
(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 14, No. 9, 2023

250 | P a g e

www.ijacsa.thesai.org

Hyperparameter Tuning of Semi-Supervised Learning

for Indonesian Text Annotation

Siti Khomsah
1
, Nur Heri Cahyana

2
, Agus Sasmito Aribowo

3

Department of Data Science,

Institut Teknologi Telkom Purwokerto, Indonesia

1

Department of Informatics, Universitas Pembangunan Nasional Veteran Yogyakarta, Indonesia
2, 3

Abstract—A crucial issue in sentiment analysis primarily

relies on the annotation task involving data labeling. This critical

step is typically performed by linguists, as the nuanced meaning

of text significantly influences its contextual interpretation. If

there is a large volume of data, annotation is time-consuming and

financially burdensome. Addressing these challenges, a semi-

supervised learning annotation (SSL) that integrates human

annotator and artificial intelligence algorithms emerges as a

potent solution. Building accurate SSL needs to explore the best

architecture, including a combination of machine learning and

mechanism. This research aims to construct semi-supervised

model annotation text by tuning the parameter of the machine

learning algorithm to gain the most accurate model. This study

employed a Support Vector Machine and a Random Forest

algorithm to build semi-supervised annotation. Grid-Search and

Random-Search were employed to tune the Random Forest and

Support Vector Machine parameters. The semi-supervised

annotation model was applied to annotate Indonesian texts. The

outcomes signify that hyperparameter-tuning enhances SSL

performance, surpassing the performance achieved using default

parameters. The experiment also shows that the SSL annotation

using a Support Vector Machine tuned by Grid Search and

Random Search is more robust than the Random Forest

algorithm. Hyperparameter tuning is also robust to training data

that contains many manual labeling errors by experts.

Keywords—Text annotation; semi-supervised; parameter-

tuning; grid search; random search

I. INTRODUCTION

The challenge in text classification-based machine learning
is data labeling. Each textual instance has meaning upon the
context and grammatical nuance specific to each language.
Thus, human intervention is vital for data labeling, as humans
are adept at assessing the contextual relevance of text. Human
annotator requires expertise in understanding the language
context. However, labeling numerous volumes of data requires
quite an amount of time and causes tiredness for the annotator -
consequently, the objectivity loss of the labeling process.
Hence, automation annotation is highly needed before the
dataset feeds into a machine learning classifier.

There has been a new development of an annotator-based
machine built by learning knowledge of the language experts
or humans. SSL uses a small sample of data annotated by
language experts and then uses the sample to build a training
model. Then, the training model is used for the annotation of
unlabeled data. The SSL model draws expert insight from a
small sample to build robust annotator unlabeled data. Here,
the SSL challenge is to produce a reliable and precise model.

In previous related research, a semi-supervised learning (SSL)
model was developed to classify text [1-4]. The performance of
semi-supervised text annotation still needs to improve. Al-
Laith et al. used LSTM and FastText for annotating Arabic text
with only three classes, resulting in an accuracy of 69.4% on
the SemEval 2017 dataset. In contrast, the best system
achieved a 63.38% F1 score, while on the ASTD dataset,
performance improved from 64.10% to 68.1% [4]. Aydln and
Güngör [5] combined semi-supervised and unsupervised
methods and implemented the J-48 tree, Support Vector
Machine, and Naive Bayes algorithms. As a result, the
accuracy is more than 90%. However, this model has not
proven its performance for multi-class datasets and other
language datasets. Alahmary and Al-Dossari [2] applied Naive
Bayes as a semi-supervised learning classifier with high
accuracy (83%). However, researchers have yet to test this
model on other datasets, and we do not know its performance
when utilized for SSL in other languages. So, developing a
semi-supervised text annotator for Indonesian text that utilizes
multiple machine learning models and various vectorizers is
expected to yield improved performance. Previous related
Research SSL in Indonesian by NurHeri Cahyana et al.
annotates hate speech [3]. The maximum accuracy in those
research employing KNN and TF-IDF is only 59.68%. SSL
model in [3] has a weakness: the model has not been applied to
other Indonesian text datasets and has not tried other model
combinations.

