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Abstract—In the realm of financial markets, the precise 

prediction of option prices remains a cornerstone for effective 

portfolio management, risk mitigation, and ensuring overall 

market equilibrium. Traditional models, notably the Black-

Scholes, often encounter challenges in comprehensively 

integrating the multifaceted interplay of contemporary market 

variables. Addressing this lacuna, this study elucidates the 

capabilities of a novel Deep Residual Convolution Long Short-

term Memory (DR-CLSTM) network, meticulously designed to 

amalgamate the superior feature extraction prowess of 

Convolutional Neural Networks (CNNs) with the unparalleled 

temporal sequence discernment of Long Short-term Memory 

(LSTM) networks, further augmented by deep residual 

connections. Rigorous evaluations conducted on an expansive 

dataset, representative of diverse market conditions, showcased 

the DR-CLSTM's consistent supremacy in prediction accuracy 

and computational efficacy over both its traditional and deep 

learning contemporaries. Crucially, the integration of residual 

pathways accelerated training convergence rates and provided a 

formidable defense against the often detrimental vanishing 

gradient phenomenon. Consequently, this research positions the 

DR-CLSTM network as a pioneering and formidable contender 

in the arena of option price forecasting, offering substantive 

implications for quantitative finance scholars and practitioners 

alike, and hinting at its potential versatility for broader financial 

instrument applications and varied market scenarios. 
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I. INTRODUCTION 

Option pricing, an intrinsic component of financial markets, 
serves as the fulcrum upon which significant economic 
decisions, from individual investments to institutional 
strategies, hinge [1]. These derivative contracts, which bestow 
upon the holder the right, but not the obligation, to buy or sell 
an underlying asset at a specified price before a predetermined 
date, play a pivotal role in portfolio diversification, risk 
hedging, and speculative ventures [2]. Historically, the Black-
Scholes model has been emblematic in the realm of option 
pricing, a seminal formula that established a theoretical 
framework for determining the fair market value of a 
European-style option [3]. However, as financial markets 
evolved, becoming increasingly complex and intertwined, 
driven by a plethora of factors ranging from geopolitical 

dynamics to technological innovations, the limitations of such 
traditional models have become conspicuously palpable. 

The metamorphosis of financial markets into data-dense 
ecosystems, replete with myriad variables and indicators, 
necessitates predictive models with a capacity for high-
dimensional data processing and the discernment of intricate 
temporal relationships [4]. The recent resurgence in artificial 
intelligence, more specifically in deep learning, offers a 
promising vista for addressing these challenges. Deep learning 
architectures, distinguished by their hierarchical structure and 
ability to autonomously extract salient features from raw data, 
have been progressively permeating various domains, ranging 
from image recognition to natural language processing [5]. 
Within the financial sphere, their application promises to 
harness the vast expanses of data to render more nuanced and 
accurate predictions. 

In this milieu, the Deep Residual Convolution Long Short-
term Memory (DR-CLSTM) network emerges as a potent 
amalgamation of several cutting-edge deep learning paradigms. 
By intertwining the feature extraction capabilities of 
Convolutional Neural Networks (CNNs) [6] with the temporal 
relationship discernment offered by Long Short-term Memory 
(LSTM) networks [7], and further augmenting this synergy 
with deep residual connections, the DR-CLSTM aspires to 
provide a holistic solution to the option price prediction 
quandary. The convolutional layers, renowned for their 
prowess in spatial hierarchies discernment, sieve through vast 
datasets, isolating pertinent features integral to option pricing. 
Concurrently, the LSTM layers, celebrated for their ability to 
capture long-term dependencies by combating the vanishing 
gradient problem, harness these features to forecast temporal 
sequences, thereby rendering predictions [8]. The addition of 
deep residual connections further augments this architecture. 
By allowing activations to bypass one or more layers, these 
connections expedite the training process, ensuring faster 
convergence and fortifying the network against potential 
gradient diminution. 

This paper seeks to explore and substantiate the efficacy of 
the DR-CLSTM network in the realm of option price 
prediction. In doing so, it aims to contribute a novel tool to the 
arsenal of quantitative finance, fostering enhanced market 
efficiency, informed investment decisions, and a deeper 
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comprehension of the intricate tapestry of factors influencing 
option prices. Furthermore, by juxtaposing the DR-CLSTM 
with both traditional computational models and contemporary 
deep learning architectures, this study endeavors to provide a 
holistic perspective on the trajectory of option price prediction 
methodologies, underlining the transformative potential of 
hybrid deep learning structures. 

