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Abstract—This paper presents a novel deep learning 

approach for the detection of traffic objects from drone-based 

imagery, focusing predominantly on the rapid and accurate 

detection of vehicles within road sections. The proposed method 

consists of two primary components: a road segmentation 

module and a vehicle detection network. The former leverages a 

residual unit with skip-connections to effectively extract road 

areas, while the latter employs a modified version of the 

YOLOv3 architecture, tailored for high-accuracy and high-speed 

vehicle detection. To address the issue of data imbalance, which 

is a pervasive challenge in drone images, this paper utilizes a 

range of data augmentation techniques to improve the robustness 

of the proposed model. Experimental results on the UAVDT and 

UAVid datasets exhibit that the proposed model attains a 

substantial boost in accuracy and inference speed of vehicle 

detection in comparison to the existing methods. These findings 

underscore the potential of the proposed approach for real-world 

traffic monitoring applications, where rapid and reliable vehicle 

detection is paramount. 
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I. INTRODUCTION 

As drone technology has rapidly advanced in recent years, 
numerous practical applications based on images collected 
from drones have been developed. Among these, the most 
notable are intelligent processing applications based on images 
obtained from drones, such as object detection [1-2], object 
segmentation [3], traffic analysis [4], traffic prediction [5], and 
work monitoring systems [6]. Compared to ground-collected 
images, drone-collected images often have many more 
advantages, such as encompassing information from a vast 
area, dynamic coverage, and different altitudes and positions. 
Due to these benefits, processing based on drone images often 
faces many challenges. These challenges stem from various 
factors including complex backgrounds, a global perspective, 
and varying scales of targets. Fig. 1 describes some cases of 
drone images that pose many challenges for object detection 
and segmentation tasks. More specifically, objects in drone 
images are often obscured or overlap with other objects. The 
number of objects in drone images is usually very large, and 
the size of the objects in the images is often small. 

Given the significant advancements in deep learning, 
particularly in convolutional neural networks (CNN), 
numerous methods have been introduced in recent years to 
address object detection and segmentation using drone images 

and CNN. In [7], the authors propose an automatic image 
annotation method, analyze YOLOv3's training behavior on the 
natural UAVDT dataset, and demonstrate the performance that 
can be achieved through synthetic training, as well as how 
synthetic augmentation can enhance the natural training set's 
performance. Kyrkou et al. [8] present a comprehensive 
approach to developing a single-shot object detector based on 
CNN for UAVs, specifically focusing on vehicle detection in 
resource-constrained environments. The paper covers the entire 
development process including data collection, training, CNN 
architecture design, and optimizations for efficient deployment 
on lightweight embedded processing platforms suitable for 
drone images. Li et al. [9] introduced the Density-Map guided 
object detection Network (DMNet) as an inventive approach to 
tackle the complexities of object detection in high-resolution 
aerial photos, particularly issues related to vast differences in 
object size and irregular object distribution. The DMNet, 
which integrates a density map generation module, an image 
cropping module, and an object detector, uses pixel intensity to 
establish a subtle boundary for image cropping and to discern 
object scales. In [10], the authors propose a separate 
resampling algorithm to alter the input test images' size and 
subsequently extend the object's impact in deeper layers of the 
detection model. They utilize a pre-trained Faster R-CNN [11] 
object detection model with Inception-V2 [12], applying 
transfer learning to submeter satellite images with passenger 
vehicles as the target objects. In [13], the author present a 
novel vision-based system for vehicle detection and counting 
on highways, aiming to address the challenge of detecting 
vehicles of varying sizes. This system utilizes a novel 
segmentation technique to partition the highway road surface 
in the image into distant and near areas. Subsequently, it 
leverages the YOLOv3 network for vehicle detection. 
Recently, Feng et al. [14] suggested utilizing the mean 
classification score as a metric for gauging the classification 
accuracy of each category during training. They introduced the 
Equilibrium Loss (EBL) and Memory-augmented Feature 
Sampling (MFS) techniques to ensure balanced classification. 
Together, EBL and MFS notably enhance detection 
performance for less represented classes while either 
preserving or boosting performance for the more prevalent 
ones. In addition to the methods mentioned above, references 
[15-18] provide systematic reviews of object detection and 
segmentation methods based on drone images. 