Many ways are done to gain a high-performance model,
such as identifying data samples with hesitant labels and
removing training data with unreliable labels. Those can
improve the quality of the training data and improve classifier
performance [6]. Another approach to improve model
performance is to overcome by trying various amounts of
training data proportions when building the annotation model,
then applying the ensemble method, using several machine
learning to classify the same data consensus on classification
decisions using confidence values [7]. Performance machine
learning depends on parameter setting [8]. Some ways to
leverage the performance of machine learning are tuning the
parameters [9-–11] and applying optimization [12-14]. The
goal of tuning these parameters is to find the best combination
parameter [15]. Tuning parameters can significantly impact the
model performance and finding the right combination
involving experimentation and iterative adjustments [16]. A
tuning parameter is a parameter that is not learned directly
from the data during the training process of a machine-learning
algorithm. Instead, it is a value set before training to control the
algorithm behavior. Unlike the default individual parameters of

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 14, No. 9, 2023

251 | P a g e

www.ijacsa.thesai.org

a model, which are learned from the training data, tuning
parameters are set by the user before training. Fine-tuning
parameters can have a substantial impact on the model
performance [17].

Besides tuning individual algorithm parameters,
hyperparameter techniques such as Grid Search and Random
Search can help find the best parameter combination. Several
researchers in text labeling or other domains employ Grid
Search [9], [18], [19] and Random Search [10], [11], [20], [21]
to enhance the accuracy and performance of machine learning
algorithm. Not all parameter tuning techniques are in tune with
machine learning algorithms and the data they handle. In
previous research, several algorithms that can generally be
tuned include Support Vector Machine (SVM), Random Forest
(RF), Logistic Regression, Naive Bayes, Neural Networks, and
Gradian Boosting. It is necessary to research the best
hyperparameters for each algorithm. This research aims to
leverage the performance of semi-supervised text annotation
through tuning parameters Support Vector Machine and
Random Forest using Grid Search and Random Search.
Different language corpus needs an appropriate architecture
model for automated text labeling. This research uses the
Indonesian dataset for the research material. Thus, SSL
architecture for the Indonesian dataset becomes the focus.

Our research proposed SSL with the SVM and Random
Forest as classifier. Random Search and Grid Search as
hyperparameter tuning to obtain the most optimal model. The
research problem boundary employs hyperparameter tuning to
gain high-performing SSL models for Indonesian text
annotation—the performance metric using F1-Score and
accuracy. This research is limited to utilizing two machine
learning algorithms, Random Forests and Support Vector
Machine, and two hyperparameters technic Grid Search and
Random Search. We divide the article into four sections:
introduction, methods, results and discussion, and conclusions.

II. Methods

The following section describes the research steps,
including data collection, data cleaning, feature extraction,
building classifier model annotation, and evaluation.

A. Data Collection

Due to several reasons, this research has used various
datasets to test the Semi-Supervised Text Annotation Model.
The primary rationale behind this approach is to enhance the
model’s ability to generalize and effectively accommodate
variations within the data. By subjecting the model to
evaluation using diverse datasets, the model can objectively
assess its performance across different domains. Also, this
approach can examine the model’s efficacy in managing
linguistic heterogeneity. Additionally, testing on various
datasets has comprehensively evaluated the model
performance. Thus, this research endeavor involves the
utilization of three publicly available datasets, as described in
Table I, for the explicit purpose of rigorous testing and
analysis.

TABLE I. DATASETS USED FOR MODEL ASSESSMENT

N

o
Dataset

Instan

ce
Source

1.
Hate
Speech

13168

https://github.com/okkyibrohim/

id-multi-label-hate-speech-and-abusive-language-

detection/blob/master/re_dataset.csv

2
Sentime
nt

Ridife

10805
https://github.com/ridife/dataset-idsa/blob/master/
Indonesian%20Sentiment%20Twitter%

20Dataset%20Labeled.csv

3

IndoNL
U

Sentime

nt

12759

https://github.com/IndoNLP/IndoNLU/tree/maste

r/dataset/
smsa_doc-sentiment-prosa

Before their utilization in the testing phase, the four
datasets were processed by the same steps, including data
cleaning, word embedding, and feature extraction. The
subsequent section elaborates on the empirical outcomes of
analyzing these four distinct datasets.

