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Abstract—The extraction of buildings from multispectral 

Light Detection and Ranging (LiDAR) data holds significance in 

various domains such as urban planning, disaster response, and 

environmental monitoring. State-of-the-art deep learning models, 

including Point Convolutional Neural Network (Point CNN) and 

Mask Region-based Convolutional Neural Network (Mask R-

CNN), have effectively addressed this particular task. Data and 

application characteristics affect model performance. This 

research compares multispectral LiDAR building extraction 

models, Point CNN and Mask R-CNN. Models are tested for 

accuracy, efficiency, and capacity to handle irregularly spaced 

point clouds using multispectral LiDAR data. Point CNN 

extracts buildings from multispectral LiDAR data more 

accurately and efficiently than Mask R-CNN. CNN-based point 

cloud feature extraction avoids preprocessing like voxelization, 

improving accuracy and processing speed over Mask R-CNN. 

CNNs can handle LiDAR point clouds with variable spacing. 

Mask R-CNN outperforms Point CNN in some cases. Mask R-

CNN uses image-like data instead of point clouds, making it 

better at detecting and categorizing objects from different angles. 

The study emphasizes selecting the right deep learning model for 

building extraction from multispectral LiDAR data. Point CNN 

or Mask R-CNN for accurate building extraction depends on the 

application. For building extraction from multispectral LiDAR 

data, two approaches were compared utilizing precision, recall, 

and F1 score. The point-CNN model outperformed Mask R-

CNN. The point-CNN model had 93.40% precision, 92.34% 

recall, and 92.72% F1 score. Mask R-CNN has moderate 

precision, recall, and F1. 

Keywords—Multispectral LiDAR; Mask R-CNN; Point CNN; 

deep learning; building extraction 

I. INTRODUCTION 

The escalating urbanization of the global population 
necessitates the development of accurate and efficient 
techniques for extracting buildings from remote sensing data. 
The extraction of buildings from remotely sensed data is a 
crucial procedure with wide-ranging applications, including but 
not limited to three-dimensional (3D) building modeling, urban 
planning, disaster assessment, and the maintenance of digital 
maps and Geographic Information System (GIS) databases [1]. 

The task of accurately and efficiently identifying buildings 
from remote sensing data presents several challenges, due to 
data availability issues, poor data quality, and obstructions 
caused by nearby objects like trees, automobiles, and 

mountains [2]. Despite these difficulties, advancement has 
been made significant in the recent development of building 
extraction techniques. Building extraction accuracy and 
effectiveness are projected to increase over time as deep 
learning algorithms advance and more high-quality remote 
sensing data become accessible [3]. 

The multi-spectral Light Detection and Ranging (LiDAR) 
provides a field for obtaining different spectral responses from 
different features and collecting various data about the surface 
and terrain of the land and water [4]. Due to this rationale, the 
utilization of multi-spectral LiDAR has significantly advanced 
the field of remote sensing data due to its vast quantity of high-
resolution multispectral and spatial data [5]. However, this 
abundance of data may present a challenge in terms of the 
human capacity to accurately extract and classify features from 
the point cloud. Consequently, the rapid development of 
computer technology and the emergence of artificial 
intelligence, including machine learning and deep learning, 
have made it possible to reduce the time and human effort 
required for precise feature extraction from LiDAR sensors´ 
point clouds [6, 7]. Automatic extraction of buildings from 
multispectral LiDAR data is a challenging task, but one that 
has the potential to be extremely useful for a wide range of 
applications [7]. 

The objective of this study is to compare and contrast two 
distinct methodologies for extracting buildings from 
multispectral LiDAR data. The first utilizes the deep learning 
algorithm Mask R-CNN, while the second utilizes Point CNN. 
Both methods utilize three multispectral LiDAR channels to 
optimize building extraction. 

The paper conforms to this structure. Section II describes 
the related works. Section III describes the significance of the 
research. The data and the study area are in Section IV. The 
Section V describes the methodology.  Section VI discusses 
accuracy assessment mathematically. Section VII provides 
qualitative and quantitative evaluations of the findings. The 
discussion and summary concluded in Section VIII. 

II. RELATED WORK 

The utilization of LiDAR technology offers a significant 
advantage in terms of three-dimensional spatial accuracy [8], 
rendering it an optimal choice for various remote sensing 
applications, particularly in the mapping of densely populated 
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urban regions. Multiple scientific studies have provided 
evidence supporting the utilization of LiDAR data for the 
extraction of buildings in urban environments [9, 10].  

