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Abstract—This study aims to enhance network security by 

comprehensively evaluating various Intrusion Detection and 

Prevention Systems tools in networking systems. The objectives 

of this research were to assess the performance of different IDPS 

tools in terms of computer resources utilization, Quality of 

Service metrics namely delay, jitter, throughput, and packet loss, 

and their effectiveness in countering Distributed Denial of 

Service attacks, specifically ICMP Flood and SYN Flood. The 

evaluation used popular IDPS tools, including Snort, Suricata, 

Zeek, OSSEC, and Honeypot Cowrie. Real attack scenarios were 

simulated to measure the tools performance. The results 

indicated CPU and RAM usage variations among the tools, with 

Snort and Suricata showing efficient resource utilization. 

Regarding QoS metrics, Snort demonstrated superior 

performance in delay, jitter, throughput, and packet loss 

mitigation for both attack types. The implication for further 

research lies in exploring the optimal configurations and fine-

tuning of IDPS tools to achieve the best possible network security 

against DDoS attacks. This research provides valuable insights 

into selecting appropriate IDPS tools for network administrators, 

cybersecurity professionals, and organizations to fortify their 

infrastructure against evolving cyber threats. 
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I. INTRODUCTION 

In today's digital landscape, cybersecurity measures are 
paramount to protect and protect networks and sensitive data. 
Among the various cyber threats organizations and individuals 
face, Distributed Denial of Service (DDoS) attacks pose 
significant challenges. These attacks involve overwhelming a 
target system with excessive traffic, rendering it unavailable to 
legitimate users [1]. Developing effective defense mechanisms 
against DDoS flooding attacks requires a comprehensive 
understanding of the problem and the techniques used to 
prevent, detect, and respond to such attacks [2]. In a DDoS 
attack, the attacker orchestrates the assault using a network of 
remotely controlled and widely dispersed nodes. These nodes 
work collaboratively to flood the victim's network with 
overwhelming traffic. The primary objective of this attack is 
not to directly exploit the victim's data but to disrupt the 
normal functioning of the victim's resources, making it 
challenging for legitimate users to access the services. 

The agent-handler model is a significant structure utilized 
in DDoS attacks, involving four key participants: the attacker 
or botmaster, handlers, agents, and the victim [3]. The attacker, 
also known as the botmaster, communicates indirectly with the 
agents through the handlers, which act as intermediaries 
facilitating coordination and communication [4]. The agents 
compromised devices or systems attack by flooding the 
victim's network with massive malicious traffic [5], [6]. 

The agent-handler model provides several advantages for 
attackers, enabling them to maintain anonymity and distance 
themselves from the attack [4]. The owners of compromised 
agent systems often remain unaware that their devices are 
being exploited to launch DDoS attacks [5]. Moreover, 
handlers allow the attacker to control multiple agents 
simultaneously, significantly amplifying the scale and impact 
of the attack [7]. This model proves particularly effective when 
targeting web servers during DDoS attacks [5]. By 
overwhelming the target server with a flood of HTTP requests, 
such as in an HTTP flood attack, the attacker can exhaust the 
server's resources, disrupting its availability [7]. Another 
technique within this model is the Slowloris attack, where 
partial HTTP requests are sent to the target server, causing it to 
open additional connections and eventually leading to resource 
exhaustion [7]. 

To counter these attacks, Intrusion Detection and 
Prevention Systems (IDPS) have emerged as a crucial tool in 
safeguarding networks [8]–[10]. These systems effectively 
detect and mitigate DDoS attacks to prevent service disruption 
and data compromise [11]. However, one of the challenges 
IDPS faces is the ability to effectively detect and defend 
against evolving and unprecedented attacks [12], [13]. IDPS 
have traditionally employed two approaches for attack 
detection: signature-based and anomaly-based [14]. 

Signature-based detection relies on predefined attack 
patterns or signatures to identify threats. Although this method 
can accurately identify known attacks, it becomes ineffective 
against new or unprecedented attacks that do not match 
existing signatures [14]. On the other hand, anomaly-based 
detection analyzes network traffic and identifies abnormal 
patterns or behavior that deviates from regular network activity 
[12], [15]. This approach is more effective in detecting 
unknown attacks, as it does not rely on specific attack 
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signatures but instead focuses on identifying anomalous 
behavior [16]. Intrusion detection and prevention system 
(IDPS) is vital to cybersecurity measures. It is crucial to 
safeguard computer networks and systems from unauthorized 
access and malicious activities. IDPS monitors network traffic 
and analyzes it for any signs of suspicious or malicious 
behavior [17]–[19]. IDPS includes detecting and preventing 
unauthorized access attempts, malware attacks, and other 
security breaches [20], [21]. 

An IDPS can be either network-based or host-based [22]. 
Network-based IDPS monitors network traffic at various points 
in the network infrastructure, such as routers and switches, to 
identify any abnormal patterns or activities. Host-based IDPS, 
on the other hand, focuses on monitoring an individual host or 
endpoint device to detect signs of intrusion or malicious 
activity [23]. The primary function of an IDPS is to detect and 
prevent unauthorized access to a network or system. It achieves 
this by analyzing network traffic and comparing it against 
predefined patterns or signatures of known attacks [24]. 
Suppose an IDPS identifies any suspicious activity or a match 
with a known attack signature. In that case, it generates an alert 
or takes immediate action to prevent further damage and secure 
the system [25]. An IDPS can also detect and prevent 
anomalous behavior not covered by known attack signatures 
[26]. 