The ensuing sections will delve into the theoretical 
underpinnings of the DR-CLSTM, elucidating the individual 
components and their synergistic interplay. This will be 
followed by a comprehensive methodology section, detailing 
the dataset employed, the evaluation metrics, and the 
comparative models. Subsequent sections will present the 
empirical findings, discussions, and potential implications for 
both academia and industry. The paper will culminate with a 
conclusion, encapsulating the key insights gleaned and charting 
potential avenues for future research in this dynamic and ever-
evolving domain. 

II. RELATED WORKS 

The ever-evolving landscape of financial modeling and 
forecasting has witnessed a plethora of innovations and 
methodologies over the years. As we delve into the intricate 
world of option price prediction, it is imperative to ground our 
discussions within the context of prior research and 
explorations in this domain [9]. The "Related Works" section 
endeavors to provide readers with a comprehensive overview 
of seminal works, pioneering methodologies, and noteworthy 
contributions that have shaped the trajectory of this field. By 
juxtaposing our current study with these foundational works, 
we aim to highlight both the advancements made and the gaps 
that our research seeks to bridge. Let us embark on this journey 
of retrospection, understanding the milestones that have been 
achieved and setting the stage for the novel contributions of our 
study. 

A. Traditional Models for Option Pricing 

Option pricing, a central facet of financial mathematics, has 
been subject to rigorous academic scrutiny for decades. It 
revolutionized this arena with their eponymous model, 
providing a closed-form solution for European option pricing 
[10]. The Black-Scholes model, predicated on certain 
assumptions such as constant volatility and interest rates, 
quickly became a cornerstone of financial markets. However, 
the assumptions underlying the model often diverge from real-
world market conditions, leading to potential mispricing [11]. 
This inherent limitation paved the way for alternative 
stochastic volatility models, which attempt to address the 
constant volatility constraint [12]. 

B. Emergence of Machine Learning in Financial Forecasting 

With the exponential growth of computational capabilities 
and the proliferation of vast financial datasets, machine 
learning has transitioned from a theoretical concept to an 
instrumental tool in financial forecasting. Over the past two 
decades, the field has seen a marked departure from traditional 
econometric models towards more adaptive and self-learning 
algorithms. Next research advanced the argument that neural 
networks possess the capacity to model complex non-linear 
relationships inherent in financial markets, a dimension often 

inadequately captured by traditional methods [13]. Next study 
specifically applied Recurrent Neural Networks (RNNs) to the 
domain of option pricing, highlighting the technology's 
aptitude for capturing intricate temporal sequences [14]. This 
evolution indicates a paradigmatic shift in financial forecasting 
methodologies, illustrating the potential of machine learning 
techniques to address the increasingly multifaceted nature of 
financial markets. 

C. Deep Learning and Financial Markets 

In the expansive sphere of machine learning, deep learning 
stands out, characterized by its multi-layered neural networks 
adept at handling high-dimensional data. Originating from 
image and video recognition tasks, as underscored by LeCun et 
al. (2015), these algorithms have witnessed a significant 
adaptation to financial analytics [15]. The strength of 
Convolutional Neural Networks (CNNs) lies in their 
autonomous feature extraction capabilities, which have found 
resonance in financial time series analysis. A new study 
successfully applied CNNs to forecast stock price movements, 
underscoring their superiority over conventional methods [16]. 
This adaptation of deep learning to finance not only signifies 
its versatility but also heralds a new era in financial 
forecasting. Embracing these sophisticated architectures 
promises a more nuanced understanding of financial market 
intricacies, catalyzing more informed and data-driven decision-
making processes in the sector. 

D. Residual Networks in Deep Learning 

Within the intricate tapestry of deep learning architectures, 
Residual Networks (ResNets) have carved a distinctive niche. 
The transformative nature of ResNets lies in their "shortcut 
connections", which allow activations to bypass certain layers, 
facilitating the learning of identity functions [17]. This 
innovative approach, originally tailored for visual tasks, has 
significantly mitigated challenges associated with training 
deeper neural networks, predominantly by averting 
performance degradation. Its adaptation to financial 
applications, though still burgeoning, shows immense 
potential. The principal virtue of these networks is their ability 
to combat the notorious vanishing gradient problem, thus 
enhancing the depth and complexity of models without 
sacrificing accuracy. The foray of ResNets into financial 
forecasting stands as testament to the evolving landscape of 
deep learning, offering fresh perspectives and tools to navigate 
the multifarious nature of financial data.  

