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Abstract—Phishing, a prevalent online threat where attackers 

impersonate legitimate organizations to obtain sensitive 

information from victims, poses a significant cybersecurity 

challenge. Recent advancements in phishing detection, 

particularly machine learning-based methods, have shown 

promising results in countering these malicious attacks. In this 

study, we developed and compared seven machine learning 

models, namely Logistic Regression (LR), k-Nearest Neighbors 

(KNN), Support Vector Machine (SVM), Naive Bayes (NB), 

Decision Tree (DT), Random Forest (RF), and Gradient 

Boosting, to assess their efficiency in detecting phishing domains. 

Employing the UCI phishing domains dataset as a benchmark, 

we rigorously evaluated the performance of these models. Our 

findings indicate that the Gradient Boosting-based model, in 

conjunction with the Random Forest, exhibits superior 

performance compared to the other techniques and aligns with 

existing solutions in the literature. Consequently, it emerges as 

the most accurate and effective approach for detecting phishing 

domains. 

Keywords—Phishing detection; cybersecurity; machine 

learning; Gradient Boosting; Random Forest 

I. INTRODUCTION 

Phishing, a widespread and dangerous cyber-attack method, 
continues to pose significant threats in today's digital world. 
With the increasing reliance on online platforms, for various 
activities such as business, transactions and healthcare services, 
the risk of falling victim to phishing attacks has escalated [1]. 
Phishing attacks involve the deceptive acquisition of personal 
and sensitive information through a combination of technical 
deception and social engineering tactics [2, 3]. These attacks 
often utilize fraudulent emails or messages that appear to 
originate from reputable entities, tricking unsuspecting users 
into sharing their confidential data [2]. 

Despite advancements in cybersecurity that have greatly 
improved malware detection and reduced the presence of 
malware-hosting websites, combating phishing attacks remains 
challenging due to their social engineering nature [1, 4]. 
Phishing domains, in particular, exploit users' trust by directing 
them to counterfeit websites that closely resemble legitimate 
ones, leading to the compromise of sensitive information [5]. 
Falling victim to phishing attacks can have severe 
consequences, including identity theft, financial fraud, and 
reputational damage [1]. 

To address the persistent threat of phishing attacks, robust 
cybersecurity measures are required, and artificial intelligence 
(AI) has emerged as a promising approach [6]. Machine 

learning (ML) algorithms, a subset of AI, offer the potential to 
detect and classify phishing attacks by analyzing patterns and 
indicators of fraudulent activity based on historical data [6]. By 
leveraging ML models, it becomes possible to enhance 
detection capabilities and accurately predict whether a 
webpage is a phishing site or legitimate [6]. 

The objective of this research paper is to compare the 
effectiveness of ML classification models in detecting phishing 
domains. By identifying the most accurate ML model among 
the considered algorithms, the aim is to enhance detection 
capabilities and mitigate the risks associated with visiting 
phishing websites, ultimately restoring consumer trust. 

The rest of this paper is organized as follows: Section II 
offers insights into the algorithms used. In Section III, a review 
of the latest research on phishing attacks is presented. Section 
IV outlines the methodology employed in this study. The 
experimental results of our comparative study are presented 
and discussed in Section V. Finally, Section VI concludes the 
paper by summarizing the key findings and proposing avenues 
for future research. 

II. BACKGROUND 

Various machine-learning classification methods have 
demonstrated their effectiveness in detecting phishing domains. 
Some of the prominent techniques encompass: 

A. Logistic Regression 

Logistic regression is a prevalent statistical model utilized 
for binary classification tasks [7]. As a supervised learning 
algorithm, it predicts the probability of an instance belonging 
to a particular class. In logistic regression, the dependent 
variable is binary or categorical, while the independent 
variables can be continuous or categorical. 

The primary objective of logistic regression is to determine 
the best-fitting logistic function that establishes the relationship 
between the independent variables and the probability of the 
binary outcome. This logistic function, also known as the 
sigmoid function, maps any real-valued number to a value 
between 0 and 1 (see Fig. 1) [8]. The resulting probability 
estimate is then utilized to classify the instances into their 
respective classes. 