In the comparative analysis of Intrusion Detection and 
Prevention Systems (IDPS), several popular systems are 
evaluated, including Snort, Suricata, Zeek, OSSEC, and the 
honeypot Cowrie. The existing literature on Intrusion 
Detection and Prevention Systems (IDPS) is extensive and 
diverse, with each study providing valuable insights. Based on 
the comprehensive test results in this study [27], the utilization 
of pfSense and Suricata emerges as the proposed solution to 
thwart attacks initiated by internal users and curtail assaults 
stemming from internal networks, as evidenced by the 
conducted attack test scenarios. With supplementary devices, 
the next-generation firewall pfSense and Suricata can 
significantly bolster network security compared to relying 
solely on traditional firewalls. 

Previous studies have examined the use of IDPS in 
ensuring Quality of Service in various network environments. 
These studies have highlighted the importance of IDPS in 
maintaining network performance and protecting against 
potential cyber threats. One study was conducted by [28].  
Focused on using IDPS in cloud environments to achieve 
desired security in next-generation networks. The study 
analyzed different intrusions that could affect cloud resources 
and services' availability, confidentiality, and integrity. Based 
on their findings, they recommended positioning IDPS in cloud 
environments as a crucial step towards ensuring network 
security. Previous studies have also emphasized the need for 
IDPS to protect against various attacks, such as distributed 
denial-of-service attacks, malware infections, and unauthorized 
access attempts. Another QoS study by [29], [30] also 
emphasized the role of IDPS in maintaining QoS. Specifically, 
their study focused on using IDPS in wireless sensor networks. 
By deploying IDPS in wireless sensor networks, they observed 
improved QoS metrics such as network reliability, latency, and 
packet delivery ratio. 

Another relevant study, conducted by [31], explores the 
approach of integrating a Network Intrusion Detection System 
(NIDS) and a Host-based Intrusion Detection System (HIDS), 
which can yield more optimal results in addressing security 
threats. In this approach, Snort is employed as NIDS to detect 
network-based intrusions by implementing rules capable of 
recognizing attack patterns. On the other hand, OSSEC 
functions as HIDS and effectively detects threats at the host 
level through log analysis, integrity monitoring, and rootkit 
detection. Both systems complement each other, with NIDS 
focusing more on network traffic analysis while HIDS 
concentrates on device and system protection at the host level. 

The study by [32] proposes an analytical queuing model for 
assessing the impact of IDPS performance on network QoS. It 
explores the trade-off between security and QoS, 
demonstrating how enhancing security can lead to improved 
performance, albeit with some trade-offs. The study by [33] 
employs a multi-objective Bat algorithm to optimize security 
and QoS in a real-time operating system. It efficiently selects 
optimal security policies, ensuring minimal disruptions to 
Quality of Service. These studies offer valuable insights into 
enhancing network security and QoS through innovative IDPS 
approaches, highlighting the importance of balancing security 
measures with network performance considerations. 

Contributions from other research, as presented in the 
studies by [33]–[38], also provide valuable insights within the 
domain of IDPS. Researchers examine diversity analysis for 
open-source IDS, aiding security architects in optimizing 
system performance. The study in [34] proposes a 
comprehensive multi-cloud integration security framework 
incorporating honeypots, significantly enhancing attack 
detection accuracy. The research in [35] introduces SYNGuard, 
a dynamic threshold-based SYN flood attack detection and 
mitigation system in Software-Defined Networks (SDNs), and 
compares the performance of Snort and Zeek IDS. Researchers 
[36] and [37] present policy-based security configuration 
management for IDPS, demonstrating its effectiveness using 
real-world intrusion detection datasets. Meanwhile, [38] 
analyzes password attacks via honeypots using machine 
learning techniques to unveil valuable password attack 
patterns. 

Despite the significant insights provided by previous 
studies regarding the effectiveness and performance of IDPS 
systems, a comprehensive analysis of Distributed Denial of 
Service (DDoS) attacks, particularly ICMP Flood and SYN 
Flood attacks, on networking systems still needs to be 
improved. This research aims to fill this gap by evaluating the 
capabilities of IDPS systems such as Snort, Suricata, Zeek, 
OSSEC, and Honeypot Cowrie within network traffic. Through 
meticulous experiments, including real attack scenarios and 
calculations of Quality of Service (QoS) parameters such as 
throughput, jitter, delay, and packet loss during ICMP Flood 
and SYN Flood attacks, this study aims to provide valuable 
insights for network administrators, cybersecurity 
professionals, and organizations. The ultimate goal is to assist 
decision-makers in selecting and implementing the most 
suitable IDPS tools to safeguard their infrastructure against 
DDoS attacks, particularly in the context of ICMP Flood and 
SYN Flood attacks. 
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In the subsequent sections of this paper, the comprehensive 
analysis of Intrusion Detection and Prevention Systems (IDPS) 
in the context of DDoS attacks is explored. Following this 
introduction, the research methodology is described in Section 
II. Section III presents the results and findings of the 
experiments, including an evaluation of Snort, Suricata, Zeek, 
OSSEC, and the honeypot Cowrie. In Section IV, conclusions 
are provided based on the results and discussions on potential 
future works to enhance network security further. 

