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Abstract—A crucial issue in sentiment analysis primarily 

relies on the annotation task involving data labeling. This critical 

step is typically performed by linguists, as the nuanced meaning 

of text significantly influences its contextual interpretation. If 

there is a large volume of data, annotation is time-consuming and 

financially burdensome. Addressing these challenges, a semi-

supervised learning annotation (SSL) that integrates human 

annotator and artificial intelligence algorithms emerges as a 

potent solution. Building accurate SSL needs to explore the best 

architecture, including a combination of machine learning and 

mechanism. This research aims to construct semi-supervised 

model annotation text by tuning the parameter of the machine 

learning algorithm to gain the most accurate model. This study 

employed a Support Vector Machine and a Random Forest 

algorithm to build semi-supervised annotation. Grid-Search and 

Random-Search were employed to tune the Random Forest and 

Support Vector Machine parameters. The semi-supervised 

annotation model was applied to annotate Indonesian texts. The 

outcomes signify that hyperparameter-tuning enhances SSL 

performance, surpassing the performance achieved using default 

parameters. The experiment also shows that the SSL annotation 

using a Support Vector Machine tuned by Grid Search and 

Random Search is more robust than the Random Forest 

algorithm. Hyperparameter tuning is also robust to training data 

that contains many manual labeling errors by experts. 
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I. INTRODUCTION 

The challenge in text classification-based machine learning 
is data labeling. Each textual instance has meaning upon the 
context and grammatical nuance specific to each language. 
Thus, human intervention is vital for data labeling, as humans 
are adept at assessing the contextual relevance of text. Human 
annotator requires expertise in understanding the language 
context. However, labeling numerous volumes of data requires 
quite an amount of time and causes tiredness for the annotator -
consequently, the objectivity loss of the labeling process. 
Hence, automation annotation is highly needed before the 
dataset feeds into a machine learning classifier. 

There has been a new development of an annotator-based 
machine built by learning knowledge of the language experts 
or humans. SSL uses a small sample of data annotated by 
language experts and then uses the sample to build a training 
model. Then, the training model is used for the annotation of 
unlabeled data. The SSL model draws expert insight from a 
small sample to build robust annotator unlabeled data. Here, 
the SSL challenge is to produce a reliable and precise model. 

In previous related research, a semi-supervised learning (SSL) 
model was developed to classify text [1-4]. The performance of 
semi-supervised text annotation still needs to improve. Al-
Laith et al. used LSTM and FastText for annotating Arabic text 
with only three classes, resulting in an accuracy of 69.4% on 
the SemEval 2017 dataset. In contrast, the best system 
achieved a 63.38% F1 score, while on the ASTD dataset, 
performance improved from 64.10% to 68.1% [4]. Aydln and 
Güngör [5] combined semi-supervised and unsupervised 
methods and implemented the J-48 tree, Support Vector 
Machine, and Naive Bayes algorithms. As a result, the 
accuracy is more than 90%. However, this model has not 
proven its performance for multi-class datasets and other 
language datasets. Alahmary and Al-Dossari [2] applied Naive 
Bayes as a semi-supervised learning classifier with high 
accuracy (83%). However, researchers have yet to test this 
model on other datasets, and we do not know its performance 
when utilized for SSL in other languages. So, developing a 
semi-supervised text annotator for Indonesian text that utilizes 
multiple machine learning models and various vectorizers is 
expected to yield improved performance. Previous related 
Research SSL in Indonesian by NurHeri Cahyana et al. 
annotates hate speech [3]. The maximum accuracy in those 
research employing KNN and TF-IDF is only 59.68%. SSL 
model in [3] has a weakness: the model has not been applied to 
other Indonesian text datasets and has not tried other model 
combinations. 

Many ways are done to gain a high-performance model, 
such as identifying data samples with hesitant labels and 
removing training data with unreliable labels. Those can 
improve the quality of the training data and improve classifier 
performance [6]. Another approach to improve model 
performance is to overcome by trying various amounts of 
training data proportions when building the annotation model, 
then applying the ensemble method, using several machine 
learning to classify the same data consensus on classification 
decisions using confidence values [7]. Performance machine 
learning depends on parameter setting [8]. Some ways to 
leverage the performance of machine learning are tuning the 
parameters [9-–11] and applying optimization [12-14]. The 
goal of tuning these parameters is to find the best combination 
parameter [15]. Tuning parameters can significantly impact the 
model performance and finding the right combination 
involving experimentation and iterative adjustments [16]. A 
tuning parameter is a parameter that is not learned directly 
from the data during the training process of a machine-learning 
algorithm. Instead, it is a value set before training to control the 
algorithm behavior. Unlike the default individual parameters of 
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a model, which are learned from the training data, tuning 
parameters are set by the user before training. Fine-tuning 
parameters can have a substantial impact on the model 
performance [17]. 