The logistic regression model estimates its parameters 
through maximum likelihood estimation, involving the 
optimization of the log-likelihood function [7]. Various 
optimization algorithms, such as gradient descent, are 
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commonly employed to minimize the cost function and obtain 
the optimal parameter values. 

 

Fig. 1. Logistic regression algorithm [9]. 

One of the key advantages of logistic regression is its 
interpretability. The coefficients of the independent variables 
offer valuable insights into the influence and direction of each 
variable on the probability of the outcome [10]. Furthermore, 
logistic regression can effectively handle both linear and 
nonlinear relationships between the independent variables and 
the log-odds of the outcome. 

B. K-Nearest Neighbors (KNN) 

K-Nearest Neighbors (KNN) stands as a widely employed 
non-parametric supervised learning algorithm for classification 
tasks [11]. Its simplicity, combined with its effectiveness, 
allows it to predict the class of an instance based on the classes 
of its nearest neighbors in the feature space. 

In the KNN algorithm, the parameter K represents the 
number of nearest neighbors considered when making a 
prediction. To classify a new instance, KNN calculates the 
distances between the instance and all the training instances in 
the feature space (see Fig. 2). Subsequently, it identifies the K 
nearest neighbors based on a distance metric, such as 
Euclidean distance or Manhattan distance [12]. 

Upon identifying the K nearest neighbors, the majority 
class among them is assigned to the new instance. In cases of 
ties, a voting mechanism can resolve the class assignment. One 
remarkable feature of KNN is that it is a lazy learner, as it 
performs classification at runtime without requiring an explicit 
training phase [13]. 

KNN exhibits versatility, as it adeptly handles both binary 
and multi-class classification problems. Additionally, it proves 
to be robust in capturing complex decision boundaries and 
coping with noisy data [14]. Nonetheless, it is essential to 
carefully consider the selection of K and the distance metric, as 
these choices significantly impact the algorithm's performance. 

C. Support Vector Machine  

Support Vector Machine (SVM) stands as a potent 
supervised learning algorithm extensively employed for 
classification and regression tasks [16]. The fundamental 
objective of SVM is to identify an optimal hyperplane that 
effectively segregates data points into distinct classes within 
the feature space (see Fig. 3). 

 

Fig. 2. K-Nearest neighbors’ algorithm [15]. 

 

Fig. 3. Support vector machine algorithm [17]. 

In the SVM approach, the algorithm maps input data into a 
higher-dimensional feature space using a kernel function, 
which could be linear, polynomial, or radial basis function 
(RBF) kernel [18]. By transforming the data in this manner, 
SVM can discover a hyperplane that maximizes the margin 
between classes, thereby enhancing its generalization 
capability. 

A key aspect of SVM is to identify the hyperplane that not 
only separates classes but also maximizes the distance to the 
nearest data points, known as support vectors. This property 
renders SVM robust to outliers and allows it to accommodate 
non-linear decision boundaries through various kernel 
functions. 

SVM is versatile, accommodating both binary and multi-
class classification tasks. For binary classification, SVM 
endeavors to locate a decision boundary that effectively 
distinguishes between the two classes. In multi-class scenarios, 
SVM can be extended using approaches such as one-vs-one or 
one-vs-rest [19]. 

D. Naive Bayes 

The Naive Bayes classifier stands as a well-known machine 
learning algorithm based on the application of Bayes' theorem, 
assuming feature independence [20]. It finds wide application 
in classification tasks, particularly in natural language 
processing and text mining. 

The Naive Bayes classifier computes the probability of 
each class given a set of input features and selects the class 
with the highest probability as the predicted outcome. Its 
strength lies in its simplicity, efficiency, and ability to handle 
high-dimensional data effectively (see Fig. 4). 
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Fig. 4. Naive Bayes algorithm [21]. 

The algorithm is termed 'naive' due to its assumption of 
feature conditional independence given the class. This 
simplifying assumption enables efficient estimation of class 
probabilities by multiplying individual feature probabilities. 
While this assumption may not hold true in real-world 
scenarios, Naive Bayes often performs well and yields reliable 
results. 

Various variations of the Naive Bayes classifier exist, such 
as Gaussian Naive Bayes, Multinomial Naive Bayes, and 
Bernoulli Naive Bayes, each suited for different data types and 
feature distributions [22]. 

