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Abstract—In this paper, we leverage the advantages of 

YOLOv5 in target detection to propose a highly accurate and 

lightweight network, called LAD-YOLO, for surface defect 

detection on aluminum profiles. The LAD-YOLO addresses the 

issues of computational complexity, low precision, and a large 

number of model parameters encountered in YOLOv5 when 

applied to aluminum profiles defect detection. LAD-YOLO 

reduces the model parameters and computation while also 

decreasing the model size by utilizing the ShuffleNetV2 module 

and depthwise separable convolution in the backbone and neck 

networks, respectively. Meanwhile, a lightweight structure called 

"Ghost_SPPFCSPC_group", which combines Cross Stage 

Partial Network Connection Operation, Ghost Convolution, 

Group Convolution and Spatial Pyramid Pooling-Fast structure, 

is designed. This structure is incorporated into the backbone 

along with the Convolutional Block Attention Module (CBAM) to 

achieve lightweight. Simultaneously, it enhances the model's 

ability to extract features of weak and small targets and improves 

its capability to learn information at different scales. The 

experimental results show that the mean Average Precision (mAP) 

of LAD-YOLO on aluminum profiles defect datasets reaches 

96.9%, model size is 6.64MB, and Giga Floating Point 

Operations (GFLOPs) is 5.5. Compared with YOLOv5, 

YOLOV5s-MobileNetv3, and other networks, LAD-YOLO 

proposed in this paper has higher accuracy, fewer parameters, 

and lower floating-point computation. 

Keywords—YOLOv5; ShuffleNetv2; lightweight and fast spatial 

pyramid pooling structure; convolutional block attention module; 
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I. INTRODUCTION  

Aluminum profiles are one of the important raw materials 
for the manufacturing industry, widely used in industry, 
construction, medicine, and other industries. However, due to 
its complex production process and more transportation links, 
aluminum profiles are prone to surface defects such as scratch, 
dirt, pinhole, and wrinkle. These defects will directly affect the 
quality of aluminum profiles and even lead to distortion and 
deformation of aluminum profiles, which is more obvious for 
high-end aluminum profiles. Therefore, it is of great 
significance to improve the detection efficiency and accuracy 
of aluminum profiles surface defects to ensure the production 
and application of aluminum profiles. 

At present, most enterprises still use traditional manual 
detection methods to detect defects on the surface of aluminum 
profiles. However, this manual inspection method is slow, 
subject to the influence of subjective consciousness, not only 
low efficiency but also poor stability, prone to misdetection, 
and leakage detection. Ultrasonic flaw detection, eddy current 

flaw detection, and other traditional non-destructive testing are 
also used for the detection of surface defects in aluminum 
profiles, but due to its slow detection speed, high cost, complex 
equipment operation, etc., which limits its popularity in 
practical applications. In 2014, Girshick et al. proposed a 
Regional Convolutional Neural Network (R-CNN), which 
broke the deadlock of slow progress in the field of target 
detection [1], and subsequently gave birth to Fast R-CNN [2], 
Faster R-CNN [3], Mask R-CNN [4], Single Shot MultiBox 
Detector (SSD) [5], You Only Look Once (YOLO) series [6-
11], and other generalized deep learning-based target detection 
algorithms. As a result, deep learning-based surface defect 
detection is starting to develop rapidly. 

For metal surface defect detection, references [12-14] 
combined neural networks with traditional detection algorithms 
to realize the detection and classification of surface defects of 
aluminum and other metal materials. Duan et al. [15] built a 
dual-stream Convolutional Neural Network (CNN) for the 
detection of aluminum profiles image features and gradient 
features, effectively realizing the classification of defect-free 
and multi-type defect samples. Cheng et al. [16] proposed a 
network DEA-RetinaNet with differential channel attention 
and adaptive spatial feature fusion for steel surface defect 
detection. The mean Average Precision (mAP) of the network 
on the steel surface defect dataset (NEU-DET) was 78.25%. 
The detection accuracy of the above methods is lower than 
85%, which cannot meet the requirements of practical 
industrial applications. 

Zeng [17] et al. proposed a data augmentation method and 
a migration learning technique for solving defective parts 
detection in steel plates. References [18-20] used Faster R-
CNN to detect metal surface defects such as steel and railroad 
fasteners with an accuracy of more than 95%, but the detection 
speed is slow. Chen [21] et al. applied Convolutional Neural 
Networks (DCNNs) to the defect detection of fasteners and 
carried out experiments on high-speed railroad scenarios. 
ZHAO et al. [22] innovated based on YOLOv4 architecture to 
improve the detection accuracy of surface defects of metal 
materials. Wang et al. [23] proposed a structure called PE-
Neck, which replaces the Neck part of the YOLOv5 network 
structure with a combination of scaled convolutional kernels 
and efficient channel attention to enhance the model's ability to 
extract and localize defects at different scales. However, the 
accuracy is only 87.4% and the strategy for generating 
candidate regions suffers from many flaws. Although the above 
methods enhance the detection accuracy by improved means, it 
is unable to realize the real-time detection of surface defects on 
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industrial aluminum profiles due to their complex network 
structure and large computation, and slow detection speed. 

Conventional CNN inference is computationally intensive 
and difficult to apply in resource-constrained scenarios such as 
mobile and Internet of Things (IoT). Starting from SqueezeNet 
[24] and MobileNetV1 [25], the design of CNNs has begun to 
focus on efficiency in resource-constrained scenarios. The 
more mature lightweight networks include the MobileNet 
series [26-27], ShuffleNet series [28-29], GhostNet [30], etc. Li 
[31] et al. proposed a YOLOv3-Lite detection method, which 
combines a deep convolutional neural network and a feature 
pyramid in YOLOv3, to improve the defect detection accuracy. 
Xiao [32] et al. added a residual network structure to YOLOv3-
Tiny, which was applied to detect obstacles in a mine, with 
improved accuracy compared to the original YOLOv3-Tiny, 
but with decreased speed. Zhang [33] et al. proposed a multi-
model rail surface defect detection system based on a 
convolutional neural network (MRSDI-CNN). The system 
network uses SDD combined with YOLOv3 to improve the 
system's accuracy. Wang et al [34] proposed a lightweight 
YOLO-ACG detection algorithm that balances accuracy and 
speed while improving the defect detection classification error 
and leakage rate. Ma [35] et al improved the YOLOv4 network 
by replacing the backbone network with a lightweight Ghost 
module. At the same time, a joint attention mechanism is added 
to the stacked Ghost modules to ensure accuracy, so that the 
network is compressed and lightweight is achieved while 
achieving an accuracy of 94.68%. These methods have 
improved in detection accuracy and detection speed, but the 
model size is still large and memory consumption is high, 
which is not conducive to real-time detection on mobile, 
especially in devices with tight computing resources. 

The YOLOv5 algorithm is an end-to-end target detection 
algorithm known for its fast detection speed and high accuracy. 
It has found wide application in the field of surface defect 
detection. However, the large number of parameters in the 
YOLOv5 model can hinder improvements in detection speed. 
Additionally, its backbone layer, consisting of CSPDarknet53, 
faces challenges in effectively extracting features of small 

targets. In this paper, a lightweight aluminum profiles surface 
defect detection network is designed to solve this problem, 
which significantly improves the accuracy and detection speed. 
The algorithm is evaluated for its performance on aluminum 
profiles surface defect dataset and compared with other 
algorithms. The experimental results show that the LAD-
YOLO proposed in this study can accurately identify 
aluminum profiles surface defects with excellent detection 
speed. 

The Section I is the research purpose and significance of 
aluminum profiles surface defects detection and the current 
status of domestic and international research on target detection 
algorithms for metal surface defects detection. The Section II is 
the research on the improvement method of lightweight 
aluminum profiles surface defect detection model based on 
YOLOv5. The Section III is the experimental results and 
analysis of the model application. The Section IVsummarizes 
the research in this paper and the outlook for future research. 

II. METHODOLOGY 

LAD-YOLO follows the network structure of YOLOv5, 
which consists of four main parts: Input Layer, Backbone, 
Neck, and Head. The overall structure of LAD-YOLO is 
depicted in Fig. 1. The Input Layer takes a 640*640*3 
aluminum profiles defect image as input. The Backbone 
network contains six ShuffleNetv2 modules, three 
Convolutional Block Attention Modules (CBAM), and the 
Spatial Pyramid Pooling Cross Stage Partial Concat structure 
based on ghost convolution and group convolution 
(Ghost_SPPFCSPC_group) for extracting surface defect 
features of aluminum profiles. In the neck network, depthwise 
separable convolution is used to extract depth features of 
aluminum profiles surface defects, reducing computational 
overhead. Simultaneously, the feature image size is doubled by 
using the nearest neighbor interpolation upsampling method, 
and the feature maps with the same size in the aluminum 
profiles surface defect map are connected. In the prediction 
layer, three different sizes of detection heads are generated to 
detect the aluminum profiles' surface defect image.

C3CBAM DSConv
Ghost_SPPFCSPC

_group
Upsample

128×80×80

256×40×40

512×20×20

ShuffleNetv2

_Block1
Concat

 

 

Input  Backbone Neck Prediction

ShuffleNetv2

_Block2
output

Conv2d+bn+

relu+maxpool  
Fig. 1. LAD-YOLO network structure. 
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Fig. 2. CBAM and LAD-YOLO backbone layer network structure.

A. Backbone Structure 

The Backbone Structure shown in Fig. 2 consists of three 
parts: ShuffleNetv2, Convolutional Block Attention Module 
(CBAM), and the Spatial Pyramid Pooling-Fast Cross Stage 
Partial Concat structure combining Ghost Convolution and 
Group Convolution (Ghost_SPPFCSPC_group). ShuffleNetv2 
uses Channel Split, 1*1 convolution, depthwise separable 
convolution, and mixing and washing of channels to 
accomplish the detection of input aluminum profiles defect 
information, which reduces the memory access time, reduces 
the number of model parameters, and improves the detection 
speed. The adoption of the ShuffleNetv2 structure drastically 
reduces the number of parameters of the model, but also brings 
a certain loss of accuracy. To compensate for the loss of 
accuracy, CBAM is used to embed into the backbone, as 
shown in Fig. 2.  

CBAM mainly consists of two key modules: the Channel 
Attention Module and the Spatial Attention Module. The 
Channel Attention Module captures the importance of each 
feature channel by calculating global statistics and applies 
attention weights to each channel. The Spatial Attention 
Module highlights important spatial regions in the feature map 
by computing global statistics and applying attention weights 
to different spatial positions. Combining the above two 
modules, CBAM enables the network to adaptively focus on 
significant channels and spatial areas, improving feature 
representation for aluminum profiles surface defect detection 
tasks. 

B. Ghost_SPPFCSPC_Group Structure 

The Spatial Pyramid Pooling (SPP) structure can 
effectively capture target features at different scales by 
stacking pyramid layers of different sizes together, improving 
the model's detection ability for targets of different sizes. The 
Spatial Pyramid Pooling-Fast (SPPF) structure is a faster 
structure proposed based on the SPP structure. The Cross Stage 
Partial structure consists of two parts, the convolution, and the 
complex structure, in parallel to increase the speed of the 
network.  

In 2023, wang et al. [11] first proposed the Spatial Pyramid 
Pooling Cross Stage Partial Concat (SPPCSPC) structure in 
YOLOv7, as shown in Fig. 3, which uses the SPP and CSP 
modules for better handling of multi-scale targets.  

The use of the SPPCSPC structure can effectively improve 
the model detection accuracy, but it will increase the amount of 
computation and the number of model parameters. To improve 
the speed, this paper replaces the SPP in the SPPCSPC 

structure with the SPPF structure to obtain the Spatial Pyramid 
Pooling-Fast Cross Stage Partial Concat (SPPFCSPC) structure. 
To reduce the amount of computation and parameters, Ghost 
convolution and group convolution are used to replace standard 
convolution in the SPPFCSPC structure. 

Conv k1,s1 Conv k3,s1 MaxPool2d Concat

K=5

K=9

K=13

 

Fig. 3. Spatial pyramid pooling cross stage partial concat structure. 

The standard convolution, Ghost convolution, and group 
convolution are compared and analyzed below. Fig. 4 shows 
the operation process of standard convolution, Eq. (1) is the 
standard convolution parameters, where c is the number of 
input channels, n is the number of output channels, and the size 
of the convolution kernel is k*k. 

                 

Input Output

Conv

 
Fig. 4. Standard convolution operation. 

Fig. 5 shows the group convolution operation process, 
which divides the input channels and output channels into the 
same number of groups, and then allows the input channels and 
output channels in the same group number to be fully 
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connected. Eq. (2) is the parameters of the group convolution. 
Where g is the number of groups divided into output channels. 

       
 

 
 
 

 
         (2) 

Input Output

1

Group Conv

g=4

group1

group2

group3

group4

2

3

4

 

Fig. 5. Group convolution operation. 

Conv

Input Output

Identity

 
Fig. 6. Ghost convolution operation. 

Fig. 6 shows the Ghost convolution operation process. First, 
a standard convolution operation with m (m≤n) output channels 
(where n is the number of final output channels) is performed 
on the feature map with input channel c to obtain a feature map 
with m channels. Second, a new feature map is obtained by s-1 

linear operations. Finally, the two feature maps are connected 
to obtain an output feature map with n channels (n=m*s). Eq. 
(3) is the parameters of Ghost convolution. Where the 
convolution kernel size of linear operations in Ghost Module is 
d×d. 

       
 

 
             

 

 
     (3) 

By comparing the above three convolution parameters, Eq. 
(4) shows the parameters compression ratio (R1) for standard 
and Ghost convolution, and Eq. (5) shows the parameters 
compression ratio (R2) for standard and group convolution. 
Where let k=d. 
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     (5) 

From the above computation results, it is shown that the 
number of parameters of standard convolution is g times more 
than that of group convolution and s times more than that of 
Ghost convolution, so the number of parameters can be 
drastically reduced by choosing group convolution and Ghost 
convolution compared to standard convolution. 

Therefore, in this paper, a lightweight SPPFCSPC structure 
(Ghost_SPPFCSPC_group) is designed by combining 
SPPFCSPC, Ghost convolution, and group convolution, as 
shown in Fig. 7. The structure utilizes the smaller number of 
parameters of Ghost convolution and group convolution to 
achieve lightweight. The Ghost_SPPFCSPC_group structure 
uses a smaller computational cost to enable the fusion of multi-
scale features and improve feature representation. 

Group Conv k1,s1,g=4 Ghost Conv MaxPool2d  k=5 Concat

 

Fig. 7. Ghost_SPPFCSPC_group structure.
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C. Depthwise Separable Convolution 

Depthwise Separable Convolution (DSConv) contains two 
parts, Depthwise Convolution and Pointwise Convolution. As 
shown in Fig. 8, Depthwise Convolution computes the 
convolution of each channel separately to extract the features 
of each channel; Pointwise Convolution computes the feature 
map generated by Depthwise Convolution and adopts a 

convolution kernel with the size of 11M convolution kernel, 
weighted combination in the depth direction, to realize the 
fusion of features between the channels, to generate a new 
feature map. 

Input channel image

H*W*Ci
Filter*Ci

Map*Ci Filter*Co

Output channel image

Maps*Co

Depthwise Convolution Pointwise Convolution  
Fig. 8. Depthwise separable convolution module structure. 

Eq. (6) is the FLOPs for standard convolution. Eq. (7) is the 
FLOPs Operations for Depthwise Separable Convolution. Eq. 
(8) is the ratio R of Depthwise Separable Convolution to the 
standard convolutional computation. The input feature map 
size is       , the output feature map size is       , 
 ,  ,    and    denote the height, width, number of input 
channels, and number of output channels of the feature map 
respectively, and the size of the convolution kernel in the 
standard convolution is      .  

                   (6) 

                                 

                        (7) 

  
          

    

 
                      

               

 

 
 

  
 

 

     
   (8) 

From Eq. (8), it can be seen that the floating-point 
computation of Depthwise Separable Convolution is only 
 

  
 

 

     
 of the standard convolution. Assuming the 

convolution kernel size of 3×3 for Depthwise Convolution, the 
computation of the standard convolution is about eight to nine 
times that of Depthwise Separable Convolution. Replacing the 
standard convolution with the Depthwise Separable 
Convolution reduces the floating-point computation. 

III. RESULTS AND DISCUSSION 

A. Datasets Introduction  

In this paper, for aluminum profiles defect detection, the 
Hikvision high-definition industrial camera model MV-CS050-
10GC-PRO is used to collect the sample images of aluminum 
profiles and make the aluminum profiles defect datasets, and 
some of the data in the datasets are shown in Fig. 9. 

The labeling categories are pinhole, scratch, dirt, and 
wrinkle. Since the original image samples are too few, panning, 
rotating, changing brightness, shearing, mirroring, and other 
means of expanding the datasets are chosen to expand the 
original aluminum profiles surface defect datasets. After the 
expansion, the total number of defect images is 5013, including 
6325 pinholes, 3042 dirt, 5863 scratches, and 2415 wrinkles. 
The datasets are categorized into 60% training set, 20% 
validation set, and 20% test set containing 3008, 1002, and 
1003 images, respectively.  

 
Fig. 9. Part of the datasets. 

B. Evaluation Metrics 

Precision (P), Recall (R), Average Precision (AP), and 
Mean Average Precision (mAP) are used as the evaluation 
metrics of detection effectiveness. The mAP is the average 
value of AP for all defect categories, which is used as a 
comprehensive index for evaluating precision. The higher the 
values of AP and mAP, the better the algorithm is for detecting 
the target defects. P, R, AP, and mAP are calculated as follows: 
(9), (10), (11), (12). TP is the number of defects in the positive 
samples that were detected as correct, FP is the number of 
defects in the negative samples that were incorrectly detected 
as correct, FN is the number of defects in the positive samples 
that were not detected, and m is the number of defect categories. 
In addition, Floating Point Operations (FLOPs), parameters, 
and Model Size are used to evaluate the lightness of the model. 

  
  

     
   (9) 

  
  

     
   (10) 

    ∫  
 

 
       (11) 

    
 

 
∑   

        (12) 

C. Experimental Process 

The GPU used for defect detection training and testing is 
NVIDIA TITAN RTX, and the specific configuration of the 
experimental platform is shown in Table I. During the training 
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experiments, the optimizer chooses the stochastic gradient 
descent with momentum (SGD) with a momentum factor of 
0.937. The weight attenuation coefficient is set to 5×10−4. The 
learning rate is initially set to 10−3, while the Cosine 
Annealing is used to reduce the learning rate to 10−5. The 
batch size is set to 64, and the epochs are set to 500. 

TABLE I. THE SPECIFIC CONFIGURATIONS OF THE EXPERIMENTAL 

PLATFORM 

Name Version 

CPU 
Intel(R) Xeon(R) Gold 5218R CPU @ 

2.10GHz 

Memory Bank 32GB 

GPU NVIDIA TITAN RTX 

GPU Memory 24GB 

Operating System Windows10 

Software environment CUDA11.6 

Python Version Python 3.8 

Deep learning framework PyTorch 1.12 

D. Comparative Experiment and Analysis 

Comparison experiments are conducted by LAD-YOLO 
with SSD, YOLOv3, YOLOv3-tiny, YOLOv4-tiny, YOLOv5, 
and YOLOv5s-MobileNetv3, and the results are shown in 
Table II. As can be seen in Table II, LAD-YOLO achieved 
96.9% mAP, 97.4% Precision, and 95.7% Recall on the 
aluminum profiles surface defects dataset, and the model size 
is 6.64MB. Compared with the YOLOv5s algorithm, mAP 
increases by 2.8% and model size decreases by 58%. 

Compared with YOLOv5s-MobileNetv3, the precision is 
improved by 7.2% and the model size is reduced by 8.8%. The 
experimental results show that the LAD-YOLO network 
improves the precision and recall rate of defect detection, and 
reduces the model parameters and size. 

E. Ablation Experiment 

To further verify the role of each improvement in 
enhancing the performance of the algorithm, ablation 
experiments are conducted. The results are shown in Table III. 

From Table III, the mAP of the baseline model YOLOv5s 
is 94.1%, the model size is 14,08MB, the number of 
parameters is 7.03×106 and the GFLOPs is 15.8. It can be seen 
that after using ShuffleNetV2 and CBAM, the mAP is 
improved by 1.7% compared to YOLOv5s, the model size is 
reduced from 14.08MB to 6.69MB, and the GFLOPs are 
reduced from 15.8 to 5.8; after using the 
Ghost_SPPFCSPC_group structure, the mAP is again 
improved by 1.5%, with a slight increase in Model Size and 
GFLOPs; with the use of deep separable convolution, the mAP 
is 96.9%, Model Size is again reduced to 6.64M, and GFLOPs 
are 5.5. compared to the original network. mAP is improved by 
2.8%, Model Size is reduced by 52.8%, and GFLOPs are 
reduced by 65.6%. The results show that improvements to 
YOLOv5 are necessary everywhere. 

F. Test Results of Defect Detection 

Fig. 10 shows the schematic diagram of four kinds of 
defect detection in aluminum profiles. The non-maximum 
suppression (NMS) is used in the prediction as the post-
processing method. The confidence was set to 0.5 and the IoU 
was set to 0.6. 

TABLE II. COMPARATIVE RESULTS OF EVALUATION METRICS FOR DIFFERENT METHODOLOGIES 

Methods Precision (%) Recall (%) mAP (%) Model Size (MB) 

SSD 68.4 70.2 70.6 90.13 

YOLOv3 91.9 87.7 91.2 120.67 

YOLOv3-tiny 87.6 84.7 86.9 33.79 

YOLOv4-tiny 90.9 89.6 90.8 23.03 

YOLOv5s 95.3 94.0 94.1 14.07 

YOLOv5s-MobileNetv3 89.9 88.4 89.7 7.28 

LAD-YOLO（OURS） 97.0 95.7 96.9 6.64 

TABLE III. RESULTS OF THE ABLATION EXPERIMENT 

ShuffleNetV2 CBAM SPPFCSPC Ghost_SPPFCSPC_group DSConv mAP 
Parameters 

(106) 

Model Size 

（MB） 
GFLOPs 

-- -- -- -- -- 94.1% 7.03 14.08 15.8 

√     92.2% 3.23 6.66 5.8 

√ √    95.8% 3.25 6.69 5.9 

√ √ √   97.3% 9.77 19.46 11.1 

√ √  √  97.0% 3.85 7.91 6.3 

√ √  √ √ 96.9% 3.19 6.64 5.5 
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Fig. 10. Partial detection images for aluminum profiles defect detection.

The obtained LAD-YOLO P-R curve for defect detection is 
shown in Fig. 11, and it can be seen that the AP of pinholes is 
98.8%, the AP of dirt is 99.3%, the AP of scratches is 91.1%, 
and the AP of wrinkles is 98.2%. Except for scratches, all other 
types of defects have an AP of 98% or more. The poor 
detection of scratches is due to its high defect precision 
requirements and susceptibility to environmental influences. 

 
Fig. 11. LAD-YOLO P-R curve. 

The accuracy of detecting various defects under different 
methods is plotted in Fig. 12. It is evident from the figure that 
LAD-YOLO exhibits improvements in accuracy for different 
defect types compared to other methods. Specifically, LAD-
YOLO shows an increase in accuracy of 4.6% for pinhole 

detection, 2.3% for dirt detection, 3.2% for scratch detection, 
and 0.9% for wrinkle detection when compared to YOLOv5s.  

mAP pinhole dirt scratch wrinkle

0.60

0.65

0.70

0.75

0.80

0.85

0.90

0.95

1.00

m
A

P

 SSD  YOLOv3  YOLOv3-tiny  YOLOv4-tiny

 YOLOv5s  YOLOv5s-MobileNetv3  LAD-YOLO  
Fig. 12. Accuracy of defects in each category under different methods. 

The results demonstrate that LAD-YOLO achieves 
enhanced accuracy across all defect categories, with 
particularly notable improvements in the detection of small 
targets, such as pinholes and scratches. 

IV. CONCLUSION 

We propose a lightweight aluminum profiles surface defect 
detection network, which involves improvements to the 
backbone and neck layers of YOLOv5. By designing the 
Ghost_SPPFCSPC_group structure with low floating-point 
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operation and combining it with the ShuffleNetV2 module and 
the Convolutional Block Attention Module (CBAM) to 
construct the backbone network, we reduce the model 
parameters and computation amount while obtaining richer 
feature information, thus improving the network's ability to 
detect defects on small-sized targets. By using depthwise 
separable convolution to replace the standard convolution in 
the neck layer, the number and size of model parameters are 
further reduced to improve the network operation speed. The 
specific experimental results are as follows: 

(1) The Model Size of LAD-YOLO is only 6.64MB, which 
is 52.84% less compared with YOLOv5s; its GFLOPs are only 
5.5, which is 65.19% less compared with YOLOv5s. It shows 
that LAD-YOLO occupies fewer memory resources, which is 
more helpful to be applied to platforms with scarce 
computational resources to achieve low-cost aluminum profiles 
surface defect detection. 

(2) The detection accuracy of LAD-YOLO is much higher 
than that of current detection methods, including SSD, 
YOLOv3, YOLOv3-tiny, YOLOv4-tiny, YOLOv5s, and 
YOLOv5s-MobileNetv3, etc. Compared with YOLOv5s, the 
mAP of LAD-YOLO is 96.9%, an improvement of 2.8%; 
compared with YOLOv5s-MobileNetv3, the accuracy is 
improved by 7.2%. The results indicate that the LAD-YOLO 
network not only achieves model lightweight but also shows an 
improvement in accuracy. 

In the forthcoming phases, we intend to augment the 
variety of defects within our dataset, thereby enhancing its 
diversity. Furthermore, to bolster the model's resilience and 
versatility in real-world scenarios, we will acquire images 
portraying authentic situations characterized by uneven 
lighting, occlusions, and other intricacies. This approach aims 
to further elevate the model's overall performance. 
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