Besides tuning individual algorithm parameters, 
hyperparameter techniques such as Grid Search and Random 
Search can help find the best parameter combination. Several 
researchers in text labeling or other domains employ Grid 
Search [9], [18], [19] and Random Search [10], [11], [20], [21] 
to enhance the accuracy and performance of machine learning 
algorithm. Not all parameter tuning techniques are in tune with 
machine learning algorithms and the data they handle.  In 
previous research, several algorithms that can generally be 
tuned include Support Vector Machine (SVM), Random Forest 
(RF), Logistic Regression, Naive Bayes, Neural Networks, and 
Gradian Boosting. It is necessary to research the best 
hyperparameters for each algorithm. This research aims to 
leverage the performance of semi-supervised text annotation 
through tuning parameters Support Vector Machine and 
Random Forest using Grid Search and Random Search. 
Different language corpus needs an appropriate architecture 
model for automated text labeling. This research uses the 
Indonesian dataset for the research material. Thus, SSL 
architecture for the Indonesian dataset becomes the focus. 

Our research proposed SSL with the SVM and Random 
Forest as classifier. Random Search and Grid Search as 
hyperparameter tuning to obtain the most optimal model. The 
research problem boundary employs hyperparameter tuning to 
gain high-performing SSL models for Indonesian text 
annotation—the performance metric using F1-Score and 
accuracy. This research is limited to utilizing two machine 
learning algorithms, Random Forests and Support Vector 
Machine, and two hyperparameters technic Grid Search and 
Random Search. We divide the article into four sections: 
introduction, methods, results and discussion, and conclusions. 

II. Methods 

The following section describes the research steps, 
including data collection, data cleaning, feature extraction, 
building classifier model annotation, and evaluation. 

A. Data Collection 

Due to several reasons, this research has used various 
datasets to test the Semi-Supervised Text Annotation Model. 
The primary rationale behind this approach is to enhance the 
model’s ability to generalize and effectively accommodate 
variations within the data. By subjecting the model to 
evaluation using diverse datasets, the model can objectively 
assess its performance across different domains. Also, this 
approach can examine the model’s efficacy in managing 
linguistic heterogeneity. Additionally, testing on various 
datasets has comprehensively evaluated the model 
performance. Thus, this research endeavor involves the 
utilization of three publicly available datasets, as described in 
Table I, for the explicit purpose of rigorous testing and 
analysis. 

TABLE I.  DATASETS USED FOR MODEL ASSESSMENT 

N

o 
Dataset 

Instan

ce 
Source 

1. 
Hate 
Speech  

13168 

https://github.com/okkyibrohim/ 

id-multi-label-hate-speech-and-abusive-language-

detection/blob/master/re_dataset.csv 

2 
Sentime
nt 

Ridife 

10805 
https://github.com/ridife/dataset-idsa/blob/master/ 
Indonesian%20Sentiment%20Twitter% 

20Dataset%20Labeled.csv 

3 

IndoNL
U 

Sentime

nt 

12759 

https://github.com/IndoNLP/IndoNLU/tree/maste

r/dataset/ 
smsa_doc-sentiment-prosa 

Before their utilization in the testing phase, the four 
datasets were processed by the same steps, including data 
cleaning, word embedding, and feature extraction. The 
subsequent section elaborates on the empirical outcomes of 
analyzing these four distinct datasets. 

B. Data Cleaning and Preprocessing 

The datasets used in this experiment comprised comments 
in the Indonesian language. The cleaning purpose is to clear up 
the dataset from noise such as punctuation, numerical 
character, and stop words. The clean data was transformed into 
a vector through several stages, including tokenization 
(unigram, bigram, and trigram), stemming, and finally, turning 
the stem into the vector using TF-IDF. Tokenizing onto 
unigram is breaking down a piece of a sentence into individual 
units. Bigram is a pair of sequence words within a sentence, 
while trigram refers to three sequence words within a sentence. 
Unigram, bigram, and trigram are N-gram types in which N is 
any number. N-Gram with N is two or more, often used to 
capture more contextual information than a single word. 