Building extraction from LiDAR data has been extensively 
researched, resulting in the development of numerous 
algorithms in recent years. Nevertheless, the majority of these 
techniques rely on LiDAR data with a single wavelength. 
There exists a limited body of research pertaining to the 
utilization of multispectral LiDAR data for the purpose of 
building extraction. These studies demonstrate that deep 
learning can be used to accurately extract buildings from 
single-wavelength LiDAR data. It is essential to note, however, 
that the efficacy of deep learning models for building 
extraction can vary depending on the scene's complexity and 
the quality of the LiDAR data. 

One of the earliest studies on building extraction using 
multispectral LiDAR data was conducted by [11]. They 
proposed a Graph Geometric Moments Convolutional Neural 
Network (GGMCNN) model for extracting buildings from 
airborne multi-spectral LiDAR point clouds. The GGMCNN 
model is a deep learning model that is specifically designed for 
processing point cloud data. It takes as input a set of features 
that are extracted from the point cloud, including the point's 
elevation, intensity, and spectral information. The GGMCNN 
model is trained to classify each point cloud as either building 
or non-building. This study has shown that deep learning can 
be used to extract buildings from multispectral LiDAR data 
with high accuracy. However, research is needed to develop 
and evaluate different deep learning models that deal with 
point clouds and raster format for this task on more accurate 
datasets such as multispectral LiDAR data. 

Several studies have employed deep learning models to 
extract buildings from mono-wavelength LiDAR data in a 
raster format, as evidenced by the works of [3, 12-15]. In 
contrast, some researchers have studied the extraction of 
buildings from LiDAR data in the form of point clouds [11]. 
Nonetheless, a lack of research persists regarding the 
evaluation of deep learning models that are appropriate for 
building extraction from multispectral LiDAR data. This is an 
important area of research, and we hope our study can help fill 
this gap. 

The advent of various deep learning networks specifically 
designed for processing raw LiDAR data [16-18] has 
facilitated the direct extraction of buildings from LiDAR point 
clouds. This is in contrast to previous methods that necessitated 
data rasterization prior to extracting features from the raster 
format [19].  Convolutional Neural Networks (CNNs) and their 
respective lineages are extensively employed and favored 
networks within the domain of deep learning [20]. One notable 
advantage of CNNs over previous models is their capacity to 
autonomously detect significant features without human 
intervention, rendering them more pragmatic [21]. The deep 
learning algorithm known as Point Convolutional Neural 
Network (Point CNN) [19] is distinguished by its capability to 
directly process raw cloud points, eliminating the requirement 
for the rasterization process. In a study conducted by [22], a 
comparative analysis was performed to evaluate the 
performance of the deep learning algorithm Point CNN in 

classifying land points in agricultural areas. The findings of the 
study demonstrated that Point CNN outperformed traditional 
methods in terms of accuracy. Furthermore, it has been 
demonstrated that Mask Region-based Convolutional Neural 
Network (Mask RCNN), a deep learning algorithm belonging 
to the same category as CNN, has exhibited notable efficacy in 
the extraction of buildings from LiDAR data. This is achieved 
through the conversion of cloud points into raster images [23, 
24]. 

However, to the best of our knowledge, there is a lack of 
scientific investigations on the automatic extraction of 
buildings using multispectral LiDAR points based on the Point 
CNN algorithm, and comparing its results with the Mask R-
CNN algorithm. Previous studies have not adequately 
compared these two seigolodohtem. Currently, there exists a 
significant need for the automated and precise categorization of 
multispectral LiDAR points across various applications. Also, 
applying this approach to multispectral LiDAR data is an 
important step to increase the accuracy of building extraction 
in complex urban environments and facilitate the emergence of 
novel applications in subsequent endeavors. 

In this study, the main contributions are: 

1) Compare and contrast two distinct methodologies for 

extracting buildings from multispectral LiDAR data: Mask R-

CNN and Point CNN. Both methods utilize three multispectral 

LiDAR channels to optimize building extraction. 

2) Investigate the importance of using multispectral 

LiDAR data for building extraction. Using multispectral 

LiDAR data can considerably improve the accuracy of 

building extraction compared to using single-wavelength 

LiDAR data, according to the study's findings. 