While the aforementioned methods have achieved certain 
successes, there remain numerous issues that need to be 
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addressed to construct an effective model for object detection 
based on drone images. This paper introduces a proficient 
model for detecting objects in drone images. Aiming to provide 
efficient data for intelligent traffic monitoring applications, the 
model proposed in this paper performs vehicle object detection 
based on regions of interests (RoIs) rather than on the entire 
image. Detecting objects based on RoIs helps to eliminate 
unrelated areas during processing, not only increasing the 
model's accuracy but also significantly enhancing execution 
speed, particularly for high-resolution images obtained from 
drones. To efficiently create RoIs, specifically road sections, 
this paper proposes applying a segmentation model for road 
detection. Based on extracted road sections, a method is 
proposed to enhance both the accuracy and inference speed of 
vehicle detection from road sections. Moreover, in response to 
the widespread issue of data imbalance often encountered in 
drone imagery, this paper applies an assortment of data 
augmentation strategies aimed at enhancing the resilience and 
reliability of the proposed model. Finally, this paper also 
proposes using suitable models and datasets that meet the 
requirements. 

The paper is organized as follows: Section II delves into the 
details of the proposed methodology. Section III presents the 
results derived from the framework's implementation. Finally, 
Section IV concludes the paper and highlights potential 
avenues for future research. 

 

Fig. 1. Some images illustrate the challenges of object detection and 

segmentation tasks with images from drones. 

II. METHODOLOGY 

A. Overview of the Proposed Method 

Fig. 2 illustrates the overall structure of the model proposed 
for the problem of road traffic object detection from drone 
images. Aiming at detecting objects on the road, specifically 
vehicles, with high inference speed to provide real-time 
information for road management systems, a deep learning 
network is first used for road detection and segmentation. 
Extracting the road sections helps the model focus on detecting 
objects on the road, thereby not only significantly increasing 
the inference speed of the overall model but also improving 
accuracy. The input to this deep learning network is the input 
images, and the output is the predicted road sections. Based on 
the extracted road sections, a deep learning network based on 
the YOLOv3 architecture is designed for object detection, 
specifically vehicles on the road. Using a vehicle detection 
model based on the YOLOv3 architecture significantly 

improves the model's inference time, especially with images 
obtained from drones where the number of objects on the road 
is considerable. Additionally, the paper also proposes using 
data augmentation strategies to address issues related to data 
imbalance often encountered in drone imagery. Details about 
each proposed network will be presented in the following 
sections. 

B. Road Segmentation 

This paper approaches road segmentation in images as a 
binary segmentation task, classifying each pixel in the input 
image as either part of the road or the background. Several 
models have been proposed for segmentation, such as UNet 
[19], Segnet [20], DeepLabv3+ [21], or the more recent 
DoubleUNet [22]. These models typically combine an encoder 
for feature extraction with a decoder for segmentation. The 
encoder is critical in extracting features, capturing contextual 
information, reducing dimensionality, creating a hierarchical 
representation, and making use of transfer learning. 
Conversely, the decoder is responsible for upsampling, 
reconstructing the feature maps, refining the segmentation 
output with contextual information, applying non-linear 
mappings, and generating the final segmentation output 
through multi-level feature fusion and skip connections. In 
pursuit of high accuracy and fast inference speed, this paper 
proposes the use of the ResNet50 model [23] as the encoder 
and a combination of residual blocks and other operations [24] 
as the decoder, as depicted in Fig. 3. Specifically, this paper 
utilizes the ResNet50 model, which is pre-trained on the 
ImageNet dataset [25], to ensure smoother convergence and 
elevate the overall performance. The decoder consists of four 
blocks, each including upsampling, concatenation, and skip-
connections operations. In detail, each block's input feature 
map is initially upsampled to a higher resolution using 
transpose convolution. Following this, a concatenation 
operation merges the upsampled feature map with its encoder 
counterpart. A residual unit with skip-connections then 
produces the final feature map for that block. Opting for 
residual blocks over standard convolutional ones streamlines 
network training and guarantees undegraded information 
propagation due to the skip connections. The decoder's final 
block output undergoes a 1×1 convolution layer and a sigmoid 
function, resulting in the output segmentation map. 