C. Word Embedding and Feature Extraction 

The Bag of Words (BoW), often mentioned as Term-
Frequency (TF), constitutes an algorithm employed to 
determine the weight of individual words within a document. 
The weight of Term-Frequency is computed by quantifying the 
occurrence of the term t in document D and dividing it by the 
total count of words present in document D. The underlying 
objective is to identify unique words that can serve as an 
essential document feature. The large documents generate a big 
matrix. Given a number feature of N and a sum document of D, 
the feature matrix has dimensions of N x D. TF is the 
occurrence of a word t in document D, computed as in Eq. (1). 

       
    

                                
  (1) 

The       is the frequency of term t in document d, 

where t is a term (word within a sentence), f is the number of 
occurrences of term t in document d, and      is the number of 

terms t in document d. 

TF-IDF (Term Frequency-Inverse Document Frequency) is 
the weight computed by multiplication between TF and IDF. 
IDF (Inverse Document Frequency) is a value that indicates 
how important a word is in the entire document in the dataset. 
A word with a lower TF-IDF value is considered less 
important, and vice versa. Words that appear frequently 
throughout the document are considered as less important 
words. The weight IDF of a document calculated as in Eq. (2) 

https://github.com/ridife/
https://github.com/IndoNLP/
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     

To compute the TF-IDF (Term Frequency-Inverse 
Document Frequency), the TF value is multiplied by the IDF 
value according to the following formula, as in Eq. (3) 

                      

D. Model of Semi-Supervised Text Annotation 

Random Forest is a robust ensemble learning algorithm 
widely used in machine learning for classification. Random 
Forest defines the target class by combining multiple decision 
tree outputs to yield a single outcome. As suggested by its 
name, a "forest" comprises numerous trees generated through 
bagging or bootstrap aggregating. Each tree in the Random 
Forest produces class predictions, with the majority class 
prediction as the candidate prediction model. Increasing the 
number of trees leads to enhanced accuracy and mitigates 
overfitting concerns. Random Forest is known for its 
robustness and resistance to overfitting. Tuning its parameters 
can improve performance on specific datasets.  

SVM is a robust machine learning algorithm widely used 
for classification tasks. It is particularly effective for tasks 
involving complex data distribution and when clear dividing 
lines are needed to differentiate between classes. SVM aims to 
find the optimal hyperplane that best separates different classes 
of data points in a high-dimensional space. The basic idea of 
SVM is to find a hyperplane that maximizes the margin 
between classes of data points. The margin is defined as the 
distance between the hyperplane and the nearest data points 
from each class. The idea is to choose the hyperplane with the 
largest margin, which is expected to classify well to new data 
with no class yet. However, SVM's effectiveness depends on 
properly tuning parameters to make the data separable. 

E. Proposed Semi-Supervised Learning Architecture 

This research proposes a novel architecture for the semi-
supervised learning (SSL) model with tuning parameters, 
depicted in Fig. 1. The SSL workflow initiates by utilizing an 
annotated dataset encompassing training, testing, and unlabeled 
data, as in Fig. 1. Training and testing data are manually 
labeled by an Indonesian language expert. 

The process begins with word embedding, transforming 
textual data from the training set into vectors using the TF-IDF 
technique. This word embedding procedure generates three 
distinctive vectors: unigram, bigram, and trigram. These three 
vector representations subsequently serve as inputs for building 
three separate models employing Random Forest and Support 
Vector Machine (SVM). The algorithm Random Forest and 
SVM parameters were tuned to gain the best classification 
model. 

Following the stacking principle, these three distinct 
models operate independently. Each model participates in the 
annotation of the unlabeled data. Then, the unlabeled data is 
annotated by each model, resulting in pseudo-labels of three 
sets of datasets, each classified according to one of the three 
models. A pseudo-label has high confidence if the cumulative 
weight assigned to it divided by the cumulative weight of all 
models is high. This confidence value is compared to a 

predefined threshold. This threshold serves as a criterion to 
identify annotated data (with pseudo-labels) with confidence 
values deserving inclusion as part of the training data. Then, 
documents with high-ranking confidence and existing training 
data are mixed. Through this innovative approach, the SSL 
process harnesses the strengths of multiple models to improve 
predictions on unlabeled data iteratively. Considering 
confidence values and applying the threshold optimizes 
integrating pseudo-labeled data into the training set, ultimately 
enhancing the model's performance. 