E. Hybrid Deep Learning Architectures 

As the deep learning domain continues its relentless 
evolution, the emergence of hybrid architectures signifies a 
pivotal juncture. These models, synergizing distinct deep 
learning techniques, aim to harness the individual strengths of 
each component, resulting in a more comprehensive and potent 
analytical tool. Gosztolya et al. (2017) pioneered in this space, 
presenting a confluence of Convolutional Neural Networks 
(CNNs) and Long Short-term Memory networks (LSTMs) for 
nuanced time series forecasting [18]. Their work highlighted 
the hybrid model's capability to simultaneously capture spatial 
features and temporal dynamics. Yet, the realm of hybrid 
architectures is expansive, with the potential for myriad 
combinations. As these integrated frameworks gain traction, 
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they promise to redefine the boundaries of what deep learning 
can achieve, paving the way for more sophisticated, adaptable, 
and accurate solutions in diverse application areas, including 
finance. 

F. Challenges in Option Price Prediction 

Option price prediction, central to financial analysis, is 
fraught with complexities. Despite the sophistication of 
existing models, accurate forecasting remains an elusive goal, 
owing to the non-stationary nature of financial markets. A 
multitude of variables, both foreseen and unforeseen, 
continually impact option prices, making their behavior highly 
unpredictable. Traditional models, exemplified by Black-
Scholes, while groundbreaking, have faced criticism for their 
stringent assumptions, as highlighted [19]. Emerging machine 
learning models, despite their adaptability, are not immune to 
challenges, notably overfitting and susceptibility to market 
anomalies. Dhiman et al., (2020) elucidate these limitations, 
stressing the need for models that are both adaptive and robust 
[20]. As the financial landscape grows increasingly intricate, 
the pursuit of a holistic, accurate, and resilient option pricing 
model remains a quintessential challenge, beckoning further 
research and innovation. 

G. Gap in Current Literature 

Within the vast expanse of academic literature dedicated to 
financial forecasting and particularly option price prediction, 
certain gaps persistently emerge. The trajectory of research has 
indeed traversed from traditional mathematical formulations to 
sophisticated computational architectures, yet complete 
solutions appear to remain on the horizon. While many studies, 
such as those by Black and Scholes, have laid foundational 
pillars, and others have delved deep into the capabilities of 
machine learning and deep learning techniques, a 
comprehensive amalgamation seems somewhat elusive. 

Most evident is the lack of extensive exploration into 
hybrid deep learning frameworks, particularly in their 
application to financial markets. The combination of multiple 
neural architectures, each with its inherent strengths, presents a 
promising frontier. Kumar et al. (2023) offered a glimpse into 
the potential of these combined structures, but the literature 
remains scant in its entirety [21]. 

Furthermore, while there is an abundance of studies 
leveraging individual deep learning structures, the integration 
of residual connections within these architectures is a relatively 
uncharted territory, especially in financial forecasting contexts 
[22]. Current methodologies exhibit a propensity to lean 
heavily towards either feature extraction or temporal sequence 
modeling. Rare are the models that harmoniously intertwine 
both facets. 

This paucity in holistic models underscores the pivotal gap 
in the existing literature. The quest remains for a unified 
model, like the DR-CLSTM, that seamlessly melds the 
strengths of various deep learning techniques, thus addressing 
the multifaceted challenges of option price prediction. This 
present study aims to contribute to bridging this gap, offering a 
fresh perspective grounded in both retrospective analyses and 
forward-looking innovations. 

The trajectory of option price prediction methodologies has 
witnessed a paradigm shift from traditional mathematical 
models to sophisticated computational frameworks, epitomized 
by deep learning techniques [23]. As financial markets 
continue to evolve, becoming increasingly intricate, the need 
for robust, adaptive, and comprehensive models becomes 
paramount. The DR-CLSTM network, as explored in this 
paper, emerges in response to this exigency, grounded in a rich 
tapestry of academic research spanning diverse domains. By 
weaving together the strengths of CNNs, LSTMs, and ResNets, 
this study aims to contribute a novel perspective to the 
discourse on option price prediction, anchored in both 
historical precedents and contemporary innovations. 

III. MATERIALS AND METHODS 

The crux of any research endeavor lies in the robustness of 
its methodologies and the quality of the materials employed. In 
this "Materials and Methods" section, we elucidate the 
systematic approaches, tools, and datasets harnessed to 
facilitate our investigative journey into option price prediction. 
Serving as the backbone of our study, this section ensures 
replicability and offers a transparent window into the 
foundational processes that underpin our findings. Herein, we 
meticulously detail the data sources, the preprocessing 
techniques adopted, and the intricacies of the analytical 
methods applied. By offering this in-depth exposition, we aim 
to provide a roadmap for researchers, practitioners, and 
enthusiasts alike, enabling a clear understanding of the 
mechanisms that drive our research forward. Let us navigate 
through the critical phases and elements that constitute the 
scientific rigor of our study. 

A. Problem Statement 

In the realm of derivative pricing, a model is recognized as 
being aligned with a set of benchmarking instruments when the 
calculated parameters, within its structure, coincide with 
prevailing market values. Calibration can be conceptualized as 
the act of juxtaposing a model against these benchmarking 
entities. The act of defining parameters to affirm measuring 
conditions encapsulates the essence of model calibration [24]. 
While derivative pricing may be perceived as the prospective 
challenge, calibration can be seen as its antithesis. 
Hypothetically, given the prices of Call options across all 
strikes and durations, the calibration quandary can be directly 
tackled through an inverse formulation. Yet, confronted with a 
restricted set of derivative valuations, calibration becomes an 
indeterminate challenge, necessitating the deployment of 
regularization techniques in real-world settings. 

The integration of machine learning in predicting option 
prices has demonstrated potential, enhancing model precision, 
agility, and resilience. Notwithstanding, existing models 
grapple with obstacles such as the requisite for vast and varied 
datasets, heightened sensitivity to inputs and settings, and the 
intricacy of encapsulating intricate interactions affecting the 
option price [25]. Subsequent inquiries should prioritize 
crafting resilient and comprehensible models, assimilating 
supplementary data avenues, external variables, and 
broadening the application horizons of machine learning within 
financial domains. 
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Conceptually, this mirrors determining the apex solution 
for a given conundrum. Supposing we possess a roster of Call 
options market valuations CM for specific durations Ti, i = 1,.., 
n and strike values Ki,j, j = 1,..., mi which align with prevailing 
market metrics like S, r, q, among others. Given this 
classification, the assortment of exchanged strikes Ki,j may 
differ based on the duration Ti. If we take into account 
calibrating the model M delineated in Section I, it encompasses 
model parameters p in conjunction with input data metrics. We 
differentiate p and based on their intrinsic implications: while 
parameters p is derived through calibration, the input metrics 
symbolize discernible market constants, such as S, r, q, T, and 
K3. 

Given the relevant inputs for p and, the model M can 
formulate the mathematical framework for Call option 
valuations C. To ascertain the model's calibrated parameters, 
it's imperative to resolve the associated optimization 
conundrum: 
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In this context, i and j represent weight coefficients, and L2 
stands as a normative measure for k and k, employed in the 
formulation given by Eq. (1). Broadly, to address the 
intricacies of the non-linear function, it becomes imperative to 
adopt global optimization strategies. Such a need arises as the 
multi-faceted objective (or loss) function could potentially 
harbor multiple localized minima. Moreover, this challenge 
may be inherently bounded, a phenomenon frequently 
observed when deriving the implied volatility surface from 
market data points. 

B. The Proposed Model 

Financial assets intrinsically exhibit stochastic behavior, 
necessitating representation through intricate nonlinear and 
multivariate functions, thus rendering option pricing an 
exceptionally complex challenge. Traditional approaches often 
rely heavily on numerous statistical presuppositions concerning 
market or data dynamics. In stark contrast, deep learning excels 
in its capacity to model nonlinearities, accomplishing this 
without such restrictive assumptions. This section succinctly 
outlines the non-parametric models employed in the referenced 
studies. 

In the initial publication of this research, a Convolutional-
LSTM model was introduced to address the dual complexities 
of spatial and temporal data modeling. Fig. 1 shows the 
proposed Convolutional LSTM network for option price 
prediction. The data architecture remains consistent here, 
interpretable as encompassing C channels, given its bi-
dimensional configuration. Thus, the comprehensive dataset 
serving as input adheres to the structure [26]. The 2D 
convolution operation is executed across the D and E 
parameters, spanning each row and layers of the representation. 

Alternatively, the dataset related to the option lacks a 
dimension, crucial for effective Convolutional-LSTM 
processing. Its sole permissible structure is (T;C;N;D). A 
pragmatic resolution involves adapting the Convolutional-
LSTM algorithm to harness 1D convolution, foregoing the 2D 
pooling layers. This unidimensional convolutional operation 
predominantly traverses the D component. Such convolution is 
consistently applied across pertinent inputs, cell outputs, 
hidden outputs, and gates. When centered on discerning 
correlations within market data, this 1D convolution proves 
markedly advantageous, bolstering performance over mere 
vector-based input methodologies. 

The computational process unfolds in the subsequent 
manner delineated herein: 
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Where the symbol * denotes the unidimensional 
convolution occurring between the latent phase and the 
convolutional kernels. 

For the purpose of ensuring coherence in comparison, the 
input data is further reshaped to adopt the following 
configuration: (N; 1; T; C D) = (N; 1; 10; 15). In essence, this 
consolidates all parameters into a unified channel. This 
modification aims to test our methodology's efficacy in feature 
representation 

In our research, we utilized data sourced from the Chinese 
stock and fund markets between April 2018 and June 2020, 
with a specific emphasis on 50ETF option and stock option 
data [27]. Initially, the dataset comprises 55,047 entries and 34 
distinct variables. We focused on selections with an effective 
duration of a minimum of 20 days, resulting in 829 such 
choices. Of these, the first 600 are designated for training, with 
the subsequent 229 allocated for testing purposes. This data is 
reshaped according to the specifications detailed in Section 
3(B), resulting in a final training set with 33,210 entries and a 
test set with 11,386 entries. The data for this study was 
procured from Yahoo Finance [28]. 

Prior to the commencement of our experiments, it was 
imperative to normalize each variable within the dataset. This 
normalization is essential to counteract potential imbalances or 
asymmetries in the neural network. For illustration: 
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Fig. 1. The proposed convolutional-LSTM network for option price prediction. 

IV. EXPERIMENTAL RESULTS 

In this section, we present the empirical outcomes of our 
study, offering a rigorous evaluation of the conducted 
experiments. The results elucidated herein provide a 
comprehensive insight into the efficacy of the proposed models 
in light of the research objectives. By scrutinizing these 
outcomes, readers can glean an understanding of the model's 
robustness, accuracy, and adaptability in various scenarios. 
Moreover, the results will be juxtaposed with established 
benchmarks and previous studies, serving as a comparative 
framework. This comparative analysis aims to underscore the 
advancements and potential shortcomings of the current 
research. Without further ado, let us delve into the detailed 
exposition of the experimental findings. 

A. Evaluation Metrics 

Mean Squared Error (MSE) stands as one of the paramount 
metrics in quantitative assessment, especially when the 
objective is to measure the average magnitude of error between 
predicted and actual observations [29]. Mathematically defined 
as the average of the squared differences between the 
forecasted and observed values, MSE serves as an indicator of 
the accuracy of a model's predictions. One of its distinctive 
characteristics is its amplification of larger errors, due to the 
inherent squaring of discrepancies. Consequently, models with 
a lower MSE are preferred as they suggest a closer fit to the 
actual data. However, it's essential to note that while MSE is 
profoundly informative, its sensitivity to outliers can 
sometimes overemphasize large errors. As such, it is often 
considered in conjunction with other evaluation metrics to 
provide a more comprehensive assessment of a model's 
performance. 
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Mean Absolute Error (MAE) is a critical metric employed 
in the realm of predictive modeling to gauge the average 
magnitude of errors between forecasted and actual observations 
[30]. Unlike the Mean Squared Error (MSE), which squares 
discrepancies, the MAE takes the absolute value of these 
errors. As a result, it provides a linear score where all 
individual differences have equal weight. This ensures that the 
metric is not disproportionately influenced by outliers, 
rendering it less sensitive to large deviations compared to 
MSE. Essentially, the MAE quantifies the average vertical 
distance between each point and the identity line in a prediction 
plot. Lower MAE values indicate a model that is adept at 
making predictions closely aligned with actual outcomes. 
Given its intuitive nature and resistance to the undue influence 
of outliers, MAE often serves as a pivotal parameter in many 
evaluation frameworks, particularly when the objective is to 
obtain a straightforward understanding of prediction accuracy. 
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Root Mean Squared Error (RMSE) stands as a prominent 
metric in predictive analytics and modeling, serving to evaluate 
the magnitude of error between predicted and actual outcomes 
[31]. Derived from the Mean Squared Error (MSE), the RMSE 
is computed by taking the square root of the averaged squared 
differences between forecasted and observed values. This 
operation preserves the unit of the measurements, facilitating a 
more intuitive interpretation of the error magnitude. By 
emphasizing larger errors due to its squared components, 
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RMSE is particularly sensitive to significant discrepancies and 
outliers. As such, a lower RMSE denotes a model's superior 
predictive accuracy, suggesting its predictions are in closer 
proximity to observed data. However, given its sensitivity, 
RMSE is often juxtaposed with other metrics, such as the Mean 
Absolute Error (MAE), to ensure a well-rounded assessment of 
a model's performance, especially in datasets with pronounced 
outliers. 
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Mean Absolute Percentage Error (MAPE) is a 
quintessential metric in the analytical domain, primarily 
utilized to gauge the accuracy of forecasting methods in terms 
of percentage [32]. It calculates the average absolute 
percentage discrepancy between observed and predicted values 
relative to the actual value. This metric offers a scale-
independent perspective on errors, enabling comparisons 
across varied units and magnitudes. A salient feature of MAPE 
is its intuitive interpretation, as it directly quantifies the 
prediction error as a percentage, facilitating easy 
comprehension of the model's performance in practical terms. 
Lower MAPE values are indicative of superior predictive 
accuracy, suggesting that predictions closely mirror actual 
observations. However, one caveat associated with MAPE is 
its potential to produce undefined or infinite values when the 
actual observation is zero. Moreover, it can sometimes 
disproportionately penalize underestimations compared to 
overestimations. Despite these nuances, MAPE remains a 
favored choice in many scenarios, especially when 

stakeholders seek a percentage-based evaluation of predictive 
accuracy. 
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Beyond the aforementioned metrics, it's imperative to 
conduct comprehensive model assessments employing 
methods like cross-validation, testing on unseen samples, and 
juxtaposing the model's outputs against conventional 
approaches or established benchmarks. Such rigorous 
evaluations bolster the model's resilience and its capacity to 
generalize across diverse datasets, thereby enhancing the 
precision and dependability of option price forecasts in real-
world financial scenarios. 

B. Experimental Results 

In this section, we delve into the analytical outcomes of the 
suggested model as elaborated in the preceding segment. Fig. 2 
delineate the efficacy of the ConvLSTM model in forecasting 
option prices, juxtaposing the accuracy during training and 
validation phases across 200 epochs. The amalgamation of 
CNN and LSTM networks' capabilities renders the proposed 
model especially adept for option price prognostications, given 
the pivotal role of historical prices and prevailing market 
dynamics in influencing future option valuations. Notably, the 
model manifests a precision rate of approximately 92% for 
option pricing over 200 epochs. Remarkably, even at a mere 20 
epochs, the precision remains commendably high at around 
90%. Hence, the data suggests that the ConvLSTM model can 
achieve substantial accuracy with a limited epoch count. 

 
Fig. 2. Train and validation accuracy. 
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Within the ambit of financial predictive modeling, the 
Convolutional Long Short-Term Memory (ConvLSTM) model 
has emerged as a promising tool. Fig. 3 delves deep into a 
systematic examination of this model, particularly focusing on 
the intricacies of its training and validation losses across a span 
of 200 learning epochs. This graphical representation has been 
meticulously curated to elucidate the nuanced dynamics of the 
ConvLSTM model's learning process, offering a 
comprehensive view of its progressive enhancement in 
forecasting accuracy. 

The primary intent behind Fig. 3 is manifold. First, it offers 
researchers, financial analysts, and readers an empirical visual 
assessment of how the model refines its predictive capabilities 
over successive epochs using the training dataset. By 
juxtaposing this with the model's performance on previously 
unseen validation data, the illustration provides a holistic 
perspective on the model's capacity to not only internalize data-
driven patterns but also to generalize them effectively to new 
datasets. This aspect of generalization is pivotal in the real-
world financial sphere, where the prediction model must 
navigate and adapt to constantly fluctuating market dynamics. 

As one scrutinizes the trends depicted in Fig. 3, a clear 
attenuation in both training and validation losses becomes 
evident. This decline is not just indicative of the model's ability 
to reduce error margins over time, but it also underscores its 
robustness and adaptability in the face of evolving financial 

data. It's noteworthy to mention that the sheer subtleness in the 
trajectory of these losses speaks volumes about the model's 
inherent stability and the efficiency of its learning algorithm. 

Another salient observation from the figure is the relatively 
slight divergence between the training and validation losses. In 
the complex realm of deep learning, such congruence is often 
heralded as a testament to a model's consistent performance. A 
substantial gap could have implied potential overfitting, where 
the model becomes overly tailored to the training data and 
falters on new data. However, the narrow divergence observed 
reaffirms the ConvLSTM model's balanced approach, ensuring 
it retains its predictive accuracy even when confronted with 
unfamiliar financial datasets. 

In summation, Fig. 3 stands as a pivotal piece of empirical 
evidence in this research. It not only attests to the ConvLSTM 
model's superior predictive capabilities but also illuminates its 
potential as a reliable tool for financial forecasting in a world 
characterized by uncertainty and rapid market fluctuations. 

In the complex world of predictive modeling, 
understanding a model's accuracy and its capacity to generalize 
its learning is paramount. Fig. 4 serves as a compelling 
visualization of the Convolutional Long Short-term Memory 
(ConvLSTM) model's evolution in this regard, specifically 
focusing on the trajectory of its training and validation Root 
Mean Squared Error (RMSE) in the context of option price 
prediction [33]. 

 
Fig. 3. Train and validation loss. 
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The figure meticulously chronicles the RMSE values over a 
delineated range of epochs. This choice of visualization 
enables a nuanced interpretation, offering readers an 
opportunity to juxtapose the model's learning curve (as 
evidenced by training RMSE) against its ability to adapt and 
predict new, unseen data (as evidenced by validation RMSE). 
Such a comparative study is vital in ascertaining the robustness 
and reliability of a predictive model, especially in dynamic 
domains like financial forecasting where precision is non-
negotiable. 

A foundational expectation in the realm of predictive 
analytics is that, as a model undergoes more training iterations 
(or epochs), its understanding of the data deepens, leading to 
enhanced prediction accuracy. This theoretical construct is 
manifestly demonstrated in Fig. 4. Both the training and 
validation RMSE values demonstrate a marked descent, which, 
in analytical parlance, signifies the ConvLSTM model's 
growing adeptness at decoding underlying data patterns and its 
prowess in translating this understanding into accurate 
forecasts. 

The ConvLSTM architecture, hailed for its sophistication, 
has proven its mettle through the figure's depiction. Its RMSE 
values, even in initial epochs, are commendably modest, 
attesting to the architecture's inherent strength [34]. What 
further bolsters the ConvLSTM's credibility is the observed 
trend: as the model is exposed to more epochs, there's a 
palpable contraction in the RMSE. This diminishing RMSE 
trend, in conjunction with the relative proximity between 

training and validation values, speaks volumes about the 
model's consistency and its adeptness at preventing overfitting. 

In conclusion, Fig. 4 stands as a testament to the 
ConvLSTM model's exceptional capabilities in option price 
prediction. Through its clear delineation of RMSE progression, 
the figure elucidates the model's journey from initial 
understanding to mature precision, highlighting its potential as 
a dependable tool in the demanding sphere of financial 
analytics. Such insights underscore the significance of 
meticulous model evaluation and the promise that advanced 
architectures like ConvLSTM hold for future research 
endeavors. 

Within the realm of financial forecasting, the veracity of a 
predictive model is often gauged by its ability to approximate 
real-world values. Fig. 5 serves as a visual testament to this 
critical evaluation, offering an intricate comparison between 
the ConvLSTM model's predicted option prices (rendered in 
blue) and the observed, actual option prices (depicted in red). 

The visual portrayal in Fig. 5 invite a meticulous 
examination of the parallel trajectories of the forecasted and 
real option prices. The frequent confluence points between the 
blue and red lines provide compelling evidence of the model's 
predictive accuracy. Such intersections are not mere graphical 
intersections; they symbolize moments of congruence between 
predictive estimations and real-world observations. When a 
model's predictions consistently intersect with or closely trail 
the actual values, it is indicative of its robustness and precision. 

 

Fig. 4. Root mean squared error changes. 



(IJACSA) International Journal of Advanced Computer Science and Applications, 

Vol. 14, No. 9, 2023 

385 | P a g e  

www.ijacsa.thesai.org 

 
Fig. 5. Predicted and actual results for option pricing. 

This observed alignment is not a trivial accomplishment, 
especially in the volatile domain of option pricing. The 
inherent unpredictability of financial markets makes the task of 
forecasting option prices a daunting challenge. Hence, the 
observed consistency between the model's estimations and the 
actual values underscores the ConvLSTM's superior modeling 
capabilities and its adeptness in capturing intricate market 
dynamics. 

Moreover, the frequency of these intersections lends further 
credence to the ConvLSTM model's reliability. Infrequent 
matches could be dismissed as fortuitous, but the recurrent 
overlap observed in Fig. 5, suggests a pattern of sustained 
accuracy. Such consistency in predictions is emblematic of a 
model that has successfully internalized complex data patterns 
and can replicate this understanding in diverse scenarios. 

Drawing from the insights garnered from Fig. 5, it becomes 
palpable that the ConvLSTM architecture's advanced design 
and computational prowess make it a formidable tool in the 
sphere of option price prediction. The close alignment between 
its forecasts and real prices is not merely a favorable outcome; 
it signifies the model's potential as a reliable instrument for 
long-term, practical applications in financial forecasting. 

In conclusion, Fig. 5 stands as a testament to the 
ConvLSTM model's empirical efficacy. By providing a visual 
representation of the model's predictive prowess in the face of 
real-world data, the figure reinforces the notion that advanced 
predictive architectures like ConvLSTM are poised to 
revolutionize the landscape of financial analytics. 

V. DISCUSSION 

The research undertaken here delves deep into the intricate 
facets of option price prediction using the Convolutional Long 
Short-term Memory (ConvLSTM) model, a hybrid deep 
learning architecture. The journey of analyzing, training, and 
testing the model has opened up avenues for reflections and 
discussions on both the capabilities of the model and the 
complexities associated with option pricing in financial 
markets. 

Foremost, the accuracy metrics employed (e.g., RMSE, 
MAPE) offered crucial insights into the model’s predictive 
performance. Notably, the ConvLSTM model showcased a 
capacity to capture both spatial and temporal aspects of the 
financial data. This is significant, as financial data streams 
inherently possess these dual characteristics. Traditional 
models often struggle with time-series data that also has spatial 
features, which makes ConvLSTM's accomplishment notable. 
The ability of the model to achieve around 92% precision in 
option pricing over 200 learning epochs stands as a testament 
to its robust nature. Further, its adeptness at reaching 90% 
precision in just 20 epochs underscores its efficiency. 

The train and validation graphs over epochs – whether in 
terms of precision, loss, or RMSE – illuminated the model's 
learning curve. A significant observation was that the disparity 
between training and validation scores was minimal, hinting at 
minimal overfitting [35]. This implies that the model 
generalizes well to unseen data, a crucial factor in the volatile 
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world of financial markets where prediction robustness can 
translate to substantial economic implications. 

The graphical representation comparing the predicted 
option prices with the actual values further reaffirmed the 
model's strength. The convergence of the blue and red lines not 
only indicates effective learning but also suggests the model’s 
adaptability to evolving market dynamics. 

Nevertheless, as with all models, it is essential to view 
these results in the broader context of financial modeling. The 
realm of option pricing is replete with volatility, influenced by 
an array of external factors such as geopolitical events, 
monetary policies, and global market trends [36]. While the 
ConvLSTM model has showcased commendable accuracy in 
this research, it is worth pondering how it might perform in 
extremely volatile scenarios or in the face of black swan events 
[37]. 

Another point of reflection is the comparison of the 
ConvLSTM model with traditional option pricing models like 
the Black-Scholes model [38]. While deep learning models like 
ConvLSTM offer adaptability and can work without strict 
assumptions, traditional models come with theoretical 
foundations deeply entrenched in financial theories. Would it 
be advantageous to integrate features from both worlds to 
achieve a more balanced, adaptable, yet theoretically sound 
model? 

Data preprocessing, especially the normalization of 
parameters, was an essential step in this research. Neural 
networks, like the one employed in our ConvLSTM model 
[39], often require data to be structured and normalized to 
prevent issues like vanishing or exploding gradients [40]. It 
paves the path for a potential area of exploration: the 
development of models that are more resilient to raw or semi-
processed data. Given the real-time nature of financial 
decisions, reducing preprocessing time without compromising 
accuracy could be invaluable. 

Furthermore, the choice of data – specifically from the 
Chinese stock and fund market – brings forth questions about 
the model's adaptability to other global markets [41]. Financial 
behaviors and influences can vary across regions, affected by 
cultural, economic, and political differences. Hence, would the 
model retain its efficacy if trained on data from, say, the 
American or European markets? 

In conclusion, the ConvLSTM model’s potential in option 
price prediction, as evidenced by this research, is undeniably 
impressive. Its hybrid nature capitalizes on the strengths of 
both CNNs and LSTMs, making it a formidable tool for 
financial forecasting. However, it is imperative to continually 
evaluate and adapt the model, considering the ever-evolving 
landscape of global financial markets. The journey of this 
research serves not just as a testament to what has been 
achieved but also as an inspiration for the myriad possibilities 
that lie ahead. 

VI. CONCLUSION 

The exploration into the predictive prowess of the 
Convolutional Long Short-term Memory (ConvLSTM) model 
for option price forecasting has yielded insightful revelations. 

This research has undeniably demonstrated the potential of 
leveraging advanced deep learning architectures in the intricate 
and volatile realm of financial markets. As showcased, the 
ConvLSTM model adeptly captures the spatial and temporal 
nuances of financial data, achieving commendable accuracy 
levels over a minimal number of epochs. 

A notable takeaway from this study is the synergy between 
the spatial feature detection capabilities of Convolutional 
Neural Networks (CNNs) and the sequential pattern 
recognition of Long Short-term Memory (LSTM) networks. 
The integration of these characteristics into the ConvLSTM 
model has proven to be particularly potent for forecasting in 
the dynamic domain of option pricing. The close alignment 
between the model’s predictions and actual option prices 
underscores its viability as a tool for practical financial 
applications. 

However, as with all predictive models, the ConvLSTM's 
performance should be perceived within the broader 
framework of financial analytics. While its adaptability and 
precision are commendable, continuous iterations and 
refinements are imperative, considering the multifaceted 
influences on financial markets. The model's ability to adapt to 
diverse global markets and unforeseen volatile events remains 
an avenue for future exploration. 

In essence, this research has illuminated the vast potential 
that modern deep learning models hold for financial 
forecasting. It has set a benchmark, proving that with the right 
architecture and data, neural networks can be invaluable assets 
in the financial sector. As we advance, it is this confluence of 
finance and technology, exemplified by models like 
ConvLSTM that promises to redefine the contours of financial 
analytics and decision-making. 
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