Overall, the research on building extraction using deep 
learning with multispectral LiDAR data is still in its early 
stages. However, the results from existing studies are 
promising and suggest that deep learning has the potential to 
improve the accuracy and efficiency of building extraction in 
urban environments. 

III. RESEARCH SIGNIFICANCE 

This paper presents a significant analysis of two distinct 
methodologies employed for building extraction from 
multispectral LiDAR data. The methodologies involve either 
utilizing point clouds directly or converting them into a raster 
format. This study demonstrates the effectiveness of deep 
learning algorithms for building extraction. Furthermore, offers 
significant insights regarding the utilization of multispectral 
LiDAR data in the context of building extraction. This study's 
findings may have a wide variety of practical applications. 
Urban planners and emergency administrators could use them 
to automatically generate building footprints, for instance. 
They could also be used to improve the accuracy of 3D city 
models. 

IV. STUDY AREA AND DATASET 

The study area represents a complimentary dataset 
provided by the National Center for Airborne Laser Mapping 
(NCALM), encompassing an urban region located in Houston 
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in the southeastern sector of Texas, United States of America. 
The study area, as illustrated in Fig. 1, encompasses the 
vicinity of the Houston University campus and its immediate 
surroundings. The study area encompasses an estimated area of 
550m². The study area was selected based on its diverse range 
of building types, encompassing regular residential structures, 
edifices surrounded by a canopy, and small-scale constructions 
with haphazard layouts. 

 

Fig. 1. Study area. 

The research area was scanned in February 2017 using a 
Teledyne Optech Titan multi-spectral 
Airborne Laser Scanning (ALS) system [25]. The ALS dataset 
included multispectral data from 14 flight lines. All collected 
points were separately recorded in 42 LAS files, each 
corresponding to a distinct channel and strip. Every LAS file 
contained data on the point source ID, scan angle rank, flight 
line edge, scan direction flag, returns, GPS time, and intensity 
values. Detailed information about the dataset is shown in 
Table I; the Titan sensor was put in an Optech aircraft. The 
flight plan and equipment parameters are shown in the Table II. 

TABLE I. SPECIFICATIONS OF OPTECH TITAN MULTI-SPECTRAL ALS 

LIDAR (TELEDYNE OPTECH TITAN, 2015) 

Parameters Channel 1 Channel2 Channel 3 

Wavelength 1550 nm MIR 1064 nm NIR 532 nm Green 

Beam 

divergence 
0.35 mrad(1/e) 0.35 mrad(1/e) 0.70 mrad(1/e) 

Look angle 3.5 ° forward nadir 7.0 ° forward 

Effective PRF 50–300 kHz 50–300 kHz 50–300 kHz 

TABLE II. THE FLIGHT PLAN AND EQUIPMENT PARAMETERS 

Flight Parameter 

Sensor ID 
The Optech Titan MW (14SEN/CON340) LiDAR 

sensor 

flying height 460 m AGL 

swath width 445 m 

overlap 50% 

line spacing 225 m 

Equipment Parameters 

PRF 175 kHz per channel (525 kHz total) 

scan frequency 25 Hz 

scan angle ±26° and ±2°cut-off at processing 

V. METHODOLOGY 

Two strategies for building extraction from multispectral 
LiDAR data were employed to accomplish the research 
objective. The first method extracts buildings from the raster 
data, whereas the second method extracts buildings from the 
point data. 

 

Fig. 2. Pre-processing flow Chart. 

The data obtained from Multispectral LiDAR is presented 
in the LAS format, comprising point cloud values for x, y, z, 
and intensity. Fig. 2 depicts the flow chart for two distinct 
approaches to extracting buildings from multispectral LiDAR 
point cloud data. The building extraction strategy from the 
raster format is represented in blue, while the building 
extraction strategy from the point format is represented in 
orange. The point cloud pre-processing step was executed in 
two distinct approaches, followed by their respective 
application to two distinct deep learning algorithms. One 
algorithm is designed to handle data in raster format, while the 
other algorithm is specifically designed to process raw data in a 
point cloud format. 