Fig. 2 describes the main algorithm of SSL. The process 
started by reading the labeled training dataset (DT), testing 
dataset (DTest), and unlabeled dataset (UN). All three datasets 
are transformed into the vector with feature unigrams, bigrams, 
and trigrams. Then, the model-building process is shown in 
lines 9-11, the hyperparameter process is in lines 12-14, the 
annotation process with the best parameter model is in lines 
15-17, and the line 18-21 is the voting process. 

 

Fig. 1. SSL text annotation using parameter tuning. 

 

Fig. 2. Algorithm of proposed SSL. 
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F. Tuning Techniques 

Grid Search and Random Search were applied for tuning 
both SVM and RF. Grid Search is a hyperparameter tuning 
technique that systematically searches for a machine learning 
optimal combination model of hyperparameter values. It 
involves defining a grid of possible hyperparameter values and 
then evaluating the model performance using each combination 
of these values through cross-validation. The best parameter 
combination selected is the optimal set of hyperparameters 
[18]. 

Random Search does not explore all combinations like Grid 
Search. Instead, it tracks the combinations that provide the best 
performance to date. When more combinations are evaluated, 
the combination becomes the new best combination if the 
performance of a combination is better than the previous one 
[22]. This randomness can be more efficient in exploring the 
hyperparameter space, primarily when enormous search space 
exists. 

G. Evaluation Model 

To evaluate the classification performance of the SSL 
model, we employ a confusion matrix, as shown in Table II. 
The confusion matrix will compare the predicted results with 
the actual class using the rules in Table II. This study uses two 
parameters for model validation, namely accuracy and F1-
score. 

TABLE II.  CONFUSION MATRIX 

 
Actual 

Positive Negative 

Predicted 
 

Positive True Positive (TP) False Positive (FP) 

Negative False Negative (FN) True Negative(TN) 

Accuracy is the ratio of the correctly predicted dataset to all 
datasets in the experiment. Accuracy, as in Eq. (4), is a good 
measurement, but it is only on symmetric datasets, i.e., when 
the number of false positives and false negatives is almost the 
same or balanced. 

         
     

           
  (4) 

Precision measures the proportion of genuinely positive 
instances among all instances predicted as positive by the 
model. In other words, it quantifies how well the model avoids 
false positives. High precision indicates that when the model 
predicts a positive class, it is more likely to be correct. 
Precision is crucial where the instances of false positives are 
high or when we want to ensure that the positive predictions 
made by the model are accurate. However, it is worth noting 
that precision does not consider instances that were predicted 
as negative, which could be actual positive cases that were 
missed (false negatives). Eq. (5) is the precision formula.                    

           
  

     
  

Recall (sensitivity) is the opposite of precision, as in Eq. 
(6). 

        
  

     
  (6) 

Eq. (7) is the average weight of precision and recall. F1 
Score is more beneficial than accuracy, especially if the results 
have an unequal class distribution. 

          
                     

                 
 

III. RESULT AND DISCUSSION 

A. Data Distribution 

The following Table III shows the distribution of class data 
for each dataset. Ridife corpus has class positive (24%), neutral 
(49.1%), and negative (26.9%). IndoNLU Sentiment has class 
positive (57.7%), neutral (10.7%), and negative (31.6%). Hate 
Speech only has two classes: positive (42.2%) and negative 
(57.8%). There are all three datasets in imbalanced class data. 

TABLE III.  DISTRIBUTION LABEL CLASS 

Dataset

s 

Label Class 

Positi
ve 

Proporti
on 

Neutr
al 

Proporti
on 

Negati
ve 

Proporti
on 

Total 

Ridife 2574 24.0% 5271 49.1% 2882 26.9% 
107

27 

IndoNL

U 
Sentim

ent 

7359 57.7% 1367 10.7% 4034 31.6% 
127
60 

Hate 
Speech 

5561 42.2% - - 7606 57.8% 
131
67 

The proposed SSL model employed a tuning parameter. 
Our experiment uses two techniques, namely Random-Search 
and Grid-Search. Random Forest and SVM parameters were 
tuned to gain the best performance of the SSL model. Before 
applying the SSL model, all datasets corpus are dispart into 
training, testing, and unlabeled data. Training and testing data 
are each 10% of the dataset—human labels 10% of training 
and testing data. The remaining 90% is unlabeled data. 