B. Data Cleaning and Preprocessing

The datasets used in this experiment comprised comments
in the Indonesian language. The cleaning purpose is to clear up
the dataset from noise such as punctuation, numerical
character, and stop words. The clean data was transformed into
a vector through several stages, including tokenization
(unigram, bigram, and trigram), stemming, and finally, turning
the stem into the vector using TF-IDF. Tokenizing onto
unigram is breaking down a piece of a sentence into individual
units. Bigram is a pair of sequence words within a sentence,
while trigram refers to three sequence words within a sentence.
Unigram, bigram, and trigram are N-gram types in which N is
any number. N-Gram with N is two or more, often used to
capture more contextual information than a single word.

C. Word Embedding and Feature Extraction

The Bag of Words (BoW), often mentioned as Term-
Frequency (TF), constitutes an algorithm employed to
determine the weight of individual words within a document.
The weight of Term-Frequency is computed by quantifying the
occurrence of the term t in document D and dividing it by the
total count of words present in document D. The underlying
objective is to identify unique words that can serve as an
essential document feature. The large documents generate a big
matrix. Given a number feature of N and a sum document of D,
the feature matrix has dimensions of N x D. TF is the
occurrence of a word t in document D, computed as in Eq. (1).

 (1)

The is the frequency of term t in document d,

where t is a term (word within a sentence), f is the number of
occurrences of term t in document d, and is the number of

terms t in document d.

TF-IDF (Term Frequency-Inverse Document Frequency) is
the weight computed by multiplication between TF and IDF.
IDF (Inverse Document Frequency) is a value that indicates
how important a word is in the entire document in the dataset.
A word with a lower TF-IDF value is considered less
important, and vice versa. Words that appear frequently
throughout the document are considered as less important
words. The weight IDF of a document calculated as in Eq. (2)

https://github.com/ridife/
https://github.com/IndoNLP/

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 14, No. 9, 2023

252 | P a g e

www.ijacsa.thesai.org

 

To compute the TF-IDF (Term Frequency-Inverse
Document Frequency), the TF value is multiplied by the IDF
value according to the following formula, as in Eq. (3)

  

D. Model of Semi-Supervised Text Annotation

Random Forest is a robust ensemble learning algorithm
widely used in machine learning for classification. Random
Forest defines the target class by combining multiple decision
tree outputs to yield a single outcome. As suggested by its
name, a "forest" comprises numerous trees generated through
bagging or bootstrap aggregating. Each tree in the Random
Forest produces class predictions, with the majority class
prediction as the candidate prediction model. Increasing the
number of trees leads to enhanced accuracy and mitigates
overfitting concerns. Random Forest is known for its
robustness and resistance to overfitting. Tuning its parameters
can improve performance on specific datasets.

SVM is a robust machine learning algorithm widely used
for classification tasks. It is particularly effective for tasks
involving complex data distribution and when clear dividing
lines are needed to differentiate between classes. SVM aims to
find the optimal hyperplane that best separates different classes
of data points in a high-dimensional space. The basic idea of
SVM is to find a hyperplane that maximizes the margin
between classes of data points. The margin is defined as the
distance between the hyperplane and the nearest data points
from each class. The idea is to choose the hyperplane with the
largest margin, which is expected to classify well to new data
with no class yet. However, SVM's effectiveness depends on
properly tuning parameters to make the data separable.

E. Proposed Semi-Supervised Learning Architecture

This research proposes a novel architecture for the semi-
supervised learning (SSL) model with tuning parameters,
depicted in Fig. 1. The SSL workflow initiates by utilizing an
annotated dataset encompassing training, testing, and unlabeled
data, as in Fig. 1. Training and testing data are manually
labeled by an Indonesian language expert.