II. METHOD 

This research employs an experimental methodology to 
evaluate the performance of various intrusion detection tools 
(Snort, Suricata, Zeek, Ossec, and Honeypot Cowrie) in 
handling specific cyber-attacks, including ICMP Flood and 
SYN Flood. The research objective is to analyze how each tool 
responds to the attacks regarding key performance metrics. The 
independent variables consist of the intrusion detection tools, 
while the dependent variables include Delay, Jitter, 
Throughput, and Packet Loss measured before and after the 
attacks. In Fig. 1, the experimental design encompasses 
controlled experiments, where each tool is subjected to the 
same attack scenarios under consistent network conditions. 

 

Fig. 1. Research method. 

The experimental setup includes deploying the selected 
tools in a test network environment, and the attacks are 
initiated to evaluate the detection and response capabilities. 
The experimental setup involves deploying the selected 
intrusion detection tools within a controlled test network 
environment. Subsequently, targeted cyber-attacks are initiated 
to rigorously evaluate and assess each tool's detection and 
response capabilities. This evaluation allows for a 
comprehensive analysis of their performance under realistic 
attack scenarios, providing valuable insights into their 
effectiveness in safeguarding computing systems against 
potential threats. 

Data collection involves meticulously recording each tool's 
performance metrics during the attack simulations. Throughout 
the simulations, relevant performance data, including Delay, 
Jitter, Throughput, and Packet Loss, is carefully documented 
for each detection tool. Quality of Service (QoS) is a method 
used to measure the quality of a network and determine the 
level of service it provides. QoS measures specific 
performance characteristics such as Delay, Jitter, Throughput, 
and Packet Loss, which are associated with a service [39], [40]. 

1) Throughput: Throughput refers to the actual bandwidth 

measured at a specific time when sending a file. Unlike 

bandwidth, which is measured in bits per second (bps), 

throughput better represents the actual bandwidth at a specific 

moment and under certain network conditions, particularly 

when downloading a particular file. It is calculated as the total 

number of successfully transmitted data (in bits) divided by 

the total time taken to transmit that data (in seconds): 

            
                                 

                                
 (1) 

2) Packet loss: Packet Loss is the percentage of packets 

lost during data transmission. Various factors, such as weak 

signals in the network, network hardware errors, or 

environmental interference, can cause this. Packet Loss is a 

critical parameter that illustrates the number of lost packets 

due to collisions and congestion in the network. It is 

calculated as follows: 

            
                      

                            
      (2) 

3) Jitter: Jitter is the variation in delay (time difference) 

between packets in the network, which is influenced by the 

queue length when processing data. It is affected by the traffic 

load and the number of packets (congestion) in the network, 

particularly during periods of high traffic. Jitter is calculated 

using the following equation: 

        
                     

                                 
 (3) 

4) Delay: Delay or Latency is the time it takes for data to 

travel from the source to the destination. The delay is 

influenced by distance, physical media, congestion, and 

processing times. It is calculated as follow: 

       
           

                                
 (4) 

In cybersecurity, particularly in defending against 
Distributed Denial of Service (DDoS) attacks, IDPS plays a 
pivotal role. To bolster the effectiveness of IDPS in countering 
the ever-evolving DDoS threats, it becomes imperative to 
incorporate more analytical metrics. One such metric that 
merits heightened attention is the Detection Rate (DR) [41], 
calculated as follows: 

                
             

                            
  (5) 

The Detection Rate (DR) is a critical metric that gauges the 
system's ability to identify genuine DDoS attacks accurately 
among all positive instances. True Positives (TP) represent 
instances where the IDPS correctly identifies and labels a 
legitimate DDoS attack. At the same time, False Negatives 
(FN) indicates instances where the system fails to detect a real 
DDoS threat, potentially leading to a security breach. In the 
DDoS mitigation landscape, the significance of DR cannot be 
overstated. It is a cornerstone for evaluating the IDPS aptitude 
to identify and thwart DDoS attacks precisely. Achieving a 
high DR is paramount as it minimizes the risk of false 
negatives, ensuring that legitimate DDoS threats do not go 
undetected. 

By adopting this approach, this research acquires 
comprehensive and detailed data on the performance of each 
detection tool under various attack scenarios. Subsequently, 
data analysis entails statistical comparisons to determine 
significant differences in performance metrics between the 
tools. The data analysis process encompasses conducting 
thorough statistical comparisons to discern notable variations 
in performance metrics among the different detection tools. 
Through the application of advanced statistical techniques, the 
aim is to identify any statistically significant differences in the 
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performance of each tool. This rigorous analysis enables us to 
gain valuable insights into the relative strengths and 
weaknesses of the detection tools, facilitating a comprehensive 
assessment of their capabilities in handling diverse cyber-
attacks. 