For training the road segmentation network, this paper 
employs Dice Loss [26] as the main loss function. Dice Loss is 
particularly useful in segmentation tasks where the classes are 
imbalanced. The goal of the road segmentation task is to 
categorize each image pixel as either road or background. 
Given that the number of pixels associated with roads is 
typically far less than those tied to the background, this 
presents a significantly imbalanced problem. Dice Loss helps 
mitigate this issue by maintaining a balance between the 
foreground and the background. Mathematically, the Dice Loss 
can be defined as: 

      
          

          
 (1) 

where       and     represent the predicted and ground 

truth, respectively.   is a minute positive quantity employed to 
prevent a division by zero issue. 
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Fig. 2. The structure of the proposed approach. 

 

Fig. 3. Encoder-decoder structure for road segmentation. 

C. Vehicle Detection based on Road Sections 

Aiming for quick and accurate vehicle detection based on 
road sections extracted from input images, especially for small 
vehicles, this paper proposes a vehicle detection model based 
on the YOLOv3-tiny architecture [27]. Specifically, 
modifications were made to the YOLOv3-tiny model based on 
two criteria: model size and its capability to detect small 
objects. In CNN architecture, deeper layers containing larger 
numbers of channels and smaller sizes typically store rich 
semantic information, beneficial for object classification. 
Conversely, shallower layers with fewer channels and larger 
sizes typically house rich spatial information, useful for 
preserving object structure details. Since vehicle detection task 
only distinguishes between vehicles and background classes, it 
is significantly simpler than generic object detection. As a 
result, the shallower network layers can be reduced in the 
number of channels to decrease the model's complexity without 

impacting its accuracy. Based on these analyses, this paper 
implemented changes to the structure of the first convolutional 
layers of the YOLOv3-tiny architecture. Specifically, the 
number of filters in the first two convolutional layers was 
reduced to three. The rest of the convolutional layers 
maintained their original number of filters. Table I details the 
structure of the proposed model in this paper and the original 
YOLOv3-tiny model. The detection head makes predictions on 
two feature maps with scales of 13×13 and 26×26. With these 
modifications, the proposed model can significantly reduce 
computation costs while maintaining network performance. 
Additionally, the filter size in the detection layers was changed 
from 3×3 to 1×1, improving the model's nonlinearity and 
aiding the detection model in learning difficult samples. With 
these changes, the new model has reduced FLOPs to 
2.5BFLOPs compared to the original model's 5.4BFLOPs, 
while the model size has shrunk to 20MB compared to the 
original 34MB. 
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TABLE I. COMPARING THE STRUCTURE OF THE ORIGINAL YOLOV3-TINY MODEL AND THE MODEL PROPOSED IN THE PAPER 