The process begins with word embedding, transforming
textual data from the training set into vectors using the TF-IDF
technique. This word embedding procedure generates three
distinctive vectors: unigram, bigram, and trigram. These three
vector representations subsequently serve as inputs for building
three separate models employing Random Forest and Support
Vector Machine (SVM). The algorithm Random Forest and
SVM parameters were tuned to gain the best classification
model.

Following the stacking principle, these three distinct
models operate independently. Each model participates in the
annotation of the unlabeled data. Then, the unlabeled data is
annotated by each model, resulting in pseudo-labels of three
sets of datasets, each classified according to one of the three
models. A pseudo-label has high confidence if the cumulative
weight assigned to it divided by the cumulative weight of all
models is high. This confidence value is compared to a

predefined threshold. This threshold serves as a criterion to
identify annotated data (with pseudo-labels) with confidence
values deserving inclusion as part of the training data. Then,
documents with high-ranking confidence and existing training
data are mixed. Through this innovative approach, the SSL
process harnesses the strengths of multiple models to improve
predictions on unlabeled data iteratively. Considering
confidence values and applying the threshold optimizes
integrating pseudo-labeled data into the training set, ultimately
enhancing the model's performance.

Fig. 2 describes the main algorithm of SSL. The process
started by reading the labeled training dataset (DT), testing
dataset (DTest), and unlabeled dataset (UN). All three datasets
are transformed into the vector with feature unigrams, bigrams,
and trigrams. Then, the model-building process is shown in
lines 9-11, the hyperparameter process is in lines 12-14, the
annotation process with the best parameter model is in lines
15-17, and the line 18-21 is the voting process.

Fig. 1. SSL text annotation using parameter tuning.

Fig. 2. Algorithm of proposed SSL.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 14, No. 9, 2023

253 | P a g e

www.ijacsa.thesai.org

F. Tuning Techniques

Grid Search and Random Search were applied for tuning
both SVM and RF. Grid Search is a hyperparameter tuning
technique that systematically searches for a machine learning
optimal combination model of hyperparameter values. It
involves defining a grid of possible hyperparameter values and
then evaluating the model performance using each combination
of these values through cross-validation. The best parameter
combination selected is the optimal set of hyperparameters
[18].

Random Search does not explore all combinations like Grid
Search. Instead, it tracks the combinations that provide the best
performance to date. When more combinations are evaluated,
the combination becomes the new best combination if the
performance of a combination is better than the previous one
[22]. This randomness can be more efficient in exploring the
hyperparameter space, primarily when enormous search space
exists.

G. Evaluation Model

To evaluate the classification performance of the SSL
model, we employ a confusion matrix, as shown in Table II.
The confusion matrix will compare the predicted results with
the actual class using the rules in Table II. This study uses two
parameters for model validation, namely accuracy and F1-
score.

TABLE II. CONFUSION MATRIX

Actual

Positive Negative

Predicted

Positive True Positive (TP) False Positive (FP)

Negative False Negative (FN) True Negative(TN)

Accuracy is the ratio of the correctly predicted dataset to all
datasets in the experiment. Accuracy, as in Eq. (4), is a good
measurement, but it is only on symmetric datasets, i.e., when
the number of false positives and false negatives is almost the
same or balanced.

 (4)

Precision measures the proportion of genuinely positive
instances among all instances predicted as positive by the
model. In other words, it quantifies how well the model avoids
false positives. High precision indicates that when the model
predicts a positive class, it is more likely to be correct.
Precision is crucial where the instances of false positives are
high or when we want to ensure that the positive predictions
made by the model are accurate. However, it is worth noting
that precision does not consider instances that were predicted
as negative, which could be actual positive cases that were
missed (false negatives). Eq. (5) is the precision formula.

 

Recall (sensitivity) is the opposite of precision, as in Eq.
(6).

 (6)

Eq. (7) is the average weight of precision and recall. F1
Score is more beneficial than accuracy, especially if the results
have an unequal class distribution.