Despite its simplicity, the Naive Bayes classifier has shown 
competitive performance compared to more complex 
algorithms. However, it is essential to acknowledge that Naive 
Bayes assumes feature independence, which may not always 
hold in practical scenarios. 

E. Decision Trees 

Decision Trees are a well-established machine-learning 
algorithm utilized for classification and regression tasks [23].  

These models are renowned for their intuitive and 
interpretable nature, constructing a tree-like flowchart based on 
dataset features. The Decision Tree algorithm recursively 
partitions the dataset, creating a tree-like structure (see Fig. 5), 
with internal nodes representing features and branches 
denoting possible feature values, leading to leaf nodes as final 
predicted outcomes or classes. 

 

Fig. 5. Decision tree algorithm [24]. 

The construction involves selecting the best feature to split 
the data at each node based on specific criteria like information 
gain or Gini impurity, aiming for maximized homogeneity 
within subsets. Decision Trees handle both categorical and 

numerical features, learning complex decision boundaries and 
effectively managing missing values and outliers [25].  

Their applications extend to feature selection and 
identifying crucial features for decision-making. However, 
overfitting risks exist, especially with excessively deep or 
complex trees, mitigated by techniques like pruning and 
maximum tree depth setting [26]. 

F. Random Forest 

Random Forest stands as a widely used ensemble learning 
algorithm renowned for its ability to combine multiple decision 
trees to make accurate predictions [27]. Its versatility and 
robustness make it well-suited for a wide range of 
classification and regression tasks. 

The essence of Random Forest lies in building an ensemble 
of decision trees, each trained on a different subset of the 
training data through bootstrapping [27]. Moreover, at each 
node of the tree, only a random subset of features is considered 
for splitting, introducing an element of randomness that helps 
mitigate overfitting and enhances the model's generalization 
ability (see Fig. 6). 

 

Fig. 6. Random forest algorithm [28]. 

To produce the final prediction, Random Forest aggregates 
the predictions of all individual trees either through voting (for 
classification) or averaging (for regression). This ensemble 
approach effectively reduces variance and improves the overall 
performance of the model. 

The advantages of Random Forest are numerous, 
encompassing its capacity to handle high-dimensional data, 
automatically select important features, and remain robust in 
the presence of outliers and noisy data [29]. Additionally, it 
facilitates the estimation of feature importance, offering 
valuable insights into the underlying data. 

However, it is essential to acknowledge that Random 
Forest may suffer from high computational complexity, and its 
results may not be as interpretable as those of single decision 
trees. To optimize its performance, hyperparameter tuning, 
including adjusting the number of trees and the maximum 
depth of each tree, becomes necessary [27]. 

G. Gradient Boost 

Gradient Boost is a highly popular and effective machine-
learning algorithm widely employed in various domains due to 
its ability to combine weak prediction models and create a 
robust predictive model [30]. It belongs to the category of 
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boosting algorithms, which iteratively train new models to 
correct the errors made by previous models. 

In Gradient Boost, weak models, typically decision trees, 
are trained in a stage-wise manner. At each stage, the model is 
trained on the data with a modified version of the target 
variable, representing the residuals or errors of the previous 
models. This process focuses on minimizing the errors made 
by the ensemble of models (see Fig. 7). 

 

Fig. 7. Gradient boost algorithm [31]. 

The training process involves optimizing a loss function, 
such as mean squared error for regression or log loss for 
classification, to determine the optimal weights and parameters 
of the weak models. The final model is a combination of these 
weak models, and their predictions are weighted based on their 
performance on the training data. 

One of the key strengths of Gradient Boost is its ability to 
handle complex datasets and capture non-linear relationships, 
leading to accurate predictions [30].  

However, it is essential to be cautious about overfitting 
when using Gradient Boost. Controlling model complexity 
through regularization techniques, such as shrinkage and 
subsampling, can help mitigate this issue. Moreover, due to its 
iterative nature, Gradient Boost can be computationally 
expensive, necessitating careful tuning of hyperparameters, 
such as learning rate, tree depth, and number of iterations, to 
achieve optimal performance [32]. 

