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Abstract—Autism spectrum disorder is a debilitating 

neurodevelopmental illness characterized by serious impairments 

in communication and social skills. Due to the increasing 

prevalence of autism worldwide, the development of a new 

diagnostic approach for autism spectrum disorder is of great 

importance. Also, diagnosing the severity of autism is very 

important for clinicians in the treatment process. Therefore, in 

this study, we intend to classify the electroencephalogram (EEG) 

signals of mild and severe autism patients. Twelve patients with 

mild autism and twelve patients with severe autism with the age 

range of 10-30 years participated in the present research. Due to 

the difficulties of working with autism patients and recording 

EEG signals from these patients in the awake state, the Emotiv 

Epoch headset device was utilized in this work. After signal 

preprocessing, we calculated short-range and long-range 

coherence values in the frequency range of 1-45 Hz, including 

short- and long-range intra- and inter-hemispheric coherence 

features. Then, statistical analysis was conducted to select 

coherence features with statistical differences between the two 

groups. Multilayer perceptron (MLP) neural network and 

support vector machine (SVM) with radial basis function (RBF) 

kernel were used in the classification stage. Our results showed 

that the best MLP classification performance was obtained by 

selected inter-hemispheric coherence features with accuracy, 

sensitivity and specificity of 96.82%, 97.82% and 96.92%, 

respectively. Also, the best SVM classification performance was 

obtained by selected inter-hemispheric coherence features with 

accuracy, sensitivity and specificity of 94.70%, 93.85% and 

95.55%, respectively. However, it should be noted that the MLP 

neural network imposes a much higher computational cost than 

the SVM classifier. Considering that our simple system gives 

promising results in diagnosing autistic patients with mild and 

severe severities from EEG, there is scope for further work with 

a larger sample size and different ages and genders. 
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I. INTRODUCTION 

Autism spectrum disorder is a debilitating 
neurodevelopmental illness characterized by serious 
impairments in communication and social skills. Patients with 
autism manifest repetitive and restricted behavior [1-3]. The 
prevalence of autism has increased considerably from 0.67% in 
2000 to 2.58% in 2016 in the United States [4-6]. Therefore, in 
recent years, researchers emphasized different approaches to 
early diagnosis of this disorder to provide timely intervention 
and achieve better treatment outcomes [7, 8]. In this regard, it 
is also very important to determine the severity of the disease 
in autism spectrum disorder because it leads to changing 

treatment approaches due to the level of brain disorders [9]. 
Brain images have shown abnormalities in brain and head size 
and limbic and cerebellar structure in autistic patients [10]. 
Magnetic resonance imaging (MRI) studies have shown that 
autistic patients have serious disturbances in the functional 
connectivity between different brain regions [11, 12]. fMRI 
and diffusion tensor imaging (DTI) studies also showed that 
patients with autism had reduced long-range functional 
connectivity at rest and during different executive cognitive 
tasks [13]. However, due to its high availability, cheapness, 
and ease of use, many researchers have analyzed the 
electroencephalogram (EEG) signals of autism patients to 
study their brain function [14-18]. For instance, in a recent 
study, Hadoush et al. [19] analyzed and compared the brain 
complexity of children with mild and severe autism through 
multiscale entropy analysis of EEG signals. They found that 
the brain complexity of children with mild autism is higher 
than that of children with severe autism in the right parietal, 
right frontal, left parietal and central cortices. Finally, they 
concluded that EEG multiscale entropy could serve as a 
sensitive index to detect the level of autism severity. In a 
review study, Wang et al. suggested excessive power in low- 
and high-frequency EEG bands and impaired functional 
connectivity as common EEG abnormalities in autism 
spectrum disorders [20]. The organization of this article is as 
follows. In Section II, we briefly review some related work in 
autism diagnosis through EEG analysis. In Section III, the 
proposed system for preprocessing the EEG signal and 
extracting and classifying the EEG features of autism patients 
is presented. Then the obtained results are presented in 
Section IV. Section V discussed the obtained results. Finally, 
in the last section, the conclusion of this work is presented. 

II. RELATED WORK 

As mentioned, due to the increasing prevalence of autism 
worldwide, the development of a new diagnostic approach for 
autism spectrum disorder is of great importance. Several 
studies have shown significant differences between various 
EEG features of individuals with autism and normal 
individuals [21-23]. These studies mainly focused on the 
spectral power of EEG frequency bands, connectivity and 
coherence between cortical areas, and hemispheric activity 
asymmetry [24, 25]. For instance, Jamal et al. obtained an 
accuracy, sensitivity and specificity of 94.7%, 85.7% and 
100%, respectively, in autism diagnosis using connectivity 
features and a support vector machine (SVM) with the 
polynomial kernel [26]. Sheikhani et al. used spectral power 
features and K-nearest neighbours and reported a classification 
accuracy of 82.4% for autism diagnosis [27]. Fan et al. 
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proposed a similar framework for EEG classification of autism 
and non-autism subjects and reported an accuracy of 85% for 
this purpose [28]. 

On the other hand, several recent studies have investigated 
the nonlinear features of EEG for autism diagnosis. Bosl et al. 
reported good EEG classification results for autism diagnosis 
using multiscale entropy and SVM [29]. Ahmadlou et al. used 
the fractal dimension of EEGs and radial basis function neural 
network and achieved a classification accuracy of 90% for 
autism diagnosis [30]. Djemal et al. proposed an EEG-based 
computer-aided diagnosis of autism through entropy and 
wavelet-based features as well as an artificial neural network 
and achieved a classification accuracy of 99.71% [31]. 
Abdulhay et al. proposed a computer-aided autism diagnosis 
system through second-order plot area and empirical mode 
decomposition and achieved a classification accuracy of 94.4% 
for autism diagnosis [24]. 

Although several studies have been published in the field of 
computer-aided diagnosis of autism using EEG signals, very 
few studies have paid attention to the fact that in autism, we are 
dealing with a relatively wide range of patients with different 
behavioral and cognitive symptoms. Meanwhile, diagnosing 
the severity of autism is very important for clinicians in the 
treatment process. Therefore, in this study, we intend to 
classify the EEG signals of mild and severe autism patients 
using coherence indices and machine learning approaches (i.e., 
SVM and artificial neural networks).  

III. MATERIALS AND METHODS 

A. Patients 

Twelve patients with mild autism and twelve patients with 
severe autism were participated in the present research. All 
participants with autism were diagnosed by psychiatry experts 
according to the diagnostic criteria of DSM-5 [32]. Also, the 
severity of autism was determined through psychiatric 
interviews with specialists. The age range of the selected 
patients was 10-30 years. During the selection stage, patients 
with autism who had other neurological conditions, such as 
epilepsy or head trauma, were excluded. The patient 
enrollment was administered in a psychiatric clinic. The 
research project was done in accordance with the principles of 
the Declaration of Helsinki (1996) and the current Good 
Clinical Practice guidelines. The goal and an overview of the 
project were characterized by the participants and their parents 
during the initial contact. For those who agreed to participate, 
all the necessary information was provided prior to signing 
written informed consent. Information about the subjects was 
utilized anonymously and for the purpose of the study. 

B. Data Acquisition and Cleaning 

Previous studies have shown that resting with eyes open is 
the best EEG recording condition for EEG classification of 
autism from healthy subjects. Hence, in the current work, EEG 
recordings were performed while the patients were awake with 
their eyes open and sitting comfortably in an armchair without 
any stimuli. Depending on the subject's cooperation, EEG was 
recorded for 12-20 minutes for each patient in one session. Due 
to the difficulties of working with autism patients and 
recording EEG signals from these patients in the awake state, 

the Emotiv Epoch headset device was utilized in this work. 
Since the Emotiv Epoch headset is a wireless EEG device, the 
signal recording was conducted in autistic patients more easily. 
This EEG device uses a Bluetooth module for wireless 
communication. The Emotiv Epoch headset and Software 
Development Kit include 14 electrodes (AF3, AF4, F7, F8, F3, 
F4, FC5, FC6, T7, T8, P7, P8, O1, O2 based on 10-20 
international system) along with DRL/CMS references at 
P4/P3 locations. As depicted in Fig. 1, the EEG headset is 
wireless and has a large lithium-based battery for 12 hours. The 
sampling rate in this device is 128 Hz. The electrode 
impedance is reduced through the saline liquid and alcohol 
pads until the circles shown in Fig. 1 turn green. Emotive 
software was utilized to record EEGs and convert their format 
to MATLAB format. 

 
(a) 

 
(b) 

Fig. 1. Emotiv Epoch device and sensors organization. (a) headset and 

sensors, (b) 10-20 EEG international protocol. 
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Emotiv Epoch utilizes a 50 Hz notch filter to eliminate the 
main power line component. After EEG recording, in the signal 
preprocessing and conditioning stage, a band-pass Hanning 
window with a finite duration and frequency range of 1-45 Hz 
was applied to the signals via MATLAB software [33-35]. In 
addition, we performed electrode interpolation using adjacent 
channels for low-quality electrodes. EEGs were re-referenced 
to the common average and then were decomposed via 
independent component analysis (ICA). Components with 
motion and muscle artifacts were recognized by ICA and were 
then removed based on time courses and frequency scalp maps. 
The cleaned components were reconstructed, and a 50-second 
cleaned EEG signal was prepared for each patient. 

C. Coherence Features 

EEG coherences measure the level of synchronization 
between two channels (i.e., two brain regions) in terms of 
EEGs recorded at different regions of the scalp. The coherence 
function gives information about the functional connectivity of 
the brain [36]. The value of the coherence function is in the 
range of zero to one, which shows the correlation of two 
signals in terms of frequency. If the value of the coherence 
function is zero, it means that the two channels are independent 
of each other, and the value of one indicates a high correlation 
between the two channels. The coherence function of two 
signals, i and j, at frequency f, is calculated as follows: 

      ( )  
|    ( )|

 

    ( )     ( )
  (1) 

Where,     ( ) is the cross-spectrum of the two signals, and 

    ( ) and     ( ) are auto-spectrum of the two signals. Fig. 2 

shows the EEG coherence visualization method through matrix 
representation and node-link diagram. 

In this work, we calculated short-range and long-range 
coherence values in the frequency range of 1-45 Hz, including 
short- and long-range intra- and inter-hemispheric coherence 
features. Totally, 89 coherence features were calculated. 

D. Feature Selection and Classification 

To avoid the curse of dimensionality, statistical analysis 
was applied to the calculated coherence features to select 
features with significant differences between the two groups of 
patients with autism. Statistical analysis was also performed in 
MATLAB software. After performing the Shapiro-Wilk test to 
confirm the normality of the data, repeated measures analysis 
of variance (ANOVA) was used to handle the multiple 
comparison problems and the independent t-test was used as a 
post hoc analysis to compare the mean of the extracted features 
between the two groups [37-40]. P < 0.05 was considered as 
the threshold of significance. 

E. Multilayer Perceptron (MLP) Neural Network 

The selected coherence features through a statistical 
analysis were applied to suitable classifiers to classify the 
feature set into mild and severe autism. SVM and artificial 
neural networks are common classifiers in biomedical 
applications. Neural networks have been utilized in 
classification and pattern recognition for different research 
projects because of their unique properties, such as self-
organizing, adaptability, and robustness [41]. There are three 
layers in a feed-forward neural network like MLP: an input 
layer, a hidden layer, and an output layer. In the current 
research, the supervised learning network was utilized to 
classify mild and severe autism. The architecture of the 
network is depicted in Fig. 3. 

 
Fig. 2. EEG coherence visualization method. (a) matrix representation, (b) node-link diagram [43]. 
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Fig. 3. Artificial neural network architecture. 

The neural network was configured with n neurons (based 
on the number of selected features) in the input layer, five 
neurons in the hidden layer, hyperbolic tangent hidden transfer 
function, softmax output transfer function, and backward 
propagation training algorithm. The bias and weights for the 
network were initialized through the Nguyen-Widrow method. 
The neurons of each layer are connected to the next layer with 
a certain weight, which is defined as follows: 

        ( )  ( )   (2) 

The above equation is known as the delta law, through 
which weight correction is done from neuron i to neuron j. η, 
δj(n) and yi(n) are the learning rate parameter, local gradient 
and input signal of neuron j, respectively. If j is a neuron in the 
hidden layer, then δj(n) is obtained by: 

  ( )    
 (  ( ))∑   ( )   ( )  (3) 

Where, k is a neuron in the output layer, and   
 (  ( )) 

denotes the activation function to characterize the input-output 
relationships of the non-linearity to neuron j. 

F. SVM with Radial Basis Function (RBF) Kernel 

SVM has been widely utilized by researchers to solve 
various nonlinear problems and classification tasks with small 
data samples [42]. We used SVM in this study because this 
classifier minimizes the expected risk in the test data and 
considers a margin around the class boundaries, which leads to 
increased generalizability of the results. SVM uses a kernel 
function to transform the nonlinear classification problem into 
a linear one by increasing the dimensionality of the dataset. In 
this work, we used the RBF kernel. The RBF kernel is the most 
widely utilized kernel in SVMs. The RBF kernel has good 
performance in various classification problems. It is expressed 
as: 

(     )     (  ‖     ‖
 
)      (4) 

Where, γ is the free parameter to scale the extent of 
influence, two samples have on each other. 

IV. RESULTS AND EVALUATION 

The coherence features were calculated from every 14 
channels of EEG signals. Fig. 4 shows an example of recorded 
EEG signals of mild autistic and severe autistic patients for the 
right and left hemispheres after preprocessing. After feature 
extraction, the feature selection process was done through 
statistical analysis. Fig. 5 shows box plots for short-range and 
long-range intra-hemispheric coherence features with 
significant differences (P < 0.05) between mild and severe 
autism groups. As shown, there were significant differences in 
both the left and right hemispheres. In addition, Fig. 6 shows 
box plots for short-range and long-range inter-hemispheric 
coherence features with significant differences (P < 0.05) 
between mild and severe autism groups. These 10 coherence 
features with significant differences between the two groups 
were considered as selected features for the classification step. 
In the classification step, based on the results obtained from the 
statistical analysis, we considered four feature sets as input to 
the classifiers: all coherence features, all selected features, 
selected intra-hemispheric features, and selected inter-
hemispheric features. It should be noted that the training and 
testing processes of the classifier were carried out with the 
four-fold cross-validation method. 

Accuracy, sensitivity and specificity were calculated in this 
study to measure classification performance. These metrics 
were calculated based on the concepts of false negative (FN), 
false positive (FP), true negative (TN), and true positive (TP), 
which represent cases that were incorrectly or correctly 
identified as negative or positive cases. 
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Fig. 4. Sample EEG signals of mild autistic (top) and severe autistic (bottom) patients for right and left hemispheres. 

 
Fig. 5. Box plots for short- and long-range intra-hemispheric coherence features with significant differences (P < 0.05) between mild and severe autism groups. 

 
Fig. 6. Box plots for short- and long-range inter-hemispheric coherence features with significant differences (P < 0.05) between mild and severe autism groups. 
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The performance of the MLP and SVM classifiers is 
evaluated based on the above indices, as depicted in Tables I 
and II. 

Table I shows the performance of the MLP neural network 
in the classification of coherence features using the four 
mentioned feature sets. According to this table, the best 
classification performance was obtained by selected inter-
hemispheric coherence features with accuracy, sensitivity and 
specificity of 96.82%, 97.82% and 96.92%, respectively. 
Furthermore, Table II shows the performance of the SVM 
classifier with RBF kernel in the classification of coherence 
features using the four mentioned feature sets. Again, the best 
classification performance was obtained by selected inter-

hemispheric coherence features with accuracy, sensitivity and 
specificity of 94.70%, 93.85% and 95.55%, respectively.  

Fig. 7 compares the accuracy rates obtained by MLP and 
SVM for coherence features extracted from EEG signals for 
mild and severe autism classification. As shown, the MLP 
neural network has performed better in classifying coherence 
features and distinguishing mild autism from severe autism 
compared to the SVM classifier with the RBF kernel. 
However, it should be noted that the MLP neural network 
imposes a much higher computational cost than the SVM 
classifier. Table III shows the average time of classification 
operations (in terms of seconds) using MLP and SVM 
classifiers with and without feature selection. 

TABLE I. PERFORMANCE OF MLP NEURAL NETWORK IN THE CLASSIFICATION OF COHERENCE FEATURES 

Feature set Accuracy (%) Sensitivity (%) Specificity (%) 

All coherence features 88.94 85.90 89.36 

All selected features 92.25 91.45 92.99 

Selected intra-hemispheric features 93.68 93.70 92.51 

Selected inter-hemispheric features 96.82 97.82 96.92 

TABLE II. PERFORMANCE OF SVM CLASSIFIER WITH RBF KERNEL IN THE CLASSIFICATION OF COHERENCE FEATURES 

Feature set Accuracy (%) Sensitivity (%) Specificity (%) 

All coherence features 86.39 84.10 87.91 

All selected features 91.12 90.34 92.02 

Selected intra-hemispheric features 91.97 89.63 92.69 

Selected inter-hemispheric features 94.70 93.85 95.55 

 
Fig. 7. Average accuracies obtained by MLP and SVM for coherence features extracted from EEG signals for mild and severe autism classification. 

TABLE III. AVERAGE TIME OF CLASSIFICATION OPERATIONS USING MLP AND SVM CLASSIFIERS WITH AND WITHOUT FEATURE SELECTION 

Operation Time (s) 

MLP classification without feature selection 40.82 

MLP classification with feature selection 5.16 

SVM classification without feature selection 0.62 

MLP classification with feature selection 0.28 
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V. DISCUSSION 

In the present work, we attempted to investigate the 
potential of EEG coherence features in the classification of 
mild from severe autism and compare the ability of the MLP 
neural network and SVM classifier with RBF kernel to classify 
these features. Our findings showed that the MLP neural 
network has a better classification performance than the SVM 
classifier in the task of classifying the coherence features 
extracted from the EEG signals of two patient groups (96.82% 
versus 94.70%) at the cost of a more complicated 
computational process. The computation time of MLP 
classifier implementation was much longer than that of SVM. 
Very few similar studies have been published to date to 
classify mild from severe autism through brain signal analysis. 
For this reason, it is very challenging to compare the results of 
this research with other methods based on engineering 
algorithms. Cheong et al. applied wavelet transform to feature 
extraction from EEG signals and MLP classifier and reported 
an accuracy of 92.3% for classifying mild autistic patients from 
severe autistic patients [44]. In a three-class problem, Howell 
et al. [45] proposed a general linear model for feature 
extraction, a recursive feature elimination method for feature 
selection, and a random forest classifier to classify fMRI data 
into mild, moderate, and severe autism. They reported 72% 
accuracy on this three-class problem. Therefore, compared to 
the previous limited works in this field, our neural network-
based system performs better. This can be due to the use of 
coherence features in the present work. Many 
electrophysiology and neuroimaging studies on autism 
spectrum disorders have shown that abnormality and 
impairment in brain connectivity are one of the most reported 
neuropathological mechanisms of autism [46-48]. Therefore, 
the coherence feature, which expresses the degree of coupling 
of different brain regions with each other, can be one of the 
strengths of our proposed system for classifying different 
severities of autism. In addition, it should be noted that most 
coherence impairments are located in the frontal region, 
consistent with previous neurophysiological works [49, 50].  

Although SVM is a powerful classifier for two-class 
classification problems, MLP neural network was able to show 
better performance in the present work. However, the high 
computational cost of neural networks can limit their practical 
application in clinical systems [51-54]. Therefore, it is 
recommended to optimize the MLP neural network in order to 
reduce the calculation cost and improve the classification 
performance in future research. In addition, the investigation of 
other SVM kernels (such as linear, polynomial or sigmoid 
kernels) can also be done in future research. Furthermore, our 
results showed that feature selection through statistical analysis 
is a suitable approach to optimize the two-class classification 
problem of autism spectrum disorders. In fact, the feature 
selection approach adopted in this study led to improved 
classification performance and a significant reduction in 
computational cost. Therefore, future studies should do more 
research on the feature selection stage extracted from the EEG 
signals. 

The strength of our study is to propose a simple semi-
automatic system based on coherence features and a neural 
network for classifying mild autistic patients from severe 

autistic patients from EEG signals. However, limitations such 
as the small sample size could reduce the generalizability of the 
results of the current research. Furthermore, in this work, the 
resting state EEG was analyzed, while previous 
neurophysiological studies have demonstrated that patients 
with autism spectrum disorders exhibit important 
neuropathological mechanisms in different states of arousal. 
Therefore, different EEG recording protocols should be 
considered in future studies. 

VI. CONCLUSION 

In this paper, the classification of mild and severe autism 
from EEG signals was investigated by coherence features with 
MLP neural network and SVM classifier with RBF kernel. The 
effectiveness of these features was investigated via statistical 
analysis, and it was seen that coherence features with 
significant differences between the two groups have more 
discrimination in diagnosing autistic patients with different 
severities. In addition, the effectiveness of MLP and SVM was 
compared, and the MLP neural network yielded the maximum 
classification accuracy, sensitivity, and specificity. Considering 
that our simple system gives promising results in diagnosing 
autistic patients with mild and severe severities from EEG, 
there is scope for further work with a larger sample size and 
different ages and genders. 
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