 

III. RESULT AND DISCUSSION

A. Data Distribution

The following Table III shows the distribution of class data
for each dataset. Ridife corpus has class positive (24%), neutral
(49.1%), and negative (26.9%). IndoNLU Sentiment has class
positive (57.7%), neutral (10.7%), and negative (31.6%). Hate
Speech only has two classes: positive (42.2%) and negative
(57.8%). There are all three datasets in imbalanced class data.

TABLE III. DISTRIBUTION LABEL CLASS

Dataset

s

Label Class

Positi
ve

Proporti
on

Neutr
al

Proporti
on

Negati
ve

Proporti
on

Total

Ridife 2574 24.0% 5271 49.1% 2882 26.9%
107

27

IndoNL

U
Sentim

ent

7359 57.7% 1367 10.7% 4034 31.6%
127
60

Hate
Speech

5561 42.2% - - 7606 57.8%
131
67

The proposed SSL model employed a tuning parameter.
Our experiment uses two techniques, namely Random-Search
and Grid-Search. Random Forest and SVM parameters were
tuned to gain the best performance of the SSL model. Before
applying the SSL model, all datasets corpus are dispart into
training, testing, and unlabeled data. Training and testing data
are each 10% of the dataset—human labels 10% of training
and testing data. The remaining 90% is unlabeled data.

B. Performance SSL Model

Data testing was employed to assess the performance of the
SSL model under both baseline and final conditions. Baseline
conditions involved the SSL model being constructed solely
using labeled training data. In contrast, the final condition
entailed forming the SSL model by fusing labeled training data
and Pseudo-Labels generated from unlabeled training data. The
experiment was done in two distinct stages. The initial stage
entailed evaluating the SSL model using hyperparameters Grid
Search, while the subsequent stage involved testing the SSL
model performance with hyperparameters using Random
Search.

1) Performance SSL using SVM: The performance of SSL

without hyperparameter is shown in Table IV, while after

tuning is shown in Tables V and VI.

TABLE IV. PERFORMANCE SSL SVM

Datasets
Without Hyperparameter

Accuracy

(%)

Precision

(%)

Recall

(%)
F1-Score(%)

Ridife 26.9 100 26.9 42.3

IndoNLU Sentiment 57.6 100 57.6 73.1

Hate speech 57.8 100 57.8 73.2

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 14, No. 9, 2023

254 | P a g e

www.ijacsa.thesai.org

TABLE V. PERFORMANCE SSL SVM TUNED BY GRID SEARCH

Datasets

Grid Search

Accuracy

(%)

Precision

(%)

Recall

(%)
F1-Score(%)

Ridife 50.0 97.8 50.0 65.2

IndoNLU Sentiment 78.4 85.5 78.4 81.4

Hate speech 73.7 82.6 73.7 75.6

TABLE VI. PERFORMANCE SSL SVM TUNED BY RANDOM SEARCH

Datasets

Random Search

Accuracy

(%)

Precision

(%)

Recall

(%)
F1-Score(%)

Ridife 50.0 98.0 50.0 65.3

IndoNLU Sentiment 78.8 85.2 78.8 81.3

Hate Speech 73.0 83.5 73.0 75.4

Table IV shows the result of the SSL model using SVM
with standard parameters having low performance. Accuracy
towards all three datasets is under 60%, even though the F1-
Score is high. The F1 score shows that the SSL SVM model
without parameter tuning is quite good, although only for some
data (IndoNLU sentiment and Hate Speech). The Ridife dataset
does not reach 50% accuracy, requiring further investigation of
the condition of the data, especially the validity of the sample
annotation results by Indonesian language experts. With
perfect precision values, it is surprising that the recall values
are so much lower. With these results, an analysis can be
drawn that the standard parameters used in SVM cannot
optimize the performance of the SSL model.

Meanwhile, Table V shows that SVM tuning using Grid
Search can increase accuracy, indicated by increased accuracy
and F1 scores. Because of the differences in class distribution,
the performance observations emphasize the F1 score. By
comparing the performance of the models without tuning and
with tuning, Grid Search increases the F1 Score in the three
datasets by 22.9% in the Ridife dataset, 8.3% in the IndoNLU
sentiment dataset, and 2.4% in the Hate Speech dataset.
Random Search increased the F1 Score by 23.0%, 8.2%, and
2.2%, respectively, on Ridife, IndoNLU sentiment, and Hate
speech.