A. Pre-Processing Point Cloud 

The pre-processing of the point cloud is the same for the 
two methods and it consists of removing the noise points, 
integrating the point clouds of the three different channels, 
segmenting the point cloud according to the boundary of the 
study area, and finally separating the ground and off-ground 
point clouds. The non-terrain point cloud is of interest in this 
paper because it contains the features of the buildings. The 
following will be elaborated upon in a comprehensive manner 
below: 

1) Data cleaning: A statistical out-linear removal (SOR) 

algorithm was utilized to eliminate isolated points or any 

points that fell outside the intensity range [26]. The 

logarithmic function operates by computing the spatial 

separation between a given point and its six adjacent 
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neighbors. In cases where the mean distance between a given 

point and its corresponding exceeds the established minimum 

threshold, the point is eliminated. 

2) Merging and segmenting points: The absence of control 

points or reference points in our case has compromised the 

statistical reporting of geometric quality. In order to evaluate 

our building extraction methodology, a study area was chosen 

from a single strip to address the problem at hand. Before 

performing the step of merging the three different wavelengths 

into a single LAS file, each channel was cut in three directions 

based on the borders of the chosen study area. In order to 

obtain the highest efficiency of the multi-spectral LiDAR 

points, a merger of the three channels was made, as each 

channel collects data from a different angle of view and with 

different intensities, in addition to improving the density of the 

cloud points. The present study involves the integration of 

three separate point clouds through the utilization of 3-D 

spatial join methodology. Each individual point cloud of a 

specific wavelength serves as the reference point among the 

three. The reference point cloud employs the closest neighbor 

searching algorithm to identify neighboring points within the 

other two wavelengths of point clouds. Subsequently, the 

segmentation algorithm, which is available via the Cloud 

Compare software, was employed to clip the multispectral 

LiDAR points according to the selected boundaries of the 

chosen study area. 

3) Filtering points: This research uses deep learning 

models to extract buildings from multispectral LiDAR data. 

To simplify this procedure, the Cloth Simulation Filter (CSF) 

provided by [15] was used to separate ground points and non-

ground points as shown in Fig. 3, and concentrate exclusively 

on the latter because they include buildings. The CSF filter 

operates through the inversion of the point cloud and drops a 

simulated cloth model onto the designated points. The cloth 

undergoes a settling process as it contends with the opposing 

forces of gravity and internal cloth tension, which occurs over 

numerous iterations. The filter necessitates the provision of 

four input parameters, with the first parameter denoting the 

terrain type. In this case, the area being examined is 

characterized by flat terrain. Subsequently, a cloth 

resolution of 2.0, regulates the texture coarseness or 

smoothness of the cloth's simulation. The terrain simulation's 

maximum iteration is 500. Ultimately, a classification 

threshold of 0.5 was established in order to differentiate 

between terrestrial and non-terrestrial point clouds, utilizing 

point distances as the determining factor. 

B. Building Extraction of Raster Data 

This method utilizes Mask R-CNN and polygon 
regularization to accomplish its building extraction goals. 
Mask R-CNN can produce preliminary building polygons from 
an input image. Then, the basic polygons are transformed into 
regularized polygons using the polygon regularization 
technique. The pre-processing stage of the 3D point cloud was 
conducted to enable the point cloud to be suitable for direct 
extraction of buildings using the deep learning model Point-

CNN. On the other hand, the deep learning model Mask R-
CNN requires several steps to process the multi-spectral 
LiDAR data, with the most crucial of these steps being the 
conversion of the three-dimensional point cloud into a 
horizontal image plane through the process of rasterization. 

1) Raster conversation: The 3D point cloud was rasterized 

to a 2D raster with intensity and height information preserved. 

Cloud intensities at three distinct wavelengths were converted 

into three distinct intensity images for each channel separately 

as shown in Fig. 4(a, b, c). The intensity cloud rasterization 

process was executed by defining a specific set of properties. 

The cell size parameter was established as 0.1, and the binning 

interpolation technique was employed to compute the mean 

intensity value within cells that lack data points. The height 

raster as shown in Fig. 4(d) was generated from multispectral 

LiDAR data after merging the three channels and generating a 

DSM, as opposed to the intensity images for each channel 

separately. The raster height step was subjected to identical 

intensity rasterization settings parameters, including 

interpolation method and cell size, to ensure congruence 

between the raster resolution and applying the composite 

process on the four-raster dataset. 

 
(a) 

 
(b) 

Fig. 3. Separation of ground and off-ground multispectral LiDAR points 

using CSF algorithm, (a) representing ground points and (b) representing 
above-ground points. 
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(a) Raster-Intensity(ch-1) (b) Raster-Intensity(ch-2) 

 
(c) Raster-Intensity(ch-3) (d) Raster-height 

Fig. 4. Rasterization multispectral LiDAR point cloud. 