B. Performance SSL Model 

Data testing was employed to assess the performance of the 
SSL model under both baseline and final conditions. Baseline 
conditions involved the SSL model being constructed solely 
using labeled training data. In contrast, the final condition 
entailed forming the SSL model by fusing labeled training data 
and Pseudo-Labels generated from unlabeled training data. The 
experiment was done in two distinct stages. The initial stage 
entailed evaluating the SSL model using hyperparameters Grid 
Search, while the subsequent stage involved testing the SSL 
model performance with hyperparameters using Random 
Search. 

1) Performance SSL using SVM: The performance of SSL 

without hyperparameter is shown in Table IV, while after 

tuning is shown in Tables V and VI. 

TABLE IV.  PERFORMANCE SSL SVM 

Datasets 
Without Hyperparameter 

Accuracy 

(%) 

Precision 

(%) 

Recall 

(%) 
F1-Score(%) 

Ridife 26.9 100 26.9 42.3 

IndoNLU Sentiment 57.6 100 57.6 73.1 

Hate speech 57.8 100 57.8 73.2 
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TABLE V.  PERFORMANCE SSL SVM TUNED BY GRID SEARCH 

Datasets 

Grid Search 

Accuracy 

(%) 

Precision 

(%) 

Recall 

(%) 
F1-Score(%) 

Ridife 50.0 97.8 50.0 65.2 

IndoNLU Sentiment 78.4 85.5 78.4 81.4 

Hate speech 73.7 82.6 73.7 75.6 

TABLE VI.  PERFORMANCE SSL SVM TUNED BY RANDOM SEARCH 

Datasets 

Random Search 

Accuracy 

(%) 

Precision 

(%) 

Recall 

(%) 
F1-Score(%) 

Ridife 50.0 98.0 50.0 65.3 

IndoNLU Sentiment 78.8 85.2 78.8 81.3 

Hate Speech 73.0 83.5 73.0 75.4 

Table IV shows the result of the SSL model using SVM 
with standard parameters having low performance. Accuracy 
towards all three datasets is under 60%, even though the F1-
Score is high. The F1 score shows that the SSL SVM model 
without parameter tuning is quite good, although only for some 
data (IndoNLU sentiment and Hate Speech). The Ridife dataset 
does not reach 50% accuracy, requiring further investigation of 
the condition of the data, especially the validity of the sample 
annotation results by Indonesian language experts. With 
perfect precision values, it is surprising that the recall values 
are so much lower. With these results, an analysis can be 
drawn that the standard parameters used in SVM cannot 
optimize the performance of the SSL model. 

Meanwhile, Table V shows that SVM tuning using Grid 
Search can increase accuracy, indicated by increased accuracy 
and F1 scores. Because of the differences in class distribution, 
the performance observations emphasize the F1 score. By 
comparing the performance of the models without tuning and 
with tuning, Grid Search increases the F1 Score in the three 
datasets by 22.9% in the Ridife dataset, 8.3% in the IndoNLU 
sentiment dataset, and 2.4% in the Hate Speech dataset. 
Random Search increased the F1 Score by 23.0%, 8.2%, and 
2.2%, respectively, on Ridife, IndoNLU sentiment, and Hate 
speech. 

The effect of the parameter tuning done for SVM can be 
seen in the F1 score performance, as shown in Fig. 3. The F1 
score is a valid evaluation to represent the unequal class 
distribution. Fig. 3 shows that both tuning techniques (Grid and 
Random Search) can improve the SSL model performance. 

 

Fig. 3. Performance F1 Score SVM. 

2) Performance SSL using random forest (RF): The 

performance of SSL RF without a hyperparameter is shown in 

Table VII; SSL tuned by Grid is in Table VIII, and tuned by 

Random Search is in Table IX. In contrast, tuning on RF does 

not improve the SSL model’s performance like tuning on 

SVM. 