The effect of the parameter tuning done for SVM can be
seen in the F1 score performance, as shown in Fig. 3. The F1
score is a valid evaluation to represent the unequal class
distribution. Fig. 3 shows that both tuning techniques (Grid and
Random Search) can improve the SSL model performance.

Fig. 3. Performance F1 Score SVM.

2) Performance SSL using random forest (RF): The

performance of SSL RF without a hyperparameter is shown in

Table VII; SSL tuned by Grid is in Table VIII, and tuned by

Random Search is in Table IX. In contrast, tuning on RF does

not improve the SSL model’s performance like tuning on

SVM.

TABLE VII. PERFORMANCE SSL RF

Datasets

Without Hyperparameter

Accuracy

(%)

Precision

(%)

Recall

(%)
F1-Score(%)

Ridife 31.5 75.2 31.5 37.1

IndoNLU Sentiment 75.0 81.0 75.0 76.4

Hate Speech 72.8 85.0 72.8 75.5

TABLE VIII. PERFORMANCE SSL RF TUNED BY GRID SEARCH

Datasets

Grid Search

Accuracy

(%)

Precision

(%)

Recall

(%)
F1-Score(%)

Ridife 46.0 60.0 46.0 51.0

IndoNLU Sentiment 75.4 80.9 75.4 76.7

Hate Speech 72.6 86.2 72.6 75.6

TABLE IX. PERFORMANCE SSL RF TUNED BY RANDOM SEARCH

Datasets

Random Search

Accuracy

(%)

Precision

(%)

Recall

(%)
F1-Score(%)

Ridife 36.5 71.2 36.5 40.7

IndoNLU Sentiment 75.6 81.1 75.6 76.9

Hate Speech 72.0 85.7 72.0 75.0

Table VII shows that the SSL model using RF with
standard parameters performs poorly for the Ridife dataset,
which only reached 40.7%. However, the IndoNLU Sentiment
and Hate Speech datasets are pretty good, above 75%.
Meanwhile, Table VII shows that tuning parameter RF using
Grid Search was unsuccessful enough to increase model
performance. It can be seen that F1 Score before and after
tuning in the IndoNLU Sentiment and Hate Speech datasets.
By comparing the performance of the RF model without tuning
and tuning with Grid Search, the improving performance in all
datasets is 13.9% for the Ridife dataset: 0.3% for the IndoNLU
Sentiment dataset, and 0.1% for the Hate Speech dataset.
While tuning with Random Search could not improve RF
performance significantly. The effect of Random Search tuning
on RF is only shown by the Ridife dataset. Random Forest is a
tree-based algorithm that uses an ensemble tree to increase
performance. Therefore, setting up RF with Random Search
did not work significantly. The graphical visualization in Fig. 4
supports this. Suppose the conditions of the initial data are
observed in more detail. In that case, the Ridife dataset tends to
have a lot of noise, slang words, and inaccurate labeling by
experts, which may be good for examining the effect of tuning.
Meanwhile, the other two datasets (IndoNLU Sentiment and
Hate Speech) are relatively cleaner. Considering the condition
of the dataset, tuning is suitable for models built from a lot of
noise-training data.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 14, No. 9, 2023

255 | P a g e

www.ijacsa.thesai.org

Fig. 4. Performance F1 score RF.

We find that our SSL model for the hate speech dataset
obtained higher accuracy (more than 75%) than the SSL
proposed by Nur Heri Cahyana et al. [6], which has only
reached an accuracy of 59.68% using KNN. Our proposed
method proved that SVM and Random Forest perform better
for hate speech datasets. In initial data conditions, the Ridife
dataset contains more noise, slang words, and inaccurate labels
from experts. In contrast, the IndoNLU Sentiment and Hate
speech datasets have less noise, and expert labeling is precise.
This research found that the proposed SSL using
hyperparameter tuning is more suitable for noisy datasets.
Hyperparameter tuning is also robust to training data that
contains many manual labeling errors by experts.