2) Layer combination: To streamline the training and 

validation process of the Mask R-CNN deep learning model, it 

is necessary to compress the four images within a multi-data 

image into a new multi-band raster data set. The input dataset 

comprised a series of four raster images (Raster Intensity Ch-1, 

Raster Intensity Ch-2, Raster Intensity Ch-3, and Raster height 

of non-terrain features).  All four images possess identical 

dimensions in terms of length, width, and cell size. The 

dimensions of the analyzed space were identical to those of 

the study area, while the depth of the analysis was determined 

by the quantity of raster images within the input dataset. 

Specifically, a depth of four was utilized. 

3) Mask R-CNN: The buildings in this method were 

extracted using the workflow of the Mask R-CNN deep 

learning model, as illustrated in Fig. 5. Initially, the multi-

spectral LiDAR data underwent a qualification process for its 

inclusion in the deep learning model, as previously stated [27]. 

This data is comprised of four images that possess identical 

length, width, and cell size, and have been compressed 

accordingly. Subsequently, the training data intended for the 

deep learning model was exported. To this end, the study area 

was partitioned into training, validation, and test data sets. 

Subsequently, the training and validation sets, along with each 

input image, were utilized to produce the training data set. The 

input images were partitioned into image tiles of size 256 × 

256 pixels, with a 50% overlap step-shift, in order to conform 

to the input requirements of the Mask R-CNN architecture and 

to guarantee that all buildings are represented in at least one 

image tile. The training dataset comprised 184 image slices 

and 239 features. Following that, the Mask R-CNN model is 

trained through the utilization of a designated training dataset. 

Table III. presents the parameters that were utilized to train 

the model. The Mask R-CNN architecture comprises several 

components: including a backbone, a Region Proposal 

Network (RPN), a Region of an Interest alignment layer (RoI 

Align), a Bounding box regressor, and a mask generation head 

[28] . To predict segmentation masks on each Region of 

Interest (ROI), the Mask R-CNN builds on the Faster R-CNN 

by adding a network branch to the original (ROI) [24]. To 

each ROI, the tiny FCN was applied that predicts a pixel-wise 

segmentation mask for building and nonbuilding regions. The 

first building polygon is found by following a region's 

boundary [29]. ArcGIS API for Python, with the Tensorflow 

and Keras libraries, was used to create and implement the 

Mask R-CNNs. It's based on a Region Proposal Network 

(RPN) and ResNet50 backbone. 

TABLE III. MASK R-CNN TRAINS THE MODEL PARAMETERS 

Parameter Description 

Backbone model ResNet-50 

Training and Test set was split into 70/20% 

Validation 10% 

Processing type Nvidia GeForce RTX 2060 GPU 

Batch size 4 

Learning rate strategy Stop when the model stop improve 

Learning rate 0.0001 

 

Fig. 5. The Mask R-CNN procedure for building extractions using Multi-

Spectral LiDAR Dataset. 

4) Regularize building footprint: After extracting the 

buildings with Mask R-CNN, it produces irregular and 

distorted polygons that don’t have straight lines and right 

angles for edges due to the pixel-labeling location performed 

by Mask R-CNN [30]. In order to get rid of this randomness in 

building polygons, the regularized building footprint step was 

used. A polyline compression algorithm was used to reduce 

these distortions of building polygons. Table IV shows the 

parameter used in this algorithm to obtain a much cleaner and 

closer footprint to buildings than the results that we got from 

the deep learning algorithm Mask-RCNN. 
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TABLE IV. REGULARIZE BUILDING FOOTPRINT PARAMETERS 