TABLE VII.  PERFORMANCE SSL RF 

Datasets 

Without Hyperparameter 

Accuracy 

(%) 

Precision 

(%) 

Recall 

(%) 
F1-Score(%) 

Ridife 31.5 75.2 31.5 37.1 

IndoNLU Sentiment 75.0 81.0 75.0 76.4 

Hate Speech 72.8 85.0 72.8 75.5 

TABLE VIII.  PERFORMANCE SSL RF TUNED BY GRID SEARCH 

Datasets 

Grid Search 

Accuracy 

(%) 

Precision 

(%) 

Recall 

(%) 
F1-Score(%) 

Ridife 46.0 60.0 46.0 51.0 

IndoNLU Sentiment 75.4 80.9 75.4 76.7 

Hate Speech 72.6 86.2 72.6 75.6 

TABLE IX.  PERFORMANCE SSL RF TUNED BY RANDOM SEARCH 

Datasets 

Random Search 

Accuracy 

(%) 

Precision 

(%) 

Recall 

(%) 
F1-Score(%) 

Ridife 36.5 71.2 36.5 40.7 

IndoNLU Sentiment 75.6 81.1 75.6 76.9 

Hate Speech 72.0 85.7 72.0 75.0 

Table VII shows that the SSL model using RF with 
standard parameters performs poorly for the Ridife dataset, 
which only reached 40.7%. However, the IndoNLU Sentiment 
and Hate Speech datasets are pretty good, above 75%. 
Meanwhile, Table VII shows that tuning parameter RF using 
Grid Search was unsuccessful enough to increase model 
performance. It can be seen that F1 Score before and after 
tuning in the IndoNLU Sentiment and Hate Speech datasets. 
By comparing the performance of the RF model without tuning 
and tuning with Grid Search, the improving performance in all 
datasets is 13.9% for the Ridife dataset: 0.3% for the IndoNLU 
Sentiment dataset, and 0.1% for the Hate Speech dataset. 
While tuning with Random Search could not improve RF 
performance significantly. The effect of Random Search tuning 
on RF is only shown by the Ridife dataset. Random Forest is a 
tree-based algorithm that uses an ensemble tree to increase 
performance. Therefore, setting up RF with Random Search 
did not work significantly. The graphical visualization in Fig. 4 
supports this. Suppose the conditions of the initial data are 
observed in more detail. In that case, the Ridife dataset tends to 
have a lot of noise, slang words, and inaccurate labeling by 
experts, which may be good for examining the effect of tuning. 
Meanwhile, the other two datasets (IndoNLU Sentiment and 
Hate Speech) are relatively cleaner. Considering the condition 
of the dataset, tuning is suitable for models built from a lot of 
noise-training data. 
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Fig. 4. Performance F1 score RF. 

We find that our SSL model for the hate speech dataset 
obtained higher accuracy (more than 75%) than the SSL 
proposed by Nur Heri Cahyana et al. [6], which has only 
reached an accuracy of 59.68% using KNN. Our proposed 
method proved that SVM and Random Forest perform better 
for hate speech datasets. In initial data conditions, the Ridife 
dataset contains more noise, slang words, and inaccurate labels 
from experts. In contrast, the IndoNLU Sentiment and Hate 
speech datasets have less noise, and expert labeling is precise. 
This research found that the proposed SSL using 
hyperparameter tuning is more suitable for noisy datasets. 
Hyperparameter tuning is also robust to training data that 
contains many manual labeling errors by experts. 

IV. CONCLUSION 

Annotation or data labeling in sentiment analysis is a 
substantial stage in the case of numerous large datasets. 
Annotation is time-consuming if humans do it. Thus, building 
model annotation using a computer is needed, but the accuracy 
model is notable. This research uses a semi-supervised model 
for annotating sentiment using a Support Vector Machine 
(SVM) and a Random Forest (RF) algorithm. SVM and RF 
were respectively tested as classifiers. To gain the most 
accurate model, RF and SVM were tuned using Random-
Search and Grid-Search, respectively. The experiment used 
three Indonesian corpora as a dataset (Ridife, IndoNLU 
Sentiment, and Hate speech). Overall, Grid-Search and 
Random Search leverage performance only in the Ridife 
dataset. The result shows that tuning works significantly on 
SVM, but on RF, it does not work on all datasets. This research 
found that models with hyperparameter tuning are robust to 
training data containing a lot of noise and incorrect human 
labeling. For further experiments, employing many variation 
datasets and paying attention to imbalanced and noise 
conditions in the data are suggested. 
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