IV. CONCLUSION

Annotation or data labeling in sentiment analysis is a
substantial stage in the case of numerous large datasets.
Annotation is time-consuming if humans do it. Thus, building
model annotation using a computer is needed, but the accuracy
model is notable. This research uses a semi-supervised model
for annotating sentiment using a Support Vector Machine
(SVM) and a Random Forest (RF) algorithm. SVM and RF
were respectively tested as classifiers. To gain the most
accurate model, RF and SVM were tuned using Random-
Search and Grid-Search, respectively. The experiment used
three Indonesian corpora as a dataset (Ridife, IndoNLU
Sentiment, and Hate speech). Overall, Grid-Search and
Random Search leverage performance only in the Ridife
dataset. The result shows that tuning works significantly on
SVM, but on RF, it does not work on all datasets. This research
found that models with hyperparameter tuning are robust to
training data containing a lot of noise and incorrect human
labeling. For further experiments, employing many variation
datasets and paying attention to imbalanced and noise
conditions in the data are suggested.

ACKNOWLEDGMENT

The authors are grateful to The Ministry of Education,
Culture, Research and Technology, Indonesia, for funding this
research through the Fundamental Research Grant 2023, which
has led to the publication of this paper.

REFERENCES

[1] V. L. S. Lee, K. H. Gan, T. P. Tan, and R. Abdullah, ―Semi-Supervised
Learning for Sentiment Classification using Small Number of Labeled
Data,‖ in The Fifth Information Systems International Conference,
Surabaya: Elsevier B.V., 2019, pp. 577–584. doi:
10.1016/j.procs.2019.11.159.

[2] R. Alahmary and H. Al-Dossari, ―A semiautomatic annotation approach
for sentiment analysis,‖ J Inf Sci, 2021, doi:
10.1177/01655515211006594.

[3] N. H. Cahyana, S. Saifullah, Y. Fauziah, A. S. Aribowo, and R.
Drezewski, ―Semi-Supervised Text Annotation for Hate Speech
Detection using K-Nearest Neighbors and Term Frequency-Inverse
Document Frequency,‖ International Journal of Advanced Computer
Science and Applications, vol. 13, no. 10, pp. 147–151, 2022.

[4] A. Al-Laith, M. Shahbaz, H. F. Alaskar, and A. Rehmat, ―Arasencorpus:
A semi-supervised approach for sentiment annotation of a large arabic
text corpus,‖ Applied Sciences (Switzerland), vol. 11, no. 5, Mar. 2021,
doi: 10.3390/app11052434.

[5] C. R. Aydln and T. Güngör, ―Sentiment Analysis in Turkish:
Supervised, Semi-Supervised, and Unsupervised Techniques,‖ 2021.
doi: 10.1017/S1351324920000200.

[6] K. Miok, G. Pirs, and M. Robnik-Sikonja, ―Bayesian Methods for Semi-
supervised Text Annotation,‖ 2020. [Online]. Available:
http://arxiv.org/abs/2010.14872

[7] N. H. Cahyana, S. Saifullah, Y. Fauziah, A. S. Aribowo, and R.
Drezewski, ―Semi-Supervised Text Annotation for Hate Speech
Detection using K-Nearest Neighbors and Term Frequency-Inverse
Document Frequency,‖ International Journal of Advanced Computer
Science and Applications, vol. 13, no. 10, pp. 147–151, 2022.

[8] H. J. P. Weerts, A. C. Mueller, and J. Vanschoren, ―Importance of
Tuning Hyperparameters of Machine Learning Algorithms,‖ Jul. 2020,
[Online]. Available: http://arxiv.org/abs/2007.07588

[9] R. Ghawi and J. Pfeffer, ―Efficient Hyperparameter Tuning with Grid
Search for Text Categorization using kNN Approach with BM25
Similarity,‖ Open Computer Science, vol. 9, no. 1, pp. 160–180, 2019,
doi: 10.1515/comp-2019-0011.

[10] L. Villalobos-Arias, C. Quesada-López, J. Guevara-Coto, A. Martínez,
and M. Jenkins, ―Evaluating hyper-parameter tuning using random
search in support vector machines for software effort estimation,‖ in
PROMISE 2020 - Proceedings of the 16th ACM International
Conference on Predictive Models and Data Analytics in Software
Engineering, Co-located with ESEC/FSE 2020, Association for
Computing Machinery, Inc, Nov. 2020, pp. 31–40. doi:
10.1145/3416508.3417121.

[11] R. Turner et al., ―Bayesian Optimization is Superior to Random Search
for Machine Learning Hyperparameter Tuning: Analysis of the Black-
Box Optimization Challenge 2020,‖ in Proceedings of Machine
Learning Research, 2021, pp. 3–26.

[12] A. Nugroho and H. Suhartanto, ―Hyper-Parameter Tuning based on
Random Search for DenseNet Optimization,‖ in 7th International
Conference on Information Technology, Computer, and Electrical
Engineering (ICITACEE), IEEE Xplore, 2020, pp. 96–99. doi:
10.1109/ICITACEE50144.2020.9239164.

[13] L. Yang and A. Shami, ―On hyperparameter optimization of machine
learning algorithms: Theory and practice,‖ Neurocomputing, vol. 415,
pp. 295–316, 2020, doi: 10.1016/j.neucom.2020.07.061.

[14] E. S. Tellez, D. Moctezuma, S. Miranda-Jiménez, and M. Graff, ―An
automated text categorization framework based on hyperparameter
optimization,‖ Knowl Based Syst, vol. 149, pp. 110–123, 2018, doi:
10.1016/j.knosys.2018.03.003.

[15] Y. Xie, C. Zhu, W. Zhou, Z. Li, X. Liu, and M. Tu, ―Evaluation of
machine learning methods for formation lithology identification: A
comparison of tuning processes and model performances,‖ J Pet Sci
Eng, vol. 160, pp. 182–193, Jan. 2018, doi:
10.1016/j.petrol.2017.10.028.

[16] E. Elgeldawi, A. Sayed, A. R. Galal, and A. M. Zaki, ―Hyperparameter
Tuning for Machine Learning Algorithms Used for Arabic Sentiment
Analysis,‖ Informatics, vol. 8, no. 79, pp. 1–21, 2021.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 14, No. 9, 2023

256 | P a g e

www.ijacsa.thesai.org

[17] Md Riyad Hossain and Douglas Timmer, ―Machine learning model
optimization with hyper-parameter tuning approach,‖ in International
Conference on Advanced Engineering, Technology and Applications
(ICAETA), 2021. [Online]. Available:
https://www.researchgate.net/publication/354495368

[18] S. George and B. Sumathi, ―Grid Search Tuning of Hyperparameters in
Random Forest Classifier for Customer Feedback Sentiment Prediction,‖
2020. [Online]. Available: www.ijacsa.thesai.org

[19] B. H. Shekar and G. Dagnew, ―Grid search-based hyperparameter tuning
and classification of microarray cancer data,‖ in 2019 2nd International
Conference on Advanced Computational an Communication Paradigms
(CACCP), IEEE, 2019, pp. 1–8. doi: 10.1109/ICACCP.2019.8882943.

[20] R. Turner et al., ―Bayesian Optimization is Superior to Random Search
for Machine Learning Hyperparameter Tuning: Analysis of the Black-
Box Optimization Challenge 2020,‖ in Proceedings of Machine
Learning Research, 2020, pp. 3–26.

[21] R. G. Mantovani, A. L. D. Rossi, J. Vanschoren, B. Bischl, and A. C. P.
L. F. De Carvalho, ―Effectiveness of Random Search in SVM hyper-
parameter tuning,‖ Proceedings of the International Joint Conference on
Neural Networks, vol. 2015-Septe, 2015, doi:
10.1109/IJCNN.2015.7280664.

[22] S. Andradóttir, ―A Review of Random Search Methods,‖ in Handbook
of Simulation Optimization, M. C. Fu, Ed., New York, NY: Springer
New York, 2015, pp. 277–292. doi: 10.1007/978-1-4939-1384-8_10.

