
(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 14, No. 9, 2023

417 | P a g e

www.ijacsa.thesai.org

Comparative Study of Machine Learning Algorithms

for Phishing Website Detection

Kamal Omari

Department of Mathematics & Computer Science-Faculty of Sciences Ben M'sik,

University Hassan II. Casablanca, Morocco

Abstract—Phishing, a prevalent online threat where attackers

impersonate legitimate organizations to obtain sensitive

information from victims, poses a significant cybersecurity

challenge. Recent advancements in phishing detection,

particularly machine learning-based methods, have shown

promising results in countering these malicious attacks. In this

study, we developed and compared seven machine learning

models, namely Logistic Regression (LR), k-Nearest Neighbors

(KNN), Support Vector Machine (SVM), Naive Bayes (NB),

Decision Tree (DT), Random Forest (RF), and Gradient

Boosting, to assess their efficiency in detecting phishing domains.

Employing the UCI phishing domains dataset as a benchmark,

we rigorously evaluated the performance of these models. Our

findings indicate that the Gradient Boosting-based model, in

conjunction with the Random Forest, exhibits superior

performance compared to the other techniques and aligns with

existing solutions in the literature. Consequently, it emerges as

the most accurate and effective approach for detecting phishing

domains.

Keywords—Phishing detection; cybersecurity; machine

learning; Gradient Boosting; Random Forest

I. INTRODUCTION

Phishing, a widespread and dangerous cyber-attack method,
continues to pose significant threats in today's digital world.
With the increasing reliance on online platforms, for various
activities such as business, transactions and healthcare services,
the risk of falling victim to phishing attacks has escalated [1].
Phishing attacks involve the deceptive acquisition of personal
and sensitive information through a combination of technical
deception and social engineering tactics [2, 3]. These attacks
often utilize fraudulent emails or messages that appear to
originate from reputable entities, tricking unsuspecting users
into sharing their confidential data [2].

Despite advancements in cybersecurity that have greatly
improved malware detection and reduced the presence of
malware-hosting websites, combating phishing attacks remains
challenging due to their social engineering nature [1, 4].
Phishing domains, in particular, exploit users' trust by directing
them to counterfeit websites that closely resemble legitimate
ones, leading to the compromise of sensitive information [5].
Falling victim to phishing attacks can have severe
consequences, including identity theft, financial fraud, and
reputational damage [1].

To address the persistent threat of phishing attacks, robust
cybersecurity measures are required, and artificial intelligence
(AI) has emerged as a promising approach [6]. Machine

learning (ML) algorithms, a subset of AI, offer the potential to
detect and classify phishing attacks by analyzing patterns and
indicators of fraudulent activity based on historical data [6]. By
leveraging ML models, it becomes possible to enhance
detection capabilities and accurately predict whether a
webpage is a phishing site or legitimate [6].

The objective of this research paper is to compare the
effectiveness of ML classification models in detecting phishing
domains. By identifying the most accurate ML model among
the considered algorithms, the aim is to enhance detection
capabilities and mitigate the risks associated with visiting
phishing websites, ultimately restoring consumer trust.

The rest of this paper is organized as follows: Section II
offers insights into the algorithms used. In Section III, a review
of the latest research on phishing attacks is presented. Section
IV outlines the methodology employed in this study. The
experimental results of our comparative study are presented
and discussed in Section V. Finally, Section VI concludes the
paper by summarizing the key findings and proposing avenues
for future research.

II. BACKGROUND

Various machine-learning classification methods have
demonstrated their effectiveness in detecting phishing domains.
Some of the prominent techniques encompass:

A. Logistic Regression

Logistic regression is a prevalent statistical model utilized
for binary classification tasks [7]. As a supervised learning
algorithm, it predicts the probability of an instance belonging
to a particular class. In logistic regression, the dependent
variable is binary or categorical, while the independent
variables can be continuous or categorical.

The primary objective of logistic regression is to determine
the best-fitting logistic function that establishes the relationship
between the independent variables and the probability of the
binary outcome. This logistic function, also known as the
sigmoid function, maps any real-valued number to a value
between 0 and 1 (see Fig. 1) [8]. The resulting probability
estimate is then utilized to classify the instances into their
respective classes.

The logistic regression model estimates its parameters
through maximum likelihood estimation, involving the
optimization of the log-likelihood function [7]. Various
optimization algorithms, such as gradient descent, are

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 14, No. 9, 2023

418 | P a g e

www.ijacsa.thesai.org

commonly employed to minimize the cost function and obtain
the optimal parameter values.

Fig. 1. Logistic regression algorithm [9].

One of the key advantages of logistic regression is its
interpretability. The coefficients of the independent variables
offer valuable insights into the influence and direction of each
variable on the probability of the outcome [10]. Furthermore,
logistic regression can effectively handle both linear and
nonlinear relationships between the independent variables and
the log-odds of the outcome.

B. K-Nearest Neighbors (KNN)

K-Nearest Neighbors (KNN) stands as a widely employed
non-parametric supervised learning algorithm for classification
tasks [11]. Its simplicity, combined with its effectiveness,
allows it to predict the class of an instance based on the classes
of its nearest neighbors in the feature space.

In the KNN algorithm, the parameter K represents the
number of nearest neighbors considered when making a
prediction. To classify a new instance, KNN calculates the
distances between the instance and all the training instances in
the feature space (see Fig. 2). Subsequently, it identifies the K
nearest neighbors based on a distance metric, such as
Euclidean distance or Manhattan distance [12].

Upon identifying the K nearest neighbors, the majority
class among them is assigned to the new instance. In cases of
ties, a voting mechanism can resolve the class assignment. One
remarkable feature of KNN is that it is a lazy learner, as it
performs classification at runtime without requiring an explicit
training phase [13].

KNN exhibits versatility, as it adeptly handles both binary
and multi-class classification problems. Additionally, it proves
to be robust in capturing complex decision boundaries and
coping with noisy data [14]. Nonetheless, it is essential to
carefully consider the selection of K and the distance metric, as
these choices significantly impact the algorithm's performance.

C. Support Vector Machine

Support Vector Machine (SVM) stands as a potent
supervised learning algorithm extensively employed for
classification and regression tasks [16]. The fundamental
objective of SVM is to identify an optimal hyperplane that
effectively segregates data points into distinct classes within
the feature space (see Fig. 3).

Fig. 2. K-Nearest neighbors’ algorithm [15].

Fig. 3. Support vector machine algorithm [17].

In the SVM approach, the algorithm maps input data into a
higher-dimensional feature space using a kernel function,
which could be linear, polynomial, or radial basis function
(RBF) kernel [18]. By transforming the data in this manner,
SVM can discover a hyperplane that maximizes the margin
between classes, thereby enhancing its generalization
capability.

A key aspect of SVM is to identify the hyperplane that not
only separates classes but also maximizes the distance to the
nearest data points, known as support vectors. This property
renders SVM robust to outliers and allows it to accommodate
non-linear decision boundaries through various kernel
functions.

SVM is versatile, accommodating both binary and multi-
class classification tasks. For binary classification, SVM
endeavors to locate a decision boundary that effectively
distinguishes between the two classes. In multi-class scenarios,
SVM can be extended using approaches such as one-vs-one or
one-vs-rest [19].

D. Naive Bayes

The Naive Bayes classifier stands as a well-known machine
learning algorithm based on the application of Bayes' theorem,
assuming feature independence [20]. It finds wide application
in classification tasks, particularly in natural language
processing and text mining.

The Naive Bayes classifier computes the probability of
each class given a set of input features and selects the class
with the highest probability as the predicted outcome. Its
strength lies in its simplicity, efficiency, and ability to handle
high-dimensional data effectively (see Fig. 4).

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 14, No. 9, 2023

419 | P a g e

www.ijacsa.thesai.org

Fig. 4. Naive Bayes algorithm [21].

The algorithm is termed 'naive' due to its assumption of
feature conditional independence given the class. This
simplifying assumption enables efficient estimation of class
probabilities by multiplying individual feature probabilities.
While this assumption may not hold true in real-world
scenarios, Naive Bayes often performs well and yields reliable
results.

Various variations of the Naive Bayes classifier exist, such
as Gaussian Naive Bayes, Multinomial Naive Bayes, and
Bernoulli Naive Bayes, each suited for different data types and
feature distributions [22].

Despite its simplicity, the Naive Bayes classifier has shown
competitive performance compared to more complex
algorithms. However, it is essential to acknowledge that Naive
Bayes assumes feature independence, which may not always
hold in practical scenarios.

E. Decision Trees

Decision Trees are a well-established machine-learning
algorithm utilized for classification and regression tasks [23].

These models are renowned for their intuitive and
interpretable nature, constructing a tree-like flowchart based on
dataset features. The Decision Tree algorithm recursively
partitions the dataset, creating a tree-like structure (see Fig. 5),
with internal nodes representing features and branches
denoting possible feature values, leading to leaf nodes as final
predicted outcomes or classes.

Fig. 5. Decision tree algorithm [24].

The construction involves selecting the best feature to split
the data at each node based on specific criteria like information
gain or Gini impurity, aiming for maximized homogeneity
within subsets. Decision Trees handle both categorical and

numerical features, learning complex decision boundaries and
effectively managing missing values and outliers [25].

Their applications extend to feature selection and
identifying crucial features for decision-making. However,
overfitting risks exist, especially with excessively deep or
complex trees, mitigated by techniques like pruning and
maximum tree depth setting [26].

F. Random Forest

Random Forest stands as a widely used ensemble learning
algorithm renowned for its ability to combine multiple decision
trees to make accurate predictions [27]. Its versatility and
robustness make it well-suited for a wide range of
classification and regression tasks.

The essence of Random Forest lies in building an ensemble
of decision trees, each trained on a different subset of the
training data through bootstrapping [27]. Moreover, at each
node of the tree, only a random subset of features is considered
for splitting, introducing an element of randomness that helps
mitigate overfitting and enhances the model's generalization
ability (see Fig. 6).

Fig. 6. Random forest algorithm [28].

To produce the final prediction, Random Forest aggregates
the predictions of all individual trees either through voting (for
classification) or averaging (for regression). This ensemble
approach effectively reduces variance and improves the overall
performance of the model.

The advantages of Random Forest are numerous,
encompassing its capacity to handle high-dimensional data,
automatically select important features, and remain robust in
the presence of outliers and noisy data [29]. Additionally, it
facilitates the estimation of feature importance, offering
valuable insights into the underlying data.

However, it is essential to acknowledge that Random
Forest may suffer from high computational complexity, and its
results may not be as interpretable as those of single decision
trees. To optimize its performance, hyperparameter tuning,
including adjusting the number of trees and the maximum
depth of each tree, becomes necessary [27].

G. Gradient Boost

Gradient Boost is a highly popular and effective machine-
learning algorithm widely employed in various domains due to
its ability to combine weak prediction models and create a
robust predictive model [30]. It belongs to the category of

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 14, No. 9, 2023

420 | P a g e

www.ijacsa.thesai.org

boosting algorithms, which iteratively train new models to
correct the errors made by previous models.

In Gradient Boost, weak models, typically decision trees,
are trained in a stage-wise manner. At each stage, the model is
trained on the data with a modified version of the target
variable, representing the residuals or errors of the previous
models. This process focuses on minimizing the errors made
by the ensemble of models (see Fig. 7).

Fig. 7. Gradient boost algorithm [31].

The training process involves optimizing a loss function,
such as mean squared error for regression or log loss for
classification, to determine the optimal weights and parameters
of the weak models. The final model is a combination of these
weak models, and their predictions are weighted based on their
performance on the training data.

One of the key strengths of Gradient Boost is its ability to
handle complex datasets and capture non-linear relationships,
leading to accurate predictions [30].

However, it is essential to be cautious about overfitting
when using Gradient Boost. Controlling model complexity
through regularization techniques, such as shrinkage and
subsampling, can help mitigate this issue. Moreover, due to its
iterative nature, Gradient Boost can be computationally
expensive, necessitating careful tuning of hyperparameters,
such as learning rate, tree depth, and number of iterations, to
achieve optimal performance [32].

III. RELATED WORK

URL verification is crucial for protecting users from
phishing attacks, an often overlooked vulnerability [33].
However, traditional phishing detection methods exhibit
limited accuracy, detecting only around 20% of attempts [33].
To overcome this, machine learning (ML) techniques have
shown promise, though challenges arise with large databases
and time-consuming processes [34]. Additionally, heuristics-
based approaches suffer from significant false-positive rates
[34]. Previous research focuses on improving anti-phishing
models through feature reduction and ensemble methods [14].

Phishing URL detection is commonly treated as a
classification problem using ML algorithms [35]. Constructing
an ML-based detection model requires relevant properties to
distinguish phishing from legitimate websites [35]. Robust ML
approaches have demonstrated high detection accuracy [35],
with various feature selection strategies employed to reduce
feature numbers [35].

Common classifiers like Decision Trees (DT), C4.5, k-
Nearest Neighbors (k-NN), and Support Vector Machines
(SVM) are widely used in phishing detection research due to
their accuracy and efficiency [36]. However, deep learning
models face challenges such as manual parameter adjustment,
lengthy training periods, and suboptimal detection accuracy
[37]. Researchers emphasize the significance of ensemble
learning techniques, feature selection, and reduction to address
these issues [38]. Different classifiers, including Naive Bayes
(NB) and SVM, have been explored [39]. Random Forest (RF)
has also been successful in distinguishing phishing attacks
from normal websites, with Subasi et al. [40] achieving an
exceptional classification performance of 97.36% using the
random forest classifier. Feature selection has been a focus in
another study, with characteristics grouped to identify the most
effective ones for accurate phishing attack detection [41].

In the field of phishing website detection, Patil et al. [42]
proposed three strategies involving URL attribute assessment,
validation based on hosting and management, and visual
appearance-based analysis. They comprehensively assessed
various aspects of URLs and websites using ML
methodologies and algorithms.

Joshi et al. [43] conducted research on phishing attack
prediction, utilizing a binary classifier based on the RF
algorithm and a feature selection algorithm called relief, using
data from the Mendeley domain for feature selection and
training the RF algorithm.

Ubing et al. [44] explored ensemble learning strategies like
bagging, boosting, and stacking to achieve high accuracy in
phishing detection by integrating decision tree classifiers.

Similarly, Alsariera et al. [45] investigated phishing
website detection using the "Forest by Penalizing Attributes"
(FPA) algorithm and its enhanced variations, employing
ensemble learning strategies like bagging, boosting, and
stacking.

Pandey et al. [46] contributed to the field with a novel
hybrid model combining Random Forest and Support Vector
Machine (SVM) techniques for detecting phishing on websites.
Their experimental results demonstrated an impressive
accuracy of 94%, outperforming traditional ML algorithms
SVM (90%) and Random Forest (92.96%), highlighting the
superior performance of the hybrid model in classifying
phishing attacks.

Furthermore, Lakshmi et al. [47] introduced an innovative
approach for detecting phishing websites, analyzing hyperlinks
in the HTML source code. They constructed a feature vector
with 30 parameters to train a supervised DNN model with an
Adam optimizer. The model demonstrated exceptional
performance, outperforming traditional ML algorithms with a
remarkable accuracy rate of 96%.

Table I displays a concise overview of machine learning
approaches employed in phishing website detection.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 14, No. 9, 2023

421 | P a g e

www.ijacsa.thesai.org

TABLE I. COMPARATIVE ANALYSIS OF RECENT MACHINE LEARNING

TECHNIQUES FOR PHISHING DETECTION

Model Dataset Algorithm Accuracy

Subasi et al. [40] website

RF,

KNN,
SVM,

ANN,

RF,
C4.5,

CART,

NB

97.36%

97.18%
97.17%

96.91%

96.79%
95.88%

95.79%

92.98%

Patil et al.[42] URLs

LR,

DT,

RF

96.23%

96.23%

96.58%

Joshi et al.[43] Websites RF 97.63%

Ubing et al.[44] UCI
Ensemble bagging,
boosting, stacking

95.40%

Alsariera et al. [45] UCI

ForestPA-PWDM,

Bagged-ForestPA-PWDM,
sAdab-ForestPA-PWDM

96.26%

96.5%
97.4%

Pandey et al. [46] Websites SVM,RF 94.00%

Lakshmi et al. [47] UCI DNN +Adam 96.00%

IV. METHODOLOGY

In this research study, our main objective was to identify
the most effective machine-learning model for detecting
phishing domains. To achieve this, we conducted experiments
with seven distinct machine-learning techniques: Logistic
Regression (LR), k-Nearest Neighbors (KNN), Support Vector
Machine (SVM), Naive Bayes (NB), Decision Tree (DT),
Random Forest (RF), and Gradient Boosting.

Our dataset consisted of over 11,055 records, with 31
website parameters and a corresponding class label indicating
whether it was a phishing website (1) or not (-1). To improve
the models' accuracy, we applied the MinMax normalization
feature as a preprocessing strategy.

To ensure robust evaluation, we employed a ten-fold cross-
validation method during the classification process. This
approach enabled us to obtain a more accurate performance
evaluation of the models on the dataset, ensuring reliable
results.

After the classification process, we thoroughly assessed the
machine learning algorithms' performance using various
evaluation metrics commonly used in the field, including
accuracy, precision, recall, and F1-score. These metrics
allowed us to make meaningful comparisons between the
algorithms, ultimately identifying the most suitable approach
for effectively detecting phishing websites.

To visually illustrate the concept, (see Fig. 8) presents a
graphical representation of the process.

A. The Dataset

The research utilized a dataset obtained from the UCI
machine-learning repository, which can be accessed at [48].
The dataset contains 11,055 records, and each sample within
the dataset is composed of 31 website parameters. Among
these parameters is a class label that indicates whether the
website is classified as a phishing website or not, represented
by values of 1 or -1 (Table II).

Fig. 8. Model’s flowchart.

TABLE II. DESCRIPTION OF STUDIED PHISHING WEBSITE DATASET

Total number of attributes 31

No. of independent variables 30

No. of class variables 1

Details of the class variable

Name: Result

Legitimate =-1 Phishing=1

4898 6175

Total number of instances 11055

B. Dataset Representation

The dataset utilized in this research incorporates novel
features that have been experimentally introduced [48],
including the assignment of new rules to certain well-known
parameters. The dataset comprises 30 parameters, which are
listed below:

'having_IP_Address', 'URL_Length', 'Shortening_Service',
'having_At_Symbol', 'double_slash_redirecting',
'Prefix_Suffix', 'having_Sub_Domain', 'SSLfinal_State',
'Domain_registration_length', 'Favicon', 'port', 'HTTPS_token',
'Request_URL', 'URL_of_Anchor', 'Links_in_tags', 'SFH',
'Submitting_to_email', 'Abnormal_URL', 'Redirect',
'on_mouseover', 'RightClick', 'popUpWindow', 'Iframe',
'age_of_domain', 'DNSRecord', 'web_traffic', 'Page_Rank',
'Google_Index', 'Links_pointing_to_page', 'Statistical_report'.

C. Visualizing the Dataset: Heatmap of Feature Correlations

To gain further insights into the dataset and understand the
relationships between its features, we generated a heatmap to
visualize the pairwise correlations among the 30 parameters
used in this research (see Fig. 9). The heatmap provides a clear
and concise representation of the correlation matrix, allowing
us to identify potential associations and patterns that might
influence the classification of phishing websites [50].

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 14, No. 9, 2023

422 | P a g e

www.ijacsa.thesai.org

Fig. 9. The heatmap of dataset features.

Each cell in the heatmap is color-coded based on its
correlation value, ranging from highly positive (dark shades) to
highly negative (light shades) correlations. A correlation value
close to 1 indicates a strong positive relationship, while a value
close to -1 denotes a strong negative relationship. Conversely,
a correlation value near 0 suggests little to no linear correlation
between the respective features.

Upon analyzing the heatmap, several interesting
observations emerge. For instance, we observe a strong
positive correlation between the 'having_Sub_Domain' and
'Links_pointing_to_page' features, indicating that websites
with more subdomains tend to have more links pointing to their
pages. Conversely, there appears to be a negative correlation
between 'URL_Length' and 'Page_Rank', suggesting that longer
URLs may be associated with lower page ranks.

Additionally, the presence of certain novel features, as
experimentally introduced in the dataset, reveals potential
correlations with other established parameters. For example,
the 'Abnormal_URL' feature exhibits a moderate negative
correlation with 'SSLfinal_State,' suggesting that websites with
abnormal URLs might be less likely to have a valid SSL
certificate.

The heatmap not only facilitates the identification of such
associations but also aids in assessing potential
multicollinearity among the features. Identifying
multicollinearity is crucial, as it can impact the performance
and interpretability of predictive models.

D. The MinMax Normalization

In our study, our main focus was to boost the precision of
our proposed models by introducing MinMax normalization as
a critical preprocessing measure. This technique, widely
acknowledged in the realm of machine learning, significantly
enhances model accuracy, particularly for specific models that
rely on it [49]. By employing MinMax normalization in our
suggested model, we effectively rescaled the data to a domain
of [0, 1], leading to notable improvements in the input quality
during model training (see Eq. (1)).

 (1)

Where:

 is the normalized value of the data point X.

X is the original value of the data point.

 is the minimum value in the dataset.

 is the maximum value in the dataset.

E. The Ten-fold Cross-validation Method

The ten-fold cross-validation method is a widely used
technique in machine learning and statistical analysis to
evaluate a model's performance on a dataset [51]. It involves
ten iterations with different data splits for training and testing,
yielding a robust estimate of the model's abilities. This
approach mitigates bias and variance issues, providing a
comprehensive evaluation of generalization to unseen data.
The final performance metric is obtained by averaging the
results from all ten iterations, ensuring an accurate assessment
of the model's capabilities.

F. The Evaluation Metrics

The evaluation metrics are essential tools for assessing the
performance of machine learning models. They provide
quantitative measures of the model's accuracy, precision,
recall, and F1-score. By using these metrics, researchers can
make meaningful comparisons between different models and
identify the most effective approach for their specific task.

1) Accuracy: Accuracy is a fundamental performance

metric used to assess the overall correctness of a machine

learning model. It represents the ratio of correctly predicted

instances to the total number of instances in the dataset. In

other words, it measures how often the model makes correct

predictions. It is a simple and intuitive metric, but it might not

be the best choice when dealing with imbalanced datasets.

 (2)

2) F1 Score: The F1 score is a balanced metric that takes

into account both precision and recall. It is particularly useful

when dealing with imbalanced datasets, where one class might

dominate the others. The F1 score computes the harmonic

mean of precision and recall, providing a single value that

balances the trade-off between false positives (FP) and false

negatives (FN).

 (3)

3) Recall: Recall, also known as sensitivity or true

positive rate, measures the proportion of actual positive

instances that are correctly identified by the model. It is

essential when the cost of false negatives is high, as it focuses

on minimizing the number of missed positive instances.

 (4)

4) Precision: Precision represents the proportion of true

positive predictions among all positive predictions made by

the model. It is crucial when the cost of false positives is high,

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 14, No. 9, 2023

423 | P a g e

www.ijacsa.thesai.org

as it aims to reduce the number of incorrectly classified

positive instances.

 (5)

In summary, accuracy measures overall correctness, F1
score balances precision and recall, recall focuses on
minimizing false negatives, and precision aims to minimize
false positives.

V. FINDINGS AND ANALYSIS

In this section, we present the experimental results of our
comparative study (Table III). We analyze the performance of
each machine-learning algorithm using the evaluation metrics
defined in the previous section. We provide a comprehensive
analysis of the results, highlighting the strengths and
weaknesses of each algorithm.

TABLE III. EVALUATION RESULTS IN (%).

Classifier Accuracy F1 score Recall Precision

Gradient Boost 97.2% 96.9% 97% 96.8%

Random Forest 97.1% 97.3% 97.4% 97.2%

Decision Tree 96.3% 96.7% 96.7% 96.6%

K-Nearest Neighbors 95.6% 96.2% 96.8% 95.7%

Support Vector

Machine
93.9% 95% 96.4% 93.7%

Logistic Regression 92.7% 93.8% 95% 92.7%

Naive Bayes Classifier 60.1% 45.3% 29.3% 99.2%

In this analysis, we evaluate the performance of various
machine-learning models based on key metrics, including
Accuracy, F1-score, Recall, and Precision. The models under
consideration are Gradient Boost, Random Forest, Decision
Tree, K-Nearest Neighbors, Support Vector Machine, Logistic
Regression, and Naive Bayes Classifier.

Starting with Gradient Boost and Random Forest, both
models showcase impressive results. Gradient Boost achieves a
remarkable Accuracy of 97.2%, indicating its ability to make
correct predictions for a majority of instances. The F1-score of
96.9% suggests a well-balanced trade-off between precision
and recall. Additionally, with Recall and Precision scores of
97% and 96.8% respectively, it effectively identifies most
positive instances while maintaining a high level of accuracy in
positive predictions.

Random Forest, another strong performer, demonstrates an
Accuracy of 97.1%, marginally trailing behind Gradient Boost.
Nevertheless, its F1-score of 97.3% indicates an excellent
balance between precision and recall. The model boasts a high
Recall score of 97.4%, suggesting its proficiency in correctly
identifying positive instances. Furthermore, its Precision score
of 97.2% underscores its accuracy in positive predictions.

The Decision Tree model also shows promise with a
respectable Accuracy of 96.3%. Its F1-score of 96.7% reflects
a good balance between precision and recall. The Recall and
Precision scores of 96.7% and 96.6% respectively affirm the
model's effectiveness in correctly identifying positive instances
and making accurate positive predictions.

K-Nearest Neighbors performs well, attaining an Accuracy
of 95.6%. Its F1-score of 96.2% demonstrates a commendable
balance between precision and recall. With Recall and
Precision scores of 96.8% and 95.7% respectively, the model
effectively identifies positive instances and makes accurate
positive predictions.

The Support Vector Machine achieves an Accuracy of
93.9%, somewhat lower than the previously mentioned models.
Nevertheless, its F1-score of 95% suggests a satisfactory
balance between precision and recall. A Recall score of 96.4%
indicates its effectiveness in identifying positive instances, and
its Precision score of 93.7% underscores its accuracy in
positive predictions.

Logistic Regression, with an Accuracy of 92.7%, provides
a reasonable performance. Its F1-score of 93.8% signifies a
good balance between precision and recall. A Recall score of
95% indicates its ability to effectively identify positive
instances, while its Precision score of 92.7% reflects accurate
positive predictions.

On the other hand, the Naive Bayes Classifier lags
significantly behind the other models with an Accuracy of
60.1% and an F1-score of 45.3%. The low Recall score of
29.3% suggests its struggle to effectively identify positive
instances. However, it exhibits an unexpectedly high Precision
score of 99.2%, indicating that when it predicts a positive
instance, it is usually correct. This discrepancy might imply a
bias towards negative instances.

In conclusion, the analysis showcases Gradient Boost and
Random Forest as top-performing models, excelling in various
metrics. The Decision Tree, K-Nearest Neighbors, and Logistic
Regression also demonstrate competitive performances.
However, the Naive Bayes Classifier significantly
underperforms in comparison to the other models, necessitating
further investigation and improvements. By understanding the
strengths and weaknesses of each model, we can make
informed decisions when selecting the most suitable model.

After a thorough examination of our research findings, we
will proceed to conduct a comparative analysis with other
relevant studies in the field (Table IV).

TABLE IV. EVALUATION OF CURRENT PHISHING DOMAIN DETECTION

MODELS

Authors Dataset Algorithm Accuracy

Ubing et al. [44] UCI
Ensemble bagging, boosting,

stacking
95.4%

Alsariera et al. [45] UCI
ForestPA-PWDM, Bagged-
ForestPA-PWDM, and Adab-

ForestPA-PWDM

96.26%
96.5%

97.4%

Lakshmi et al. [47] UCI DNN +Adam 96.00%

Alnemari et al. [49] UCI Random Forest 97.3%

Ubing et al. [44], in their work, harnessed the power of
ensemble learning techniques such as bagging, boosting, and
stacking, securing an impressive accuracy of 95.4% on the UCI
dataset. This commendable outcome highlights the prowess of
ensemble methods in accurately identifying phishing attacks,
emphasizing the model's capacity to make precise predictions.

https://www.mdpi.com/2076-3417/13/8/4649#B42-applsci-13-04649
https://www.mdpi.com/2076-3417/13/8/4649#B71-applsci-13-04649
https://www.mdpi.com/2076-3417/13/8/4649#B55-applsci-13-04649

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 14, No. 9, 2023

424 | P a g e

www.ijacsa.thesai.org

Equally noteworthy, Alsariera et al. [45] proposed multiple
meta-learner models rooted in ForestPA-PWDM, Bagged-
ForestPA-PWDM, and Adab-ForestPA-PWDM. Their
experimental results yielded outstanding accuracies of 96.26%,
96.5%, and a remarkable 97.4%, respectively, on the UCI
dataset. This exemplifies the efficacy and versatility of their
ensemble-based approaches, which outperformed a majority of
existing techniques, underscoring their potential as powerful
solutions for phishing detection.

Venturing into the realm of deep learning, Lakshmi et al.
[47] introduced the DNN +Adam model, accomplishing an
impressive accuracy of 96.00% on the UCI dataset. This result
vividly illustrates the effectiveness of deep learning
methodologies in tackling phishing attacks, showcasing the
model's ability to discern malicious websites with a remarkable
degree of accuracy.

Furthermore, Alnemari et al. [49] adopted the Random
Forest model, achieving an exceptional accuracy of 97.3% on
the UCI dataset. The success of this approach showcases the
formidable strength of Random Forest in detecting phishing
attacks, operating at a high level of accuracy and
outperforming several alternative methods.

Now, shifting our focus to our own research, our results
reinforce the notion of competitive performance in the realm of
phishing attack detection. With accuracy values ranging from
93.9% to 97.2%, the machine learning models utilized in our
study prove their efficacy. Particularly, the Gradient Boost and
Random Forest models demonstrated remarkable accuracies of
97.2% and 97.1%, respectively, rivaling or even surpassing the
accuracy rates reported in the aforementioned studies.

The alignment of our results with the findings of previous
studies accentuates the effectiveness of diverse machine
learning techniques in detecting phishing attacks.

Overall, our research findings substantiate commendable
performance, with the competitive accuracies achieved by our
models showcasing their potential practicality in real-world
phishing detection scenarios. The insights gleaned from our
study empower us to make informed decisions when selecting
the most appropriate machine learning technique to combat
phishing threats in diverse applications.

VI. CONCLUSION

In this research, we have delved into the critical domain of
phishing website detection, exploring diverse machine learning
techniques and their effectiveness in countering the ever-
evolving cybersecurity threat posed by phishing attacks. The
rampant increase in such fraudulent activities has presented
significant challenges to individuals and organizations
worldwide, necessitating the development of robust and
efficient methods to detect and thwart these deceitful websites.

Through an extensive analysis of our research results and a
thorough comparison with other relevant studies, we have
uncovered promising insights into the effectiveness of various
machine learning models for detecting phishing attacks.
Notably, the Gradient Boost and Random Forest models have
demonstrated exceptional performance, showcasing accuracy
rates that either align with those reported in the existing

literature. This remarkable potential positions these models as
viable candidates for real-world applications in phishing
detection scenarios, playing a pivotal role in fortifying
cybersecurity measures and shielding users from the dangers
posed by phishing attacks.

REFERENCES

[1] Z. Alkhalil, C. Hewage, L. Nawaf, and I. Khan, "Phishing Attacks: A
Recent Comprehensive Study and a New Anatomy," Front. Comput.
Sci., vol. 3, p. 563060, 2021, doi: 10.3389/fcomp.2021.563060.

[2] H. Aldawood and G. Skinner, "An Advanced Taxonomy for Social
Engineering Attacks," International Journal of Computer Applications,
vol. 177, pp. 975-8887, 2020. doi: 10.5120/ijca2020919744.

[3] R. Dhamija, J. D. Tygar, and M. Hearst, "Why phishing works," in
Proceedings of the SIGCHI Conference on Human Factors in
Computing Systems, 2006, pp. 581-590.

[4] C. Herley, "So long, and no thanks for the externalities: The rational
rejection of security advice by users," in Proceedings of the 2009
workshop on New security paradigms, 2011, pp. 133-144.

[5] K. L. Chiew, K. Yong, and C. C. L. Tan, "A Survey of Phishing Attacks:
Their Types, Vectors and Technical Approaches," Expert Systems with
Applications, vol. 106, 2018, pp. 10.1016/j.eswa.2018.03.050.

[6] D. Gavrilut and I. Zaporojan, "The use of machine learning algorithms
for phishing detection," in 2019 International Conference on Innovations
in Intelligent Systems and Applications (INISTA), 2019, pp. 1-5.

[7] D. Hosmer and S. Lemeshow, "Applied Logistic Regression," 2004. doi:
10.1002/9781118548387.

[8] A. Agresti, "Foundations of Linear and Generalized Linear Models,"
John Wiley & Sons, 2015.

[9] "Logistic Regression in Machine Learning—Javatpoint." Available
online: https://www.javatpoint.com/logistic-regression-in-machine-
learning (accessed on 19 July 2023).

[10] S. Menard, "Applied Logistic Regression Analysis," Sage Publications,
2002.

[11] K. Taunk, S. De, S. Verma, and A. Swetapadma, "A Brief Review of
Nearest Neighbor Algorithm for Learning and Classification," in 2019
International Conference on Intelligent Computing and Control Systems
(ICCS), Madurai, India, 2019, pp. 1255-1260, doi:
10.1109/ICCS45141.2019.9065747.

[12] E. Rodrigues, "Combining Minkowski and Cheyshev: New Distance
Proposal and Survey of Distance Metrics Using k-Nearest Neighbours
Classifier," Pattern Recognition Letters, vol. 110, 2018, pp.
10.1016/j.patrec.2018.03.021.

[13] P. Cunningham, M. Cord, and S. Delany, "Supervised Learning," in
Handbook of Research on Machine Learning Applications and Trends:
Algorithms, Methods, and Techniques, IGI Global, 2010, pp. 20-36. doi:
10.1007/978-3-540-75171-7_2.

[14] B. V. Dasarathy, "Nearest Neighbor (NN) Norms: NN Pattern
Classification Techniques," IEEE Computer Society Press, 1991.

[15] "K-Nearest Neighbor (KNN) Algorithm for Machine Learning—
Javatpoint." Available online: https://www.javatpoint.com/logistic-
regression-in-machine-learning (accessed on 19 July 2023).

[16] V. Kecman, "Support Vector Machines – An Introduction," in Support
Vector Machines: Theory and Applications, 2nd ed., Springer, 2015, pp.
1-25. doi: 10.1007/10984697_1.

[17] "Support Vector Machine Algorithm—Javatpoint." Available online:
https://www.javatpoint.com/machine-learning-support-vector-machine-
algorithm (accessed on 19 July 2023).

[18] B. Schölkopf and A. J. Smola, "Learning with Kernels: Support Vector
Machines, Regularization, Optimization, and Beyond," MIT Press, 2002.

[19] K. Crammer and Y. Singer, "On the algorithmic implementation of
multiclass kernel-based vector machines," Journal of Machine Learning
Research, vol. 2, Dec. 2002, pp. 265-292.

[20] P. Flach and N. Lachiche, "Naive Bayesian Classification of Structured
Data," Machine Learning, vol. 57, 2004, pp. 233-269. doi:
10.1023/B:MACH.0000039778.69032.ab.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 14, No. 9, 2023

425 | P a g e

www.ijacsa.thesai.org

[21] "Naïve Bayes Classifier from Scratch with Hands-on Examples in R."
Available online: https://insightimi.wordpress.com/2020/04/04/naive-
bayes-classifier-from-scratch-with-hands-on-examples-in-r (accessed on
19 July 2023).

[22] T. Almeida, J. Almeida, and A. Yamakami, "Spam filtering: How the
dimensionality reduction affects the accuracy of Naive Bayes
classifiers," J. Internet Services and Applications, vol. 1, 2011, pp. 183-
200. doi: 10.1007/s13174-010-0014-7.

[23] A. Priyam, R. Gupta, A. Rathee, and S. Srivastava, "Comparative
Analysis of Decision Tree Classification Algorithms," International
Journal of Current Engineering and Technology, vol. 3, pp. 334-337,
June 2013. doi: ISSN 2277-4106.

[24] "Machine Learning Decision Tree Classification Algorithm—
Javatpoint." Available online: https://www.javatpoint.com/machine-
learning-decision-tree-classification-algorithm (accessed on 19 July
2023).

[25] P. Sen, M. Hajra, and M. Ghosh, "Supervised Classification Algorithms
in Machine Learning: A Survey and Review," in Proceedings of the
International Conference on Advanced Computing Technologies and
Applications (ICACTA), 2020, pp. 142-155. doi: 10.1007/978-981-13-
7403-6_11.

[26] K. P. Murphy, "Machine Learning: A Probabilistic Perspective," MIT
Press, 2012.

[27] L. Breiman, "Random Forests," Machine Learning, vol. 45, no. 1, pp. 5-
32, 2001.

[28] "What is a Random Forest?" Available online:
https://www.tibco.com/reference-center/what-is-a-random-forest
(accessed on 19 July 2023).

[29] D. R. Cutler, T. C. Edwards Jr, K. H. Beard, A. Cutler, K. T. Hess, J.
Gibson, and J. J. Lawler, "Random forests for classification in ecology,"
Ecology, vol. 88, no. 11, pp. 2783-2792, 2007.

[30] Kavzoglu, T., Teke, A. Predictive Performances of Ensemble Machine
Learning Algorithms in Landslide Susceptibility Mapping Using
Random Forest, Extreme Gradient Boosting (XGBoost) and Natural
Gradient Boosting (NGBoost). Arab J Sci Eng 47, 7367–7385 (2022).
https://doi.org/10.1007/s13369-022-06560-8.

[31] "Gradient Boosting Algorithm in Machine Learning." Available online:
https://pythongeeks.org/gradient-boosting-algorithm-in-machine-
learning/ (accessed on 19 July 2023).

[32] J. H. Friedman, "Greedy function approximation: a gradient boosting
machine," Annals of Statistics, pp. 1189–1232, 2001.

[33] R. Dhamija, J. D. Tygar, and M. Hearst, "Why phishing works," in
Proceedings of the SIGCHI conference on Human Factors in Computing
Systems, 2006, pp. 581-590.

[34] A. A. Yavuz and H. Polat, "Phishing websites detection using machine
learning techniques," Expert Systems with Applications, vol. 55, pp.
225-233, 2016.

[35] M. Alazab, R. Broadhurst, and H. Chen, "Predictive data mining for
combating phishing attacks," IEEE Transactions on Systems, Man, and
Cybernetics - Part A: Systems and Humans, vol. 41, no. 3, pp. 468-479,
2011.

[36] S. Wang, X. Jiang, W. Cui, T. Huang, B. Li, and Y. Qian, "Robust
detection of web phishing using RBF based on an improved extreme
learning machine," Expert Systems with Applications, vol. 42, no. 21,
pp. 7374-7382, 2015.

[37] M. Alazab, R. Broadhurst, and J. Slay, "PhishNet: Predictive phishing
detection system," Information Sciences, vol. 305, pp. 65-80, 2015.

[38] S. K. Mahanta, N. Sarma, D. Das, and A. Das, "A novel hybrid approach
for phishing detection using random forest," Procedia Computer
Science, vol. 89, pp. 120-127, 2016.

[39] P. K. Biswas, M. I. Hossain, D. K. Bhattacharyya, M. Nasipuri, D. K.
Basu, and M. Kundu, "A feature selection mechanism for phishing
detection," Applied Soft Computing, vol. 13, no. 8, pp. 3464-3475,
2013.

[40] A. Subasi, E. Molah, F. Almkallawi, and T. Chaudhery, "Intelligent
phishing website detection using random forest classifier," in
Proceedings of the 2017 International Conference on Engineering and
Computer Technology (ICECTA), 2017, pp. 1-5. doi:
10.1109/ICECTA.2017.8252051.

[41] D. Salem, "On determining the most effective subset of features for
detecting phishing websites," International Journal of Computer
Applications, vol. 122, pp. 1-7, 2015. doi: 10.5120/21813-5191.

[42] V. Patil, P. Thakkar, C. Shah, T. Bhat, and S. P. Godse, "Detection and
Prevention of Phishing Websites Using Machine Learning Approach," in
2018 Fourth International Conference on Computing Communication
Control and Automation (ICCUBEA), Pune, India, 2018, pp. 1-5. doi:
10.1109/ICCUBEA.2018.8697412.

[43] A. Joshi and Prof. T. R. Pattanshetti, "Phishing Attack Detection using
Feature Selection Techniques," in Proceedings of International
Conference on Communication and Information Processing (ICCIP)
2019.

[44] A. Ubing, S. Kamilia, A. Abdullah, N. Zaman, and M. Supramaniam,
"Phishing Website Detection: An Improved Accuracy through Feature
Selection and Ensemble Learning," Int. J. Adv. Comput. Sci. Appl., vol.
10, pp. 252-257, 2019.

[45] Y. A. Alsariera, A. V. Elijah, and A. O. Balogun, "Phishing Website
Detection: Forest by Penalizing Attributes Algorithm and Its Enhanced
Variations," Arab. J. Sci. Eng., vol. 45, pp. 10459-10470, 2020.

[46] A. Agresti, "Foundations of Linear and Generalized Linear Models,"
John Wiley & Sons, 2015.

[47] L. Lakshmi, M. P. Reddy, C. Santhaiah, and U. J. Reddy, "Smart
Phishing Detection in Web Pages Using Supervised Deep Learning
Classification and Optimization Technique ADAM," Wirel. Pers.
Commun., vol. 118, pp. 3549-3564, 2021.

[48] UCI Machine Learning Repository, "Phishing Websites Data Set,"
Available online:
https://archive.ics.uci.edu/ml/datasets/phishing+websites.

[49] S. Alnemari and M. Alshammari, "Detecting Phishing Domains Using
Machine Learning," Applied Sciences, vol. 13, article no. 4649, 2023.
doi: 10.3390/app13084649.

[50] K. Fu, D. Cheng, Y. Tu, and L. Zhang, "Credit Card Fraud Detection
Using Convolutional Neural Networks," in Proceedings of the 2016
International Conference on Neural Information Processing, pp. 483-
490, 2016. doi: 10.1007/978-3-319-46675-0_53.

[51] M. Gaag, T. Hoffman, M. Remijsen, R. Hijman, L. de Haan, B. Meijel,
P. van Harten, L. Valmaggia, M. Hert, A. Cuijpers, and D. Wiersma,
"The five-factor model of the Positive and Negative Syndrome Scale -
II: A ten-fold cross-validation of a revised model," Schizophrenia
research, vol. 85, pp. 280-7, 2006. doi: 10.1016/j.schres.2006.03.021.