Parameter Description 

Method Right angle 

Tolerance 1 

Precision 0.25 

Diagonal penalty 1.5 

Minimum radius 0.1 

Maximum radius 1000000 

Processor type GPU 

C. Building Extraction of Point Cloud Data 

The Point Convolutional Neural Network (Point CNN) 
algorithm is utilized in this research to extract buildings 
directly from the raw multispectral point cloud without a 
rasterizing step. The Point CNN architecture consists of an 
encoder network and a decoder network as shown in Fig. 6, 
both of which contain X-Conv layers. The cipher network 
consists of four collective abstraction units to iteratively extract 
multiscale features of scale (1/256, 1/256,1/512, 1/1024) 
concerning the entry point cloud with point number N. 
Concerning entry points, the entry point merged of intensities 
of three channels, and adding the elevation point cloud was 
DSM. K is set from 8 to 16 in this study, where K is the 
neighboring points around the representative points and N is 
the number of the point in the previous layer. In this setting, the 
final point has a 1:0 receptive field since it sees all points from 
the previous layer, and its features contribute to an accurate 
semantic interpretation of the shape. In the second X-Conv 
layer, a dilation rate of D = 2 was used, and then gradually 
increased in the third and fourth X-Conv layers to ensure that 
all remaining representative points see the entire figure and are 
all suitable for making predictions. In this way, the last X-Conv 
is more thoroughly trained layers, as more connections are 
involved in the network. The decoder network comprises three 
feature propagation units, which gradually restore a robust 
feature mean representation to produce a high-quality classifier 
point cloud. The output data size of the encoder is N/256, 
N/512, and N/1024. Finally, a fully connected layer is added on 
top of the last output of the X-Conv layer, followed by a loss, 
to train the network. 

 

Fig. 6. Point CNN architecture for building extraction from multispectral 

LiDAR where,    : Intensity of channel-1,    : Intensity of channel -2,    : 

Intensity of channel-3, N: Number of the point in the previous layer. 

VI. ACCURACY ASSESSMENT 

The following measures were employed for assessing the 
effectiveness of the proposed approaches, all of them are 

standard for any semantic segmentation and classification 
work. 

          
   

     
       (1) 

where the term "precision" refers to the proportion of 
accurately labeled data points relative to the total number of 
data points that were labeled, the percentage of data points that 
were successfully classified relative to the total number of data 
points that were expected to be classified with this value is the 
recall. F1-score is the arithmetic mean of the precision and 
recall values are given as follows: 

       
  

      
        (2) 

         
                  

                
  (3) 

Where:    is a number of point clouds that are classified as 

true positive building extraction,    are truly negative,    is 

false positive and    is a false negative. 

VII. RESULTS AND DISCUSSION 

The study area was subjected to the training of two deep 
learning models, namely Mask R-CNN and Point-CNN for the 
purpose of extracting buildings from a Multispectral LiDAR 
point cloud. The training dataset and validation for both 
models were selected using the same buildings to facilitate 
comparison. The evaluation of building extraction results was 
conducted using a confusion matrix approach. The reference 
points for ground truth were obtained from orthorectified aerial 
photographs captured by the same multispectral LiDAR system 
in the same survey. 

A. Building Extraction Result of Mask R-CNN 

As shown in Fig. 7(a), the outcomes of utilizing the mask 
R-CNN deep learning model on the multi-spectral LiDAR data 
after converting them into raster format, as this model 
confirmed its ability to train and extract the footprints of 
buildings, but in an irregular style. After they were included in 
the polyline compression algorithm to create the uniformity of 
the building, the results are shown in Fig. 7(b). 

 

Fig. 7. Building extraction results of mask RCNN: (a) before using 

regularize, (b) after regularize. 

B. Building Extraction Result of Point CNN 

The visual outcomes of building extraction through the 
utilization of the Point CNN deep learning model are presented 
in Fig. 8. Specifically, Fig. 8(a) displays the raw multispectral 
LiDAR points prior to building recognition, with all points 

  

(a) (b) 
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depicted in grey. On the other hand, Fig. 8(b) shows the 
outcomes attained by the Point CNN model in building 
recognition, where buildings are highlighted in red and the 
background is depicted in grey. The employment of Point CNN 
in contrast to the use of Mask R-CNN is observed to yield 
superior outcomes. The aforementioned model demonstrated a 
capacity to discern points of construction with a mean 
precision of 0.9340 within the given dataset. Furthermore, the 
algorithm demonstrated a notable proficiency in distinguishing 
between the points of buildings and those of trees, particularly 
in cases where buildings were encompassed by thick clusters of 
trees. This model was also able to extract the points of small 
and irregular buildings accurately. 

 

Fig. 8. Building extraction results of Point CNN: (a) before building 

extraction, (b) after building extraction. 

The precision achieved through the utilization of the Point 
format approach surpasses that of the Raster format 
methodology. It is anticipated that the inclusion of 
supplementary spectral data, such as indices, may enhance the 
ultimate outcomes of building extraction. Ongoing 
investigations are being conducted with the aim of enhancing 
the precision of the building extraction. 