Layer 
Original YOLOv3-tiny Proposed architecture 

Type Filter Output Type Filter Output 

0 Convolutional 3×3×16 416×416×16 Convolutional 3×3×3 416×416×3 

1 Max Pooling 2×2 208×208×16 Max Pooling 2×2 208×208×3 

2 Convolutional 3×3×32 208×208×32 Convolutional 3×3×3 208×208×3 

3 Max Pooling 2×2 104×104×32 Max Pooling 2×2 104×104×3 

4 Convolutional 3×3×64 104×104×64 Convolutional 3×3×64 104×104×64 

5 Max Pooling 2×2 52×52×64 Max Pooling 2×2 52×52×64 

6 Convolutional 3×3×128 52×52×128 Convolutional 3×3×128 52×52×128 

7 Max Pooling 2×2 26×26×128 Max Pooling 2×2 26×26×128 

8 Convolutional 3×3×256 26×26×256 Convolutional 3×3×256 26×26×256 

9 Max Pooling 2×2 13×13×256 Detection 

10 Convolutional 3×3×512 13×13×512 Max Pooling 2×2 13×13×256 

11 Convolutional 1×1×256 13×13×256 Convolutional 3×3×512 13×13×512 

12 Convolutional 3×3×255 13×13×255 
Detection 

13 Detection 

D. Data Augmentation Strategy 

Since data imbalance among classes presents a significant 
challenge for vision tasks based on drone images, this paper 
proposes several data augmentation techniques to address this 
issue. Fig. 4 displays the outcomes of the data augmentation 
techniques applied in this paper on a consistent input image. 
The strategies employed to augment drone image data in this 
study encompass random erasing, random rotation, random 
brightness, random cropping, and random zoom. 

1) Random erasing: Random erasing [28] involves 

selecting a rectangular area within an image at random and 

replacing its pixels with arbitrary values. This region is 

determined using a uniform distribution, with both the area 

and aspect ratios chosen randomly. When parts of the input 

image are randomly erased during training, it compels the 

model to develop more adaptable and robust representations. 

This means the model has to identify the correct class without 

depending solely on the complete image, enhancing its focus 

on pertinent sections of the input. This can enhance the 

model's generalization capabilities, potentially leading to 

superior performance on unfamiliar data. 

2) Random rotation: Random rotation is achieved by 

rotating the image by a random degree between -90 and +90 

degrees. By randomly rotating the image, the model is 

encouraged to learn to recognize the object in different 

orientations. This makes the model more robust to the 

orientation of objects in the input data. Let      ;         be 

the coordinates of the bounding boxes before and after 

implementing random rotation. In that case, 

{
               (    )        

               (    )        

 (2) 

where   is rotation angle and         is the center 

coordinate of the input image. 

 

Fig. 4. Data augmentation used in this paper. (a) Original image; (b) Random erasing; (c) Random rotation; (d) Random brightness; (e) Random crop; 

(f) Random zoom.
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3) Random brightness: Random brightness involves 

adjusting the brightness of an image by a random factor. It's 

usually achieved by converting the image to the HSV color 

space, adding a random value to the V (Value) channel, and 

then converting back to the original color space. By modifying 

the brightness of the image, the model can be trained to be 

invariant to different lighting conditions. This means that the 

trained model can recognize an object or feature in an image 

regardless of whether the image is bright, normally lit, or dim. 

4) Random crop: Random crop involves selecting a 

random subsection of the input image for training. The 

cropped region is smaller than the original image and is 

resized to the input dimensions of the model. By training the 

model on a diverse set of cropped images, it can learn to focus 

on different parts of an object and recognize an object even if 

only part of it is visible. It can also help to mitigate overfitting 

as the model cannot rely on the position of features in the 

image. 

5) Random zoom: Random zoom involves randomly 

zooming into or out of an image by a certain amount. This is 

typically done by resizing the image (upscaling or 

downscaling) and then cropping or padding it to match the 

original dimensions. By randomly zooming in or out, the 

model can learn to recognize objects or features at different 

scales. It makes the model more scale-invariant, which is 

beneficial when objects in the test data may appear at different 

sizes than in the training data. The coordinates of the 

bounding boxes are updated after implementing random zoom 

as follows: 

{
   

 

 
 

   
 

 
 

 

   
 

 
 

   
 

 
 

 

 (3) 

where   is zoom ration and       is the width and height 
of the input image. 

III. RESULTS 

A. Dataset 

This paper utilizes distinct datasets for different tasks as 
specified in Table II. Specifically, the UAVDT dataset [29] is 
used to train the vehicle detection network. This dataset is 
tailored for vehicle detection and tracking tasks, encompassing 
three categories: car, truck, and bus. For the vehicle detection 
evaluation in this study, all classes are grouped under a 
singular category termed 'vehicle'. The images feature a 
resolution of 1080×540 pixels and capture diverse typical 
scenes, including squares, arterial roads, and toll stations. For 
training the road segmentation network, the UAVid dataset 
[30] is employed. UAVid consists of 300 drone images with 
resolutions of 4096×2160 or 3840×2160 pixels, captured at a 
slanted angle, enhancing the intricacy and scale variance of 
urban street scenes with complex foreground-background 
elements. Given the substantial image sizes, this paper derives 
10,000 random, non-overlapping 512×512 patches from the 
UAVid dataset. Of these, 8,000 are designated as the training 
set, while the remaining 2,000 are split equally between the 

validation and testing sets. For the purpose of road 
segmentation, only the annotations relevant to roads are used 
for training and evaluation in the road segmentation network. 
Additionally, the UAVid dataset is also used for a joint 
evaluation of the proposed model. In this evaluation setting, 
only road annotations are employed throughout the paper, and 
images lacking road annotations are excluded from the dataset. 
Furthermore, this study manually uses all vehicle annotations 
within road sections for object detection training and 
evaluation. 

TABLE II. DATASETS USED IN THIS PAPER 

Dataset 
Road 

segmentation 

Vehicle 

detection 

Joint segmentation 

and detection 

UAVDT [29]  √  

UAVid √  √ 

B. Implementation Details 

All road segmentation and vehicle detection networks are 
trained on a NVIDIA RTX 4080 GPU with the support of the 
PyTorch library. For the road segmentation network, the 
ResNet50 model, pretrained on the ImageNet dataset, is used 
as the baseline encoder. This enhances the precision of feature 
extraction, consequently improving segmentation performance. 
To boost training performance, an initial learning rate of      
is used to update the parameters, which is then reduced to      
after six consecutive epochs to achieve a better loss rate. The 
Adam optimizer [31] is utilized to fine-tune the model. The 
model is trained over 20 epochs with a batch size of 16. For the 
vehicle detection network, training is carried out using default 
configurations with a few minor modifications. More 
specifically, the DarkNet model [27] is deployed, and the SGD 
optimizer with momentum and weight decay factors of 0.9 and 
0.001 respectively is used in the detector training process. The 
vehicle detection model is trained for 100 epochs with a batch 
size of 32. A step learning schedule is also employed to 
gradually reduce the learning rate. 

C.  Road Segmentation Results 

This paper conducts experiments with various models to 
evaluate the effectiveness of the proposed model for the road 
segmentation task. The compared models are based on 
EfficientNet [32] and MobileNetv2 [33] as encoders, while the 
decoders are networks such as DeepLabV3, FPN [34], and 
Unet. Experiments are performed on the same UAVid dataset 
with identical training and testing sets. Fig. 5 illustrates the 
results of the segmentation models used in the experiments, 
including the model proposed in this paper. It can be seen that 
the proposed model achieves the best inference speed, while 
maintaining accuracy comparable to the other models. In terms 
of accuracy, the DeepLabV3 with EfficientNet model performs 
the best. However, this model requires 8.2ms as inference time, 
which is not suitable for intelligent transportation systems 
requiring real-time processing. Additionally, the results in Fig. 
5 also show that models using complex decoder structures, 
with many layers like DeepLabV3, often require longer 
processing times due to higher computational demands. The 
comparison results show that designing an encoder-decoder 
model that leverages a residual unit with skip-connections, as 
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proposed in this paper, is very effective both in terms of 
accuracy and inference speed for the road segmentation task. 

 

Fig. 5. Performance of different models on the UAVid dataset. 

D. Vehicle Detection Results 

To evaluate the vehicle detection network proposed in this 
paper, several models have been tested on the UAVDT dataset, 
including YOLOv3, YOLOv3-tiny, YOLOv4 [35], and SSD-
MobileNet [36]. Table III presents the vehicle detection 
performance of various models on the UAVDT dataset, with 
the metrics being the Average Precision (AP) in percentage and 
the speed in milliseconds. From the results, it is clear that 
YOLOv4 exhibits the highest AP of 86.4, closely followed by 
YOLOv3 with 82.1. However, when it comes to speed, 
YOLOv4 falls short with a processing time of 10.4ms, 
compared to YOLOv3's 12.2ms. On the other hand, YOLOv3-
tiny, known for its lightweight architecture, posts a decent AP 
of 69.4 but shines in speed with a processing time of 6.4ms. 
The proposed model, a modification of the YOLOv3-tiny 
architecture, was designed specifically to optimize the model 
size and improve detection of small objects. Despite achieving 
a slightly lower AP of 76.2 compared to the original YOLOv3 
models, it considerably outperforms all other models in terms 
of speed with an impressive 4.2ms. This result reflects the 
efficiency of the proposed design in balancing both precision 
and speed. In comparison to SSD-MobileNet, which has an AP 
of 80.4 and speed of 10.6ms, the proposed model excels in 
inference speed, showing its potential for real-time 
applications. Therefore, the proposed model offers a promising 
approach for traffic monitoring, where speed and accurate 
vehicle detection is crucial. 

TABLE III. VEHICLE DETECTION PERFORMANCE OF DIFFERENT MODELS 

ON THE UAVDT DATASET 

Models AP (%) Speed (ms) 

YOLOv3 82.1 12.2 

YOLOv3-tiny 69.4 6.4 

YOLOv4 86.4 10.4 

SSD-MobileNet 80.4 10.6 

Proposed model 76.2 4.2 

E. Joint Evaluation Results 

For joint evaluation, the road segmentation and vehicle 
detection networks have been integrated to carry out the task of 
vehicle detection within road sections. Based on the UAVid 
dataset, labels have been modified to include only vehicles in 
road sections to determine how accurately the combined model 
can detect vehicles in these areas. Table IV presents the overall 
results of several models, including Unet + YOLOv3 and Unet 
+ YOLOv3-tiny. In Table IV, two parts of the comparison are 
introduced, which include the detection of vehicles in road 
sections and the detection of vehicles across the entire image. It 
can be seen that the detection of vehicles in road sections 
significantly improves the accuracy and inference speed of all 
models compared to vehicle detection across the entire image. 
This can be explained by the fact that by focusing only on the 
necessary parts of the image during detection, the 
computational cost and the number of objects that need to be 
predicted are substantially reduced. These findings suggest that 
intelligent transportation applications could leverage these 
results to build more efficient systems in their design, thereby 
facilitating easier system development. 

TABLE IV. JOINT EVALUATION RESULTS ON THE UAVID DATASET 

Models 
AP (%) Speed (ms) 

Road 

sections 

Entire 

image 

Road 

sections 

Entire 

image 

Unet + YOLOv3 76.4 62.8 11.6 16.2 

Unet + YOLOv3-
tiny 

62.1 54.4 8.4 10.3 

Proposed model 74.1 60.5 6.9 8.4 

IV. CONCLUSIONS 

This paper has designed a novel deep learning method for 
the detection of traffic objects from drone-based imagery, 
specifically focusing on the rapid and accurate detection of 
vehicles within road sections. The proposed method consists of 
two key components: a road segmentation network and a 
vehicle detection network. The segmentation network utilizes a 
residual unit with skip-connections to effectively predict road 
areas, while the vehicle detection network leverages a modified 
version of the YOLOv3 architecture, fine-tuned for high-
accuracy and high-speed vehicle detection. Moreover, this 
study addressed the challenge of data imbalance inherent in 
drone images by implementing various data augmentation 
techniques, thereby enhancing the model's robustness. The 
experimental results achieved on the UAVDT and UAVid 
datasets highlighted the effectiveness of the proposed model. It 
not only enhanced the accuracy of vehicle detection but also 
improved the inference speed as compared to existing methods. 
These results highlight the potential of the proposed approach 
for practical traffic monitoring applications, where rapid and 
accurate vehicle detection is of utmost importance. However, 
it's important to note that the proposed model's effectiveness 
may be limited to adverse weather conditions or low-light 
scenarios, as it heavily relies on visual data captured by drones, 
which can be adversely affected by such factors. Additionally, 
the model's performance might degrade when applied to highly 
congested traffic scenes with overlapping vehicles, posing 
challenges in accurate object detection. For future work, this 
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paper plans to extend this approach to the detection of more 
diverse traffic objects beyond vehicles, such as pedestrians and 
cyclists. 
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