III. RELATED WORK 

URL verification is crucial for protecting users from 
phishing attacks, an often overlooked vulnerability [33]. 
However, traditional phishing detection methods exhibit 
limited accuracy, detecting only around 20% of attempts [33]. 
To overcome this, machine learning (ML) techniques have 
shown promise, though challenges arise with large databases 
and time-consuming processes [34]. Additionally, heuristics-
based approaches suffer from significant false-positive rates 
[34]. Previous research focuses on improving anti-phishing 
models through feature reduction and ensemble methods [14]. 

Phishing URL detection is commonly treated as a 
classification problem using ML algorithms [35]. Constructing 
an ML-based detection model requires relevant properties to 
distinguish phishing from legitimate websites [35]. Robust ML 
approaches have demonstrated high detection accuracy [35], 
with various feature selection strategies employed to reduce 
feature numbers [35]. 

Common classifiers like Decision Trees (DT), C4.5, k-
Nearest Neighbors (k-NN), and Support Vector Machines 
(SVM) are widely used in phishing detection research due to 
their accuracy and efficiency [36]. However, deep learning 
models face challenges such as manual parameter adjustment, 
lengthy training periods, and suboptimal detection accuracy 
[37]. Researchers emphasize the significance of ensemble 
learning techniques, feature selection, and reduction to address 
these issues [38]. Different classifiers, including Naive Bayes 
(NB) and SVM, have been explored [39]. Random Forest (RF) 
has also been successful in distinguishing phishing attacks 
from normal websites, with Subasi et al. [40] achieving an 
exceptional classification performance of 97.36% using the 
random forest classifier. Feature selection has been a focus in 
another study, with characteristics grouped to identify the most 
effective ones for accurate phishing attack detection [41]. 

In the field of phishing website detection, Patil et al. [42] 
proposed three strategies involving URL attribute assessment, 
validation based on hosting and management, and visual 
appearance-based analysis. They comprehensively assessed 
various aspects of URLs and websites using ML 
methodologies and algorithms. 

Joshi et al. [43] conducted research on phishing attack 
prediction, utilizing a binary classifier based on the RF 
algorithm and a feature selection algorithm called relief, using 
data from the Mendeley domain for feature selection and 
training the RF algorithm. 

Ubing et al. [44] explored ensemble learning strategies like 
bagging, boosting, and stacking to achieve high accuracy in 
phishing detection by integrating decision tree classifiers. 

Similarly, Alsariera et al. [45] investigated phishing 
website detection using the "Forest by Penalizing Attributes" 
(FPA) algorithm and its enhanced variations, employing 
ensemble learning strategies like bagging, boosting, and 
stacking. 

Pandey et al. [46] contributed to the field with a novel 
hybrid model combining Random Forest and Support Vector 
Machine (SVM) techniques for detecting phishing on websites. 
Their experimental results demonstrated an impressive 
accuracy of 94%, outperforming traditional ML algorithms 
SVM (90%) and Random Forest (92.96%), highlighting the 
superior performance of the hybrid model in classifying 
phishing attacks. 

Furthermore, Lakshmi et al. [47] introduced an innovative 
approach for detecting phishing websites, analyzing hyperlinks 
in the HTML source code. They constructed a feature vector 
with 30 parameters to train a supervised DNN model with an 
Adam optimizer. The model demonstrated exceptional 
performance, outperforming traditional ML algorithms with a 
remarkable accuracy rate of 96%. 

Table I displays a concise overview of machine learning 
approaches employed in phishing website detection. 
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TABLE I. COMPARATIVE ANALYSIS OF RECENT MACHINE LEARNING 

TECHNIQUES FOR PHISHING DETECTION 

Model Dataset Algorithm Accuracy 

Subasi et al. [40] website 

RF, 

KNN, 
SVM, 

ANN, 

RF, 
C4.5, 

CART, 

NB 

97.36% 

97.18% 
97.17% 

96.91% 

96.79% 
95.88% 

95.79% 

92.98% 

Patil et al.[42] URLs 

LR, 

DT, 

RF 

96.23% 

96.23% 

96.58% 

Joshi et al.[43] Websites RF 97.63% 

Ubing et al.[44] UCI 
Ensemble bagging, 
boosting, stacking 

95.40% 

Alsariera et al. [45] UCI 

ForestPA-PWDM, 

Bagged-ForestPA-PWDM, 
sAdab-ForestPA-PWDM 

96.26% 

96.5% 
97.4% 

Pandey et al. [46] Websites SVM,RF 94.00% 

Lakshmi et al. [47] UCI DNN +Adam 96.00% 

IV. METHODOLOGY 

In this research study, our main objective was to identify 
the most effective machine-learning model for detecting 
phishing domains. To achieve this, we conducted experiments 
with seven distinct machine-learning techniques: Logistic 
Regression (LR), k-Nearest Neighbors (KNN), Support Vector 
Machine (SVM), Naive Bayes (NB), Decision Tree (DT), 
Random Forest (RF), and Gradient Boosting. 

Our dataset consisted of over 11,055 records, with 31 
website parameters and a corresponding class label indicating 
whether it was a phishing website (1) or not (-1). To improve 
the models' accuracy, we applied the MinMax normalization 
feature as a preprocessing strategy. 

To ensure robust evaluation, we employed a ten-fold cross-
validation method during the classification process. This 
approach enabled us to obtain a more accurate performance 
evaluation of the models on the dataset, ensuring reliable 
results. 

After the classification process, we thoroughly assessed the 
machine learning algorithms' performance using various 
evaluation metrics commonly used in the field, including 
accuracy, precision, recall, and F1-score. These metrics 
allowed us to make meaningful comparisons between the 
algorithms, ultimately identifying the most suitable approach 
for effectively detecting phishing websites. 

To visually illustrate the concept, (see Fig. 8) presents a 
graphical representation of the process. 

A. The Dataset  

The research utilized a dataset obtained from the UCI 
machine-learning repository, which can be accessed at [48]. 
The dataset contains 11,055 records, and each sample within 
the dataset is composed of 31 website parameters. Among 
these parameters is a class label that indicates whether the 
website is classified as a phishing website or not, represented 
by values of 1 or -1 (Table II). 

 

Fig. 8. Model’s flowchart. 

TABLE II. DESCRIPTION OF STUDIED PHISHING WEBSITE DATASET 

Total number of attributes 31 

No. of independent variables 30 

No. of class variables 1 

Details of the class variable 

Name: Result 

Legitimate =-1 Phishing=1 

4898 6175 

Total number of instances 11055 

B. Dataset Representation 

The dataset utilized in this research incorporates novel 
features that have been experimentally introduced [48], 
including the assignment of new rules to certain well-known 
parameters. The dataset comprises 30 parameters, which are 
listed below: 

'having_IP_Address', 'URL_Length', 'Shortening_Service', 
'having_At_Symbol', 'double_slash_redirecting', 
'Prefix_Suffix', 'having_Sub_Domain', 'SSLfinal_State', 
'Domain_registration_length', 'Favicon', 'port', 'HTTPS_token', 
'Request_URL', 'URL_of_Anchor', 'Links_in_tags', 'SFH', 
'Submitting_to_email', 'Abnormal_URL', 'Redirect', 
'on_mouseover', 'RightClick', 'popUpWindow', 'Iframe', 
'age_of_domain', 'DNSRecord', 'web_traffic', 'Page_Rank', 
'Google_Index', 'Links_pointing_to_page', 'Statistical_report'. 

C. Visualizing the Dataset: Heatmap of Feature Correlations 

To gain further insights into the dataset and understand the 
relationships between its features, we generated a heatmap to 
visualize the pairwise correlations among the 30 parameters 
used in this research (see Fig. 9). The heatmap provides a clear 
and concise representation of the correlation matrix, allowing 
us to identify potential associations and patterns that might 
influence the classification of phishing websites [50]. 
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Fig. 9. The heatmap of dataset features. 

Each cell in the heatmap is color-coded based on its 
correlation value, ranging from highly positive (dark shades) to 
highly negative (light shades) correlations. A correlation value 
close to 1 indicates a strong positive relationship, while a value 
close to -1 denotes a strong negative relationship. Conversely, 
a correlation value near 0 suggests little to no linear correlation 
between the respective features. 

Upon analyzing the heatmap, several interesting 
observations emerge. For instance, we observe a strong 
positive correlation between the 'having_Sub_Domain' and 
'Links_pointing_to_page' features, indicating that websites 
with more subdomains tend to have more links pointing to their 
pages. Conversely, there appears to be a negative correlation 
between 'URL_Length' and 'Page_Rank', suggesting that longer 
URLs may be associated with lower page ranks. 

Additionally, the presence of certain novel features, as 
experimentally introduced in the dataset, reveals potential 
correlations with other established parameters. For example, 
the 'Abnormal_URL' feature exhibits a moderate negative 
correlation with 'SSLfinal_State,' suggesting that websites with 
abnormal URLs might be less likely to have a valid SSL 
certificate. 

The heatmap not only facilitates the identification of such 
associations but also aids in assessing potential 
multicollinearity among the features. Identifying 
multicollinearity is crucial, as it can impact the performance 
and interpretability of predictive models. 

D. The MinMax Normalization 

In our study, our main focus was to boost the precision of 
our proposed models by introducing MinMax normalization as 
a critical preprocessing measure. This technique, widely 
acknowledged in the realm of machine learning, significantly 
enhances model accuracy, particularly for specific models that 
rely on it [49]. By employing MinMax normalization in our 
suggested model, we effectively rescaled the data to a domain 
of [0, 1], leading to notable improvements in the input quality 
during model training (see Eq. (1)). 

            
      

         
  (1) 

Where: 

            is the normalized value of the data point X. 

X is the original value of the data point. 

     is the minimum value in the dataset. 

     is the maximum value in the dataset. 

E. The Ten-fold Cross-validation Method 

The ten-fold cross-validation method is a widely used 
technique in machine learning and statistical analysis to 
evaluate a model's performance on a dataset [51]. It involves 
ten iterations with different data splits for training and testing, 
yielding a robust estimate of the model's abilities. This 
approach mitigates bias and variance issues, providing a 
comprehensive evaluation of generalization to unseen data. 
The final performance metric is obtained by averaging the 
results from all ten iterations, ensuring an accurate assessment 
of the model's capabilities. 

F. The Evaluation Metrics 

The evaluation metrics are essential tools for assessing the 
performance of machine learning models. They provide 
quantitative measures of the model's accuracy, precision, 
recall, and F1-score. By using these metrics, researchers can 
make meaningful comparisons between different models and 
identify the most effective approach for their specific task. 

1) Accuracy: Accuracy is a fundamental performance 

metric used to assess the overall correctness of a machine 

learning model. It represents the ratio of correctly predicted 

instances to the total number of instances in the dataset. In 

other words, it measures how often the model makes correct 

predictions. It is a simple and intuitive metric, but it might not 

be the best choice when dealing with imbalanced datasets. 

         
                                       

                         
 

     (2) 

2) F1 Score: The F1 score is a balanced metric that takes 

into account both precision and recall. It is particularly useful 

when dealing with imbalanced datasets, where one class might 

dominate the others. The F1 score computes the harmonic 

mean of precision and recall, providing a single value that 

balances the trade-off between false positives (FP) and false 

negatives (FN). 

         
                    

                  
  (3) 

3) Recall: Recall, also known as sensitivity or true 

positive rate, measures the proportion of actual positive 

instances that are correctly identified by the model. It is 

essential when the cost of false negatives is high, as it focuses 

on minimizing the number of missed positive instances. 

       
              

                              
 (4) 

4) Precision: Precision represents the proportion of true 

positive predictions among all positive predictions made by 

the model. It is crucial when the cost of false positives is high, 
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as it aims to reduce the number of incorrectly classified 

positive instances. 

          
              

                              
 (5) 

In summary, accuracy measures overall correctness, F1 
score balances precision and recall, recall focuses on 
minimizing false negatives, and precision aims to minimize 
false positives. 

V. FINDINGS AND ANALYSIS 

In this section, we present the experimental results of our 
comparative study (Table III). We analyze the performance of 
each machine-learning algorithm using the evaluation metrics 
defined in the previous section. We provide a comprehensive 
analysis of the results, highlighting the strengths and 
weaknesses of each algorithm.  

TABLE III. EVALUATION RESULTS IN (%). 

Classifier Accuracy F1 score Recall Precision 

Gradient Boost 97.2% 96.9% 97% 96.8% 

Random Forest 97.1% 97.3% 97.4% 97.2% 

Decision Tree 96.3% 96.7% 96.7% 96.6% 

K-Nearest Neighbors 95.6% 96.2% 96.8% 95.7% 

Support Vector 

Machine 
93.9% 95% 96.4% 93.7% 

Logistic Regression 92.7% 93.8% 95% 92.7% 

Naive Bayes Classifier 60.1% 45.3% 29.3% 99.2% 

In this analysis, we evaluate the performance of various 
machine-learning models based on key metrics, including 
Accuracy, F1-score, Recall, and Precision. The models under 
consideration are Gradient Boost, Random Forest, Decision 
Tree, K-Nearest Neighbors, Support Vector Machine, Logistic 
Regression, and Naive Bayes Classifier. 

Starting with Gradient Boost and Random Forest, both 
models showcase impressive results. Gradient Boost achieves a 
remarkable Accuracy of 97.2%, indicating its ability to make 
correct predictions for a majority of instances. The F1-score of 
96.9% suggests a well-balanced trade-off between precision 
and recall. Additionally, with Recall and Precision scores of 
97% and 96.8% respectively, it effectively identifies most 
positive instances while maintaining a high level of accuracy in 
positive predictions. 

Random Forest, another strong performer, demonstrates an 
Accuracy of 97.1%, marginally trailing behind Gradient Boost. 
Nevertheless, its F1-score of 97.3% indicates an excellent 
balance between precision and recall. The model boasts a high 
Recall score of 97.4%, suggesting its proficiency in correctly 
identifying positive instances. Furthermore, its Precision score 
of 97.2% underscores its accuracy in positive predictions. 

The Decision Tree model also shows promise with a 
respectable Accuracy of 96.3%. Its F1-score of 96.7% reflects 
a good balance between precision and recall. The Recall and 
Precision scores of 96.7% and 96.6% respectively affirm the 
model's effectiveness in correctly identifying positive instances 
and making accurate positive predictions. 

K-Nearest Neighbors performs well, attaining an Accuracy 
of 95.6%. Its F1-score of 96.2% demonstrates a commendable 
balance between precision and recall. With Recall and 
Precision scores of 96.8% and 95.7% respectively, the model 
effectively identifies positive instances and makes accurate 
positive predictions. 

The Support Vector Machine achieves an Accuracy of 
93.9%, somewhat lower than the previously mentioned models. 
Nevertheless, its F1-score of 95% suggests a satisfactory 
balance between precision and recall. A Recall score of 96.4% 
indicates its effectiveness in identifying positive instances, and 
its Precision score of 93.7% underscores its accuracy in 
positive predictions. 

Logistic Regression, with an Accuracy of 92.7%, provides 
a reasonable performance. Its F1-score of 93.8% signifies a 
good balance between precision and recall. A Recall score of 
95% indicates its ability to effectively identify positive 
instances, while its Precision score of 92.7% reflects accurate 
positive predictions. 

On the other hand, the Naive Bayes Classifier lags 
significantly behind the other models with an Accuracy of 
60.1% and an F1-score of 45.3%. The low Recall score of 
29.3% suggests its struggle to effectively identify positive 
instances. However, it exhibits an unexpectedly high Precision 
score of 99.2%, indicating that when it predicts a positive 
instance, it is usually correct. This discrepancy might imply a 
bias towards negative instances. 

In conclusion, the analysis showcases Gradient Boost and 
Random Forest as top-performing models, excelling in various 
metrics. The Decision Tree, K-Nearest Neighbors, and Logistic 
Regression also demonstrate competitive performances. 
However, the Naive Bayes Classifier significantly 
underperforms in comparison to the other models, necessitating 
further investigation and improvements. By understanding the 
strengths and weaknesses of each model, we can make 
informed decisions when selecting the most suitable model.  

After a thorough examination of our research findings, we 
will proceed to conduct a comparative analysis with other 
relevant studies in the field (Table IV). 

TABLE IV. EVALUATION OF CURRENT PHISHING DOMAIN DETECTION 

MODELS 

Authors Dataset Algorithm Accuracy 

Ubing et al. [44] UCI 
Ensemble bagging, boosting, 

stacking 
95.4% 

Alsariera et al. [45] UCI 
ForestPA-PWDM, Bagged-
ForestPA-PWDM, and Adab-

ForestPA-PWDM 

96.26% 
96.5% 

97.4% 

Lakshmi et al. [47] UCI DNN +Adam 96.00% 

Alnemari et al. [49] UCI Random Forest 97.3% 

Ubing et al. [44], in their work, harnessed the power of 
ensemble learning techniques such as bagging, boosting, and 
stacking, securing an impressive accuracy of 95.4% on the UCI 
dataset. This commendable outcome highlights the prowess of 
ensemble methods in accurately identifying phishing attacks, 
emphasizing the model's capacity to make precise predictions. 

https://www.mdpi.com/2076-3417/13/8/4649#B42-applsci-13-04649
https://www.mdpi.com/2076-3417/13/8/4649#B71-applsci-13-04649
https://www.mdpi.com/2076-3417/13/8/4649#B55-applsci-13-04649
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Equally noteworthy, Alsariera et al. [45] proposed multiple 
meta-learner models rooted in ForestPA-PWDM, Bagged-
ForestPA-PWDM, and Adab-ForestPA-PWDM. Their 
experimental results yielded outstanding accuracies of 96.26%, 
96.5%, and a remarkable 97.4%, respectively, on the UCI 
dataset. This exemplifies the efficacy and versatility of their 
ensemble-based approaches, which outperformed a majority of 
existing techniques, underscoring their potential as powerful 
solutions for phishing detection. 

Venturing into the realm of deep learning, Lakshmi et al. 
[47] introduced the DNN +Adam model, accomplishing an 
impressive accuracy of 96.00% on the UCI dataset. This result 
vividly illustrates the effectiveness of deep learning 
methodologies in tackling phishing attacks, showcasing the 
model's ability to discern malicious websites with a remarkable 
degree of accuracy. 

Furthermore, Alnemari et al. [49] adopted the Random 
Forest model, achieving an exceptional accuracy of 97.3% on 
the UCI dataset. The success of this approach showcases the 
formidable strength of Random Forest in detecting phishing 
attacks, operating at a high level of accuracy and 
outperforming several alternative methods. 

Now, shifting our focus to our own research, our results 
reinforce the notion of competitive performance in the realm of 
phishing attack detection. With accuracy values ranging from 
93.9% to 97.2%, the machine learning models utilized in our 
study prove their efficacy. Particularly, the Gradient Boost and 
Random Forest models demonstrated remarkable accuracies of 
97.2% and 97.1%, respectively, rivaling or even surpassing the 
accuracy rates reported in the aforementioned studies. 

The alignment of our results with the findings of previous 
studies accentuates the effectiveness of diverse machine 
learning techniques in detecting phishing attacks.  

Overall, our research findings substantiate commendable 
performance, with the competitive accuracies achieved by our 
models showcasing their potential practicality in real-world 
phishing detection scenarios. The insights gleaned from our 
study empower us to make informed decisions when selecting 
the most appropriate machine learning technique to combat 
phishing threats in diverse applications. 

VI. CONCLUSION 

In this research, we have delved into the critical domain of 
phishing website detection, exploring diverse machine learning 
techniques and their effectiveness in countering the ever-
evolving cybersecurity threat posed by phishing attacks. The 
rampant increase in such fraudulent activities has presented 
significant challenges to individuals and organizations 
worldwide, necessitating the development of robust and 
efficient methods to detect and thwart these deceitful websites. 

Through an extensive analysis of our research results and a 
thorough comparison with other relevant studies, we have 
uncovered promising insights into the effectiveness of various 
machine learning models for detecting phishing attacks. 
Notably, the Gradient Boost and Random Forest models have 
demonstrated exceptional performance, showcasing accuracy 
rates that either align with those reported in the existing 

literature. This remarkable potential positions these models as 
viable candidates for real-world applications in phishing 
detection scenarios, playing a pivotal role in fortifying 
cybersecurity measures and shielding users from the dangers 
posed by phishing attacks. 
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