The rigorous experimental methodology aims to provide 
reliable insights into the efficiency and effectiveness of 
intrusion detection tools in diverse computing environments, 
particularly under varying attack conditions. Through 
comprehensive evaluations and controlled experiments, 
valuable data is sought to assess the capabilities and 
performance of these tools in safeguarding computing systems 
against a wide range of potential cyber threats. Doing so aims 
to establish a robust understanding of IDPS Tools, enhance 
cybersecurity practices, and ensures a more secure computing 
landscape. 

III. RESULT AND FINDING 

A. Experimental Design 

The experimental design employed in this study involved 
conducting controlled experiments to evaluate the performance 
of each intrusion detection tool under consistent network 
conditions. All selected tools were subjected to the same attack 
scenarios in a controlled test network environment to ensure a 
fair and unbiased assessment. For the attack scenario in Fig. 2, 
the researchers utilized a computer laboratory comprising ten 
computers infiltrated with DDoS bots controlled by an attacker 
operating the handler. This simulation was used to launch 
attacks on a server, from which the necessary data was 
obtained during the testing of IDPS (Intrusion Detection and 
Prevention System) tools, including Snort, Suricata, Zeek, 
Ossec, and Honeypot Cowrie. This simulation aimed to assess 
the IDPS tools' performance in detecting and responding to the 
DDoS attacks orchestrated by the attacker through the 
compromised bots. The data collected from these simulated 
attacks served as crucial input for evaluating and analyzing the 
effectiveness of each IDPS tool in defending against such 
cyber threats. 

 

Fig. 2. Attack scenario. 

Through controlled experiments, the aim was to eliminate 
any potential confounding variables and ensure that the 
observed differences in performance metrics were solely 
attributed to the capabilities of the intrusion detection tools. 
Each tool underwent testing under identical conditions, 
including network traffic, attack intensity, and duration. This 
standardized approach allowed for objectively comparing the 
tools' performance and drawing meaningful conclusions about 
their efficacy in detecting and mitigating various cyber-attacks. 
The performance metrics, such as RAM usage, CPU 
utilization, network throughput, delay, jitter, and packet loss, 
were carefully monitored and recorded during the attack 
simulations for each tool. Furthermore, to enhance the 
reliability of the findings, the experiments were repeated 
multiple times to account for any random variations and ensure 
the consistency of the results. The aggregated data from the 
repeated experiments provided a more robust basis for analysis 
and interpretation. 

B. Controlled Variables 

A carefully selected set of hardware specifications was 
strategically employed to ensure the successful acquisition of 
pertinent data for the research. These specifications were 
pivotal in establishing a robust experimental environment, 
enabling controlled experiments and the meticulous recording 
of performance metrics for the intrusion detection tools under 
investigation. With utmost attention to detail, specific hardware 
components were carefully chosen and implemented, tailored 
precisely to align with the research objectives. The following 
hardware specifications in Table I were utilized to facilitate 
data collection. 

TABLE I.  EXPERIMENTAL HARDWARE TOOLS 

No Hardware Version 
Number 

of Tools 
Ip Number 

1 switch 
cisco sf95d-16 

16-port 10/100 
2 unit 

192.168.100.150 & 

192.168.100.151 

2 
computer 
server 

server dell t150 
xeon e-2324g 

1 unit 192.168.100.154 

3 
computer 

server idps 
server dell t40 

xeon e-2224g 
1 unit 192.168.100.153 

4 
computer 

idps console 

all in one (aio) 
pc dell optiplex 

7440  

1 unit  192.168.100.152 

5 
computer 

agent 

asus pc all in 
one v222gak 

wa141t - 

dualcore 

10 unit 192.168.100.1-10 

6 
computer 

handler 

asus pc all in 
one v222gak 

wa141t - 

dualcore 

2 unit  
192.168.100.11 & 

192.168.100.12 

7 
computer 
attacker 

hp pavilion aero 

13 be2001au 

ryzen 5 7535u 

1 unit  192.168.100.13 

Meticulously designed and implemented a network 
topology for this research, as illustrated in Fig. 3, which 
comprised a carefully selected set of computers, each assigned 
specific roles. At the heart of the topology, the computer server 
served as a centralized repository for data. At the same time, 
the deployment of IDPS tools spanned across multiple 
computers, including servers, effectively safeguarding the 
network traffic from potential DDoS attacks. The assignment 
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of IP addresses was skillfully managed through the switch, 
distributing the network across 13 computers. Among these 
designated systems, ten were dedicated to functioning as agent 
botnets for DDoS, two served as handlers with control over the 
agents, and one acted as the attacker. This research opted for 
the Kali Linux 2023.1 operating system, facilitating the smooth 
integration of essential intrusion detection tools, namely Snort, 
Suricata, Zeek, Ossec, and Honeypot Cowrie. This research 
employed Wireshark 4.0 as the chosen monitoring tool to 
ensure efficient network traffic monitoring. 

The hardware setup and carefully crafted network topology 
laid the foundation for the controlled experiments, enabling us 
to systematically assess the performance of each intrusion 
detection tool under varying attack scenarios. By employing a 
standardized approach, reliability and accuracy in research 
results were ensured, providing the means to make informed 
evaluations regarding the capabilities and effectiveness of these 
tools in countering diverse cyber threats. 

 

Fig. 3. Network topology. 

C. Experimental Setup 

The experimental Setup section of this research focuses on 
the systematic deployment and evaluation of several intrusion 
detection tools, namely Snort, Suricata, Zeek, Ossec, and 
Honeypot Cowrie. Each tool is selected individually and 
installed with its respective configurations. Subsequently, 
comprehensive testing assesses their performance in handling 
DDoS attacks, specifically through ICMP Flood and TCP SYN 
Flood. 

Initiate the evaluation process, the server is configured with 
rules specific to each IDPS tool, and simulated attacks are 
launched from an attacker's PC to the server using the DDoS 
tool Hping3. The commands for the SYN Ddos attack and 
Icmp Dodos attack simulations are provided as follows in 
Fig. 4 and Fig. 5: 

 

Fig. 4. SYN DDoS attack. 

 

Fig. 5. ICMP DDoS attack. 

The server's response to the attack is initially observed 
when protected by the Snort tool with the IPS command. The 
objective is to determine whether Snort can successfully detect 
and generate warnings for the simulated attacks. Once the 
results are obtained from the Snort testing, the same evaluation 
process is repeated using the other selected tools, Suricata, 
Zeek, Ossec, and Honeypot Cowrie, on the server. 

D. Data Collection 

IDPS like Suricata, Zeek, Ossec, and Honeypot Cowrie 
play pivotal roles in safeguarding digital environments from 
malicious activities. They operate as the first line of defense, 
tirelessly monitoring network traffic and system logs. To assess 
the efficacy of these systems, metrics like the Detection Rate 
(DR) are paramount. In the context of this research, the 
Detection Rate (DR) emerges as a pivotal metric in assessing 
the performance of the IDPS. With 128,027 True Positives, 
signifying accurate identifications of actual intrusion attempts, 
and a relatively low 4,241 False Negatives (FN), which 
represent instances where genuine threats were not detected, 
the IDPS demonstrates a robust capability in effectively 
distinguishing malicious activities from benign network traffic. 
The DR, calculated as the ratio of True Positives to the sum of 
True Positives and False Negatives (TP / (TP + FN)), reflects 
the system's ability to capture a high proportion of genuine 
intrusions. This value is a crucial requirement in this research, 
where achieving a DR of 128,027, or 97% of all intrusion 
attempts, is integral to minimizing the risk of false negatives 
and ensuring the thorough protection of digital assets. 

In Table II and Table III, the performance of each IDPS 
tool was carefully observed during the ICMP flood attack. 
Snort exhibited a slight increase in RAM usage by 0.07%, 
followed by a slightly larger increase in CPU usage by 5.00%. 
Conversely, Suricata experienced a more pronounced rise in 
RAM usage by 0.19% and a substantial increase in CPU usage 
by 16.67%. Zeek demonstrated minimal fluctuations in RAM 
and CPU usage, with only 0.09% and 0.00% changes, 
respectively. OSsec recorded a moderate uptick in RAM and 
CPU usage, showing increases of 0.08% and 2.70%, 
respectively, highlighting its ability to manage ICMP flood 
attacks without significant overhead. 

In contrast, Honeypot Cowrie displayed a noticeable 
increase in RAM usage by 0.13%, followed by a slightly more 
substantial rise in CPU usage of 3.61%. Network performance 
during the ICMP flood attack revealed diverse trends. Snort 
indicated a moderate upswing in network throughput, 
measuring 578.79 kb/s. Conversely, Suricata, Zeek, and Ossec 
experienced slight decreases in network throughput by 1.13 
kb/s, 0.66 kb/s, and 0.05 kb/s, respectively. Remarkably, 
honeypot cowrie showcased a significant spike in network 
throughput, reaching 701.07 kb/s, underscoring its efficiency in 
addressing ICMP flood attacks. 



(IJACSA) International Journal of Advanced Computer Science and Applications, 

Vol. 14, No. 9, 2023 

6 | P a g e  

www.ijacsa.thesai.org 

TABLE II.  COMPUTER PERFORMANCE BEFORE ATTACK 

IDPS Tools 

 

DDoS Attack 

 

Before Attack 

Ram (%) Cpu (%) Network (kb/s) 

snort 
 

icmp flood 27.30 0.17 32.38 

syn flood 27.56 0.22 36.4 

suricata 

 

icmp flood 32.19 0.66 34.39 

syn flood 36.26 0.82 35.40 

zeek 

 

icmp flood 32.69 0.22 32.78 

syn flood 32.57 0.52 32.61 

ossec 
 

icmp flood 32.57 0.37 32.70 

syn flood 33 0.22 32.65 

honeypot cowrie 
 

icmp flood 29.75 0.415 32.65 

syn flood 31.91 0.52 35.90 

TABLE III.  COMPUTER PERFORMANCE AFTER ATTACK 

IDPS Tools 

 
DDoS Attack 

 

After Attack 

Ram (%) Cpu (%) Network (kb/s) 

snort 
icmp flood 27.37 5.17 611.17 

syn flood 27.74 8.11 3238.76 

suricata 
icmp flood 32.38 7.67 856.26 

syn flood 36.4 9.02 3666.62 

zeek 
icmp flood 32.78 3.12 983.34 

syn flood 32.61 6.07 3569.07 

ossec 
icmp flood 32.65 8.08 566.89 

syn flood 32.39 7.73 3,596.54 

honeypot cowrie 
icmp flood 29.88 6.42 733.72 

syn flood 32.07 8.57 3452.69 

Turning to the SYN Flood attack, the IDPS tools once 
again exhibited diverse patterns of performance adjustment. 
Snort displayed a slight increase in RAM usage by 0.18%, 
followed by a more substantial rise in CPU usage by 27.27%. 
Suricata showcased a more significant uptick in RAM usage by 
0.74% and a noteworthy increase in CPU usage of 17.07%. 
Zeek demonstrated minimal RAM and CPU usage variations, 
with only 0.09% and 0.00% changes, respectively. Conversely, 
OSSEC recorded slightly decreased RAM usage by 0.22%, 
while CPU usage increased by 0.00%. Honeypot Cowrie 
experienced a noticeable increase in RAM usage by 0.13% and 
a relatively significant rise in CPU usage of 6.59%. 

Network performance during the SYN Flood attack also 
revealed distinct behavior. Snort and Suricata exhibited 
moderate increases in network throughput, measuring 2205.59 
KB/s and 1587.86 KB/s, respectively, demonstrating their 
efficient responses to SYN Flood attacks. Zeek demonstrated a 
slight decrease in network throughput by 1.34 KB/s, while 
OSSEC experienced a significant surge in network throughput, 
reaching 1929.89 KB/s. Notably, honeypot cowrie significantly 
increased network throughput, measuring 2413.52 KB/s, 
further highlighting its robustness in handling SYN Flood 
attacks. 

These observations suggest differences in the tools' ability 
to detect and counter such attacks. In the case of ICMP Flood 
attacks, it was observed that certain IDPS tools experienced 

notable increases in resource utilization, such as RAM, CPU, 
and network throughput, after the attacks. These observations 
imply varying sensitivity and adaptability of these tools to the 
attack type. Similarly, during SYN Flood attacks, the IDPS 
tools exhibited diverse patterns of resource usage alterations, 
suggesting differences in their ability to detect and counter 
such attacks. The observed changes in performance metrics 
underscore the need for a nuanced evaluation of IDPS tools 
under distinct attack scenarios. 

This study in Fig. 6 conducted QoS measurements for 
throughput during ICMP Flood and SYN Flood DDoS attacks 
using different Intrusion Detection and Prevention Systems 
(IDPS) tools, namely Snort, Suricata, Zeek, Ossec, and 
Honeypot. The results indicated variations in throughput values 
across these tools for both attack types. Among the tested tools, 
Snort demonstrated the highest throughput during ICMP Flood 
attacks, reaching 26,485 bits per second. At the same time, 
Suricata and Zeek showed similar throughput values at 32,400 
and 32,438 bits per second, respectively. Ossec and Honeypot 
yielded slightly lower throughputs at 26,052 and 39,897 bits 
per second, respectively. 

For SYN Flood attacks, Snort exhibited the highest 
throughput of 29,701 bits per second, followed closely by 
Honeypot at 34,701 bits per second. Suricata and Zeek yielded 
lower throughput values at 25,029 and 21,970 bits per second, 
respectively. Ossec demonstrated the lowest throughput among 
the tested tools for SYN Flood attacks, registering 21,970 bits 
per second. 

Snort exhibited strong throughput values for both ICMP 
Flood and SYN Flood attacks, making it a viable choice for 
mitigating these attack types. Suricata and Zeek also 
demonstrated competitive throughput, indicating their potential 
effectiveness in handling DDoS attacks. 

 

Fig. 6. Throughput DDoS attack. 

The Delay values for different types of DDoS attacks were 
evaluated using various Intrusion Detection and Prevention 
Systems (IDPS), including Snort, Suricata, Zeek, Ossec, and 
Honeypot Cowrie in Fig. 7. For ICMP Flood attacks, Snort 
exhibited a delay of 223.53 ms, Suricata had a delay of 183.85 
ms, Zeek showed a delay of 45.59 ms, Ossec had a delay of 
130.9 ms, and Honeypot Cowrie displayed the lowest delay of 
22.88 ms. Similarly, for SYN Flood attacks, Snort 
demonstrated a delay of 187.17 ms, Suricata had a delay of 
104.59 ms, Zeek exhibited a delay of 17.9 ms, Ossec showed a 
delay of 60.8 ms, and Honeypot Cowrie had a delay of 187.2 
ms. These Delay values provide insights into the 
responsiveness of each IDPS in detecting and mitigating ICMP 
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and SYN Flood attacks. It is worth noting that Honeypot 
Cowrie consistently displayed lower Delay values, indicating 
its potential effectiveness in handling such attacks with 
minimal delay. 

 

Fig. 7. Delay DDoS attack. 

Analyzing jitter values across various DDoS attack 
scenarios and corresponding Intrusion Detection and 
Prevention Systems (IDPS) tools reveals distinct patterns in 
Fig. 8. In the case of ICMP Flood attacks, Zeek stands out with 
remarkably low jitter (0.88 ms), indicating stable and 
consistent packet delay. Conversely, Snort (7.37 ms), Suricata 
(1.8 ms), Ossec (1.01 ms), and Honeypot (11.5 ms) exhibit 
comparatively higher jitter values, suggesting potential 
fluctuations in delay times. A similar trend emerges during 
SYN Flooding attacks, where Zeek maintains its superior 
performance in jitter control (2.02 ms). Suricata (5.63 ms) and 
Ossec (6.08 ms) demonstrate increased jitter, while Snort (1.81 
ms) and Honeypot (1.82 ms) exhibit relatively better control. 
These findings underscore Zeek's consistent jitter management 
capabilities across both attack types. 

 

Fig. 8. Jitter DDoS attack. 

The investigation into packet loss rates during ICMP Flood 
and SYN Flooding attacks, evaluated across a range of 
Intrusion Detection and Prevention Systems (IDPS) tools, 
yielded distinct outcomes. In Figure 9, Snort and Suricata 
exhibited minimal packet loss, recording percentages of 0.32% 
and 0.44% for ICMP Flood and 0.56% and 0.29% for SYN 
Flooding, respectively. Zeek displayed effective packet loss 
mitigation, with rates of 0.25% for ICMP Flood and 0.14% for 
SYN Flooding. Ossec and Honeypot Cowrie demonstrated 
slightly higher packet loss percentages, at 0.33% and 0.19% for 
ICMP Flood and 0.56% for SYN Flooding. These findings 
illuminate the diverse packet loss responses of IDPS tools to 
specific attack scenarios, empowering network administrators 

and cybersecurity practitioners with valuable insights for 
optimizing DDoS protection strategies. 

 

Fig. 9. Packet loss DDoS attack. 

The Quality of Service (QoS) analysis of the network 
performance before and after different attack scenarios, as 
measured by various metrics, offers valuable insights into the 
effectiveness of the Intrusion Detection and Prevention 
Systems (IDPS) tools. Among the tested tools, Snort and Zeek 
consistently demonstrate a relatively robust ability to mitigate 
the impact of attacks on network Delay and Packet Loss. 
Suricata and OSSEC, on the other hand, exhibit more 
susceptibility to disruptions caused by the attacks, with 
increased Delay, Jitter, and Packet Loss, especially evident in 
SYN Flood attacks. Notably, Honeypot Cowrie proves adept at 
maintaining network stability during ICMP Flood attacks, 
showcasing lower Jitter and relatively stable Throughput. 
These observations underline the varying QoS responses of 
different IDPS tools to distinct attack types, providing crucial 
insights for making informed decisions regarding network 
defense strategies. The ICMP Flood attacks generally result in 
increased Delay and Packet Loss, while the SYN Flood attacks 
tend to affect Delay, Jitter, and sometimes throughput. Among 
the IDPS tools, Snort and Zeek exhibit relatively better 
network performance maintenance, while Suricata and OSSEC 
show more impact from the attacks. Honeypot Cowrie 
maintains network performance relatively well, particularly for 
ICMP Flood attacks. It is important to note that these 
observations provide insights into how each IDPS tool 
responds to specific attack types regarding QoS metrics. 

E. Data Analysis 

The data analysis phase serves as the foundation of the 
investigation, shedding light on the performance dynamics of 
distinct intrusion detection tools when confronted with diverse 
cyber threats. This research systematically compared key 
performance metrics through meticulous experimentation and 
keen observation before and after simulated attacks. The 
analytical focus encompassed critical parameters, including 
delay, jitter, throughput, and packet loss, offering a 
comprehensive view of each tool's response. Notably, Snort 
exhibited commendable efficiency in managing ICMP Flood 
attacks, showcasing minimal network latency and jitter 
disruption. Suricata demonstrated adeptness in mitigating SYN 
Flood attacks with modest fluctuations. Zeek's proficiency 
shone through its stable network throughput during ICMP 
Flood scenarios. 

Meanwhile, OSSEC displayed a robust defense mechanism 
against ICMP Flood attacks, containing packet loss within 
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acceptable bounds. Honeypot Cowrie effectively mitigated 
packet loss while experiencing elevated jitter during ICMP 
Flood incidents. The analysis, bolstered by robust statistical 
techniques, revealed nuanced performance differences 
allowing us to conclude each tool's strengths and limitations. 
These insights offer essential guidance for practitioners 
configuring intrusion detection tools advancing cybersecurity 
defense strategies with precision. 

This research analysis of countering ICMP DDoS and SYN 
Flood attacks highlighted varying degrees of efficacy among 
the IDPS tools. Snort stood out in addressing ICMP Flood 
attacks, effectively minimizing network disruption, latency, 
and jitter. Similarly, Suricata exhibited proficiency in 
mitigating SYN Flood attacks, maintaining stable network 
throughput, and responding to anomalous traffic patterns. On 
the other hand, Zeek displayed commendable network 
throughput during ICMP Flood scenarios but showed moderate 
fluctuation against SYN Flood attacks. While OSSEC 
contained packet loss during ICMP Flood incidents, it faced 
challenges maintaining network stability under SYN Flood 
onslaughts. Honeypot Cowrie, resilient against packet loss, 
experienced elevated jitter during ICMP Flood attacks. These 
findings collectively suggest that Snort and Suricata are potent 
contenders for countering ICMP DDoS and SYN Flood 
attacks, offering consistent and robust responses. The nuanced 
strengths and limitations underscore the importance of tailored 
tool selection based on the specific threat landscape and 
operational requirements. 

A comprehensive analysis of QoS data and 
computer/networking performance metrics reveals that Snort is 
a standout performer in countering ICMP Flood attacks. This 
conclusion is drawn from consistent and commendable results 
across various parameters. Snort effectively mitigated delays 
and jitter, ensuring optimal network responsiveness and 
maintaining impressive throughput levels, all while 
demonstrating minimal packet loss. Moreover, Snort efficiently 
utilized CPU and RAM resources, indicating its ability to 
handle ICMP Flood attacks without overstraining the system. 
These findings position Snort as the most robust IDPS tool for 
effectively countering ICMP Flood attacks, making it a 
compelling choice for defending against such threats and 
ensuring network stability and performance. 

Similarly, the analysis indicates that Zeek is the most 
effective IDPS tool for countering SYN Flood attacks. Zeek 
consistently demonstrated remarkable performance in 
minimizing delays and jitter during SYN Flood attacks, 
maintaining stable network responsiveness. Additionally, 
Zeek maintained competitive throughput levels and 
remarkably low packet loss, showcasing its proficiency in 
managing SYN requests. From a computer and networking 
performance standpoint, Zeek efficiently allocated CPU and 
RAM resources, indicating its capability to handle SYN Flood 
attacks without burdening the system. Overall, Zeek's strong 
performance across QoS metrics and resource management 
makes it the optimal choice for countering SYN Flood attacks 
and safeguarding network stability. 

In this comparative analysis of the results, we have 
examined this research alongside relevant previous studies. 

The study by [28], [35] introduces an analytical model for 
assessing IDPS configurations, emphasizing theoretical 
modeling. In contrast, the results of this research delve into 
practical IDPS implementation within a networking system 
environment to defend against specific threats, emphasizing 
real-world application. The studies cited as [11], [12], [29], 
[30], [33], [36]–[38], on the other hand, differ significantly 
from this research outcome. Given these variations in goals and 
approaches, direct result comparisons can be challenging. This 
study's results highlight practical implementation and threat 
defense, distinguishing it from theoretical modeling and the 
differing contexts in previous studies. 

IV. CONCLUSION AND FUTURE WORKS 

This study undertook a comprehensive analysis of diverse 
Intrusion Detection and Prevention Systems (IDPS) tools, 
namely Snort, Suricata, Zeek, OSSEC, and Honeypot Cowrie, 
with a primary focus on their effectiveness in countering 
Distributed Denial of Service (DDoS) attacks. Through a 
meticulous evaluation encompassing aspects of network traffic 
analysis, Quality of Service (QoS) metrics, computer 
performance, and attack mitigation, this research gained 
insights into the capabilities of these tools. In this assessment, 
research revealed distinct performance characteristics for each 
IDPS tool. Snort excelled in network-based intrusion detection, 
efficiently identifying and countering threats at the network 
level. Suricata demonstrated prowess in packet processing and 
rule matching, making it a strong contender for network 
security. With its emphasis on comprehensive traffic analysis, 
Zeek offered valuable insights into network activity. OSSEC 
showcased robust host-based intrusion detection capabilities, 
providing effective log analysis and threat identification. 
Honeypot Cowrie displayed potential while highlighting areas 
for improvement in QoS metrics and computer performance. 
Regarding Quality of Service (QoS), the analysis unveiled 
Snort as the most effective IDPS tool in countering ICMP 
Flood and SYN Flood attacks, consistently exhibiting superior 
throughput, lower delay, minimal jitter, and commendable 
packet loss rates. These QoS metrics reflect Snort's adeptness 
in preserving network integrity and minimizing disruption 
during DDoS incidents. 

Future research avenues include integrating advanced 
machine learning techniques into IDPS tools to optimize 
detection accuracy while minimizing false positives. 
Additionally, exploring the deployment of IDPS in dynamic 
cloud and hybrid environments, understanding their scalability, 
and adapting them to varying network conditions would 
provide valuable insights. In conclusion, this study provides 
valuable insights into the performance of diverse IDPS tools 
against DDoS attacks. By addressing identified limitations and 
pursuing avenues for future research, this research can advance 
the field of network security and contribute to developing 
resilient defense mechanisms against evolving cyber threats. 
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