C. Comparison between Two Methods 

The two methods were compared using evaluation scales 
such as precision, recall, and F1-score to enhance the 
comparison. Table V displays the obtained results from using 
the Point CNN model, which indicates a precision of 93.40%, a 
recall of 92.34%, and an F1-score of 92.72%. While Mask R-
CNN gave less accurate results, it demonstrates a precision of 
74.66%, a recall of 67.43%, and an F1-score of 71.17%.  

According to the findings of our research, Point CNN 
performs better than Mask R-CNN when it comes to the 
extraction of buildings from multispectral LiDAR data in terms 
of both accuracy and efficiency. In comparison to Mask R-
CNN, Point CNN is capable of directly extracting features 
from point clouds without the need for any pre-processing 
steps such as voxelization. This results in a greater resolution 
and significantly faster processing times. In addition to this, 
Point CNN is able to manage irregular point clouds, which are 
typical in the case of LiDAR data. Nevertheless, Mask R-CNN 
continues to have advantages compared with Point CNN in a 
number of contexts, since it operates on raster data like satellite 
images or aerial photos rather than point clouds. Also, Mask R-
CNN is more suited to identifying and categorizing objects 
seen from a variety of angles. This makes it an ideal candidate 
for this task: the Precision, Recall, and F1-score obtained from 
the two different methods. 

TABLE V. THE PRECISION, RECALL, AND F1-SCORE OBTAINED FROM THE 

TWO DIFFERENT METHODS 

Method Mask R-CNN Point- CNN 

Precision% 74.66 93.40 

Recall% 64.43 92.34 

F1_Score% 69.17 92.72 

TABLE VI. THE TRUE-POSITIVE(TP), FALSE-POSITIVE(FP), AND FALSE-
NEGATIVE(FN) FROM THE TWO DIFFERENT METHODS 

Method TP FP FN 

Mask-RCNN (mask) 112 38 85 

Point CNN (points) 897392 26528 91137 

According to Tables V, and VI, the results suggest that 
Point CNN is a more effective method for building extraction 
from multispectral LiDAR data. It has a higher TP, Precision, 
and F1-Score than Mask R-CNN. However, Mask R-CNN has 
a higher Recall, indicating that it is less likely to miss 
buildings. 

Comparing our findings to LiDAR building extraction 
research [13, 30], our study had 93.40% accuracy, 92.34% 
recall, and 92.72% F1. Point CNN retrieves features from point 
clouds without rasterization, which may explain this. Accuracy 
and processing speed improve. Furthermore, the integration of 
the three distinct spectra of the multi-spectral LiDAR plays a 
crucial role in accurately discerning and distinguishing 
buildings and other features. 

According to the study's findings, Point CNN outperformed 
Mask R-CNN in building extraction from multispectral LiDAR 
data. This is probable because Point CNN processes point 
cloud data directly, preserving its structure and characteristics. 
This enables Point CNN to capture fine-grained geometric 
details and relationships within the point cloud, which is 
crucial for accurate building extraction and avoids 
voxelization, which is sometimes required by Mask R-CNN. 
This improves efficacy because no data is lost in the 
conversion process. Maintaining the original spatial 
distribution of points without voxelization is also essential for 
accuracy in point clouds with irregular spacing. Due to its 
architecture, it can manage multispectral LiDAR data from a 
variety of perspectives. The model captures and uses data from 
diverse perspectives to increase building extraction accuracy. 
Mask R-CNN, on the other hand, is well-suited for 
distinguishing and categorizing objects seen from a variety of 
angles because it operates on raster data such as satellite 
images or aerial photographs. 

In addition, it is recommended that future research 
endeavors include evaluating the performance of Point CNN 
and Mask R-CNN on other datasets, including datasets with 
different types of scenes (e.g., urban, rural, forested) and 
datasets with different types of multispectral LiDAR data (e.g., 
different wavelengths, different point densities, and use of 
spectral indicators). 

VIII. CONCLUSION 

A study was conducted to analyze multispectral LiDAR 
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data to extract buildings from a residential area situated near 
the University of Houston, situated in the state of Texas, 
United States of America. The present investigation undertook 
a comparative analysis of two discrete deep learning models 
that are categorized under the Convolutional Neural Network 
(CNN) family. The present investigation aimed to assess the 
effectiveness of the method employed in extracting buildings 
in two separate scenarios. The study involved the utilization of 
a genuine dataset of multispectral LiDAR data for 
experimentation purposes. Before inputting LiDAR points into 
the Point CNN deep learning model, processing operations 
were executed. Similarly, operations were conducted to 
transform cloud points into pixels for input into the mask R-
CNN deep learning model. Furthermore, a classification of 
architectural structures was conducted after their acquisition 
via mask R-CNN. The standardization of ground truth 
reference was implemented to facilitate a comparison between 
the two methods, as this is orthorectified aerial photographs 
captured by the same multispectral LiDAR system in the same 
survey. It can be concluded that the use of the CNN point 
model with the proposed approach, which combines the 
advantages of the intensity of the three different wavelengths 
plus the height component of the DSM gives better results for 
extracting buildings from multispectral LiDAR point data, 
where the accuracy of the results improved by about 30%. 

ACKNOWLEDGMENT 

The authors thank the Hyperspectral Image Analysis Lab at 
the University of Houston for providing the original Optech 
Titan data. 

REFERENCES 

[1] G. Chitturi, "Building Detection in Deformed Satellite Images Using 
Mask R-CNN," ed, 2020. 

[2] W. Nurkarim and A. W. Wijayanto, "Building footprint extraction and 
counting on very high-resolution satellite imagery using object detection 
deep learning framework," Earth Science Informatics, vol. 16, no. 1, pp. 
515-532, 2023. 

[3] A. Gamal et al., "Automatic LIDAR building segmentation based on 
DGCNN and Euclidean clustering," Journal of Big Data, vol. 7, pp. 1-
18, 2020. 

[4] K. Bakuła, "Multispectral airborne laser scanning-a new trend in the 
development of LiDAR technology," Archiwum Fotogrametrii, 
Kartografii i Teledetekcji, vol. 27, 2015. 

[5] O. A. Mahmoud El Nokrashy, L. G. E.-D. Taha, M. H. Mohamed, and 
A. A. Mandouh, "Generation of digital terrain model from multispectral 
LiDar using different ground filtering techniques," The Egyptian Journal 
of Remote Sensing and Space Science, vol. 24, no. 2, pp. 181-189, 2021. 

[6] M. M. Taye, "Understanding of Machine Learning with Deep Learning: 
Architectures, Workflow, Applications and Future Directions," 
Computers, vol. 12, no. 5, p. 91, 2023. 

[7] S. S. Ojogbane, S. Mansor, B. Kalantar, Z. B. Khuzaimah, H. Z. M. 
Shafri, and N. Ueda, "Automated building detection from airborne 
LiDAR and very high-resolution aerial imagery with deep neural 
network," Remote Sensing, vol. 13, no. 23, p. 4803, 2021. 

[8] A. Novo, N. Fariñas-Álvarez, J. Martínez-Sánchez, H. González-Jorge, 
and H. Lorenzo, "Automatic processing of aerial LiDAR data to detect 
vegetation continuity in the surroundings of roads," Remote Sensing, 
vol. 12, no. 10, p. 1677, 2020. 

[9] W. Y. Yan, A. Shaker, and N. El-Ashmawy, "Urban land cover 
classification using airborne LiDAR data: A review," Remote Sensing of 
Environment, vol. 158, pp. 295-310, 2015. 

[10] I. Prieto, J. L. Izkara, and E. Usobiaga, "The application of lidar data for 
the solar potential analysis based on the urban 3D model," Remote 
Sensing, vol. 11, no. 20, p. 2348, 2019. 

[11] D. Li et al., "Building extraction from airborne multi-spectral LiDAR 
point clouds based on graph geometric moments convolutional neural 
networks," Remote Sensing, vol. 12, no. 19, p. 3186, 2020. 

[12] E. Maltezos, A. Doulamis, N. Doulamis, and C. Ioannidis, "Building 
extraction from LiDAR data applying deep convolutional neural 
networks," IEEE Geoscience and Remote Sensing Letters, vol. 16, no. 1, 
pp. 155-159, 2018. 

[13] S. A. Mohamed, A. S. Mahmoud, M. S. Moustafa, A. K. Helmy, and A. 
H. Nasr, "Building Footprint Extraction in Dense Area from LiDAR 
Data using Mask R-CNN," International Journal of Advanced Computer 
Science and Applications, vol. 13, no. 6, 2022. 

[14] F. H. Nahhas, H. