The first is a
common time related query in ATM data analysis. Using our
storage model, due to the existence of standard time segment
clusters, it is very easy to find all track points belonging to the
TimeInterval from 9:00 to 12:00 on July 27, 2020. On the
contrary, for the original ATMGRAPH we must compare the
UTC value in each track point. From the results in Table II,
we can see that our model is about eight times faster than
ATMGRAPH. The second query adds spatial constraint to the
first one. For ATMGRAPH, because there is no direct
connection between track points and flight information
regions, to get the query results, we must calculate all track
points in the graph and judge the topological relationship
between each track point and each flight sector. Because the
number of track points is very huge and grows lineally with
flight numbers, plus the position calculation is also very
complex, thus it takes hours to obtain the query result. After
adding a spatial cluster structure in our improved model, track
points in the specified region can be directly found through the
relationship belongToSector, and then the corresponding
number of flights can be quickly obtained. The third query is
related to the weather conditions at landing time. For this
query, our model can directly get the flights that meet the
conditions through a simple Cypher statement, while the
original ATMGRAPH can be very complex: it should first
identify the flights that land at the airport, and then find
weather information of the airport during the landing time of
the flights. Due to the fact that weather and flights in the
original ATMGRAPH are not connected, the analyzer must
manually check these flights one by one which is very time
consuming, or develop a program to handle it which is very
inconvenient. The result of ATMGRAPH for the 3rd query in
Table II is gotten in a program way, which is about two
seconds, while our model only uses five milliseconds, more
than 400 times faster.

The above experimental results and discussion indicate
that adding the spatial-temporal cluster structure proposed in
this paper to ATMGRAPH can quickly process queries related
to spatial-temporal features and improve data analysis speed.

TABLE II. PERFORMANCE COMPARISON OF TYPICAL QUERIES

Query cases ATMGRAPH Version Query Time

Find the number of flights from 9:00 to 12:00 on July
27, 2022

ORIGINAL 3748ms

IMPROVED 421ms

Find the number of flights passing over Beijing on

July 25, 2022

ORIGINAL 2.5h

IMPROVED 1346ms

Find the number of flights landed at Beijing Capital

International Airport from July 16 to 27, 2022

ORIGINAL 2160ms

IMPROVED 5ms

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 14, No. 9, 2023

168 | P a g e

www.ijacsa.thesai.org

VI. CONCLUSION

In order to solve the problem of low efficiency of spatial-
temporal related queries in ATMGRAPH, this paper proposes
an improved storage model, which uses spatial-temporal
clusters to represent flight information regarding time and
location. In our improved model, trajectory points are
connected to standard time intervals and sectors, and flight
and airport entities are connected to weather intervals.
Experimental results show that after adding the spatial-
temporal cluster structure to the knowledge graph, the speed
of relevant queries is greatly improved.

Due to the fact that the track data in ATMGRAPH
accounts for approximately 70% of the total data volume, this
article only focuses on improving the mode layer and cannot
solve the redundancy problem of a large amount of track data.
Aircraft trajectory points are stored as an unidirectional chain
structure in Neo4j, and we can study a new storage structure
for this typical kind of data in the future to save storage space
and to optimize data query speed.

REFERENCES

[1] Z. Xu, Y Sheng, L He, and Y Wang, Review on knowledge graph
techniques[J]. Journal of University of Electronic Science and
Technology of China, 2016, 45(04): 589-606. (in Chinese)

[2] FAA.Terminal area forecast (TAF) [EB/OL]. [2017-05-18].
https://taf.faa.gov

[3] R. Zvonimir, M. Tomislav, S. Sanja, and T. Andrea, A Paradox in
aeronautical data processing: A case study review[J]. Case Studies on
Transport Policy, 2022, 10(2).

[4] D. Marjańska, Aeronautical data requirements and geodetic data – a case
study on regulations in Poland[J]. Aircraft Engineering and Aerospace
Technology, 2022, 94(5).

[5] R. M. Keller, S. Ranjan, M. Wei, and M. M. Eshow, “Semantic
representation and scale-up of integrated air traffic management
data,” SBD '16, 2016.

[6] L. Liu, H. Yang, and Y. Huang, Sharing big data storage for air traffic
management[C]. 2022 IEEE 8th International Conference on Computer
and Communications (ICCC), Chengdu, China, 2022, 1199-1203, DOI:
10.1109/ICCC56324.2022.10065656.

[7] X. Lu, and Z. Wu, “ATMCC: Design of the Integration Architecture of
Cloud Computing and Blockchain for Air Traffic Management.” 2021
IEEE Intl Conf on Parallel & Distributed Processing with Applications,
Big Data & Cloud Computing, Sustainable Computing &
Communications, Social Computing & Networking
(ISPA/BDCloud/SocialCom/SustainCom) (2021): 37-43.

[8] I. Kovacic, D. Steiner, C. Schuetz, B. Neummayr, and S. Wilson,
Ontology-based data description and discovery in a SWIM
environment[J], ICNS 2017, 1-22, doi: 10.1109/ICNSURV.
2017.8012006.

[9] R. M. Keller, The NASA air traffic management ontology: Technical
Documentation Technical Memo NASA/TM-2017-219526, National
Aeronautics and Space Administration, https://ntrs.
nasa.gov/archive/nasa/casi.ntrs.nasa.gov/20170006095.pdf, 2017.

[10] R. M. Keller, Building a knowledge graph for the air traffic management
community[C]// Companion The 2019 World Wide Web Conference.
2019.

[11] E. Gringinger, B. Neumayr, S. Christoph, M. Schrefl, and S. Wilson,
The case for contextualized knowledge graphs in air traffic
management[C]//CKGSemStats@ ISWC. 2018.

[12] T. Hang, J. Feng, and J. Lu, Knowledge graph construction techniques:
Taxonomy, survey and future directions[J]. Computer Science, 2021,
48(02): 175-189. (in Chinese)

[13] X. Wang, L. Zou, C. Wang, P. Peng, and Z. Feng, Research on
knowledge graph data mnagement:A Survey[J].Journal of Software,
2019, 30(07): 2139-2174. DOI: 10.13328/j.cnki.jos. 005841. (in Chinese)

[14] T. Jiang, T. Liu, T. Ge, L. Sha, B. Chang, and S. Li, Towards time-
aware knowledge graph completion[C]//Proceedings of COLING 2016,
the 26th International Conference on Computational Linguistics:
Technical Papers. 2016: 1715-1724.

[15] K. Li. Research on the application status and trends of ADS-B abroad[J].
Aerodynamic Missiles Journal, 2018, 1(12): 60-66. (in Chinese)

[16] J. Liu, H. Liu, X. Chen, X. Guo, and X.Zhu, Construction of knowledge
graph based on Geo-Spatial data[J]. Journal of Chinese Information
Processing, 2020, 34(11): 29-36. (in Chinese)

[17] C. Xu, Y. Tian, K. Niu, W. Gong, and G. Li, Review of optimization for
airspace sectorization[J]. Aeronautical Computing Technique, 2022,
52(01): 126-130. (in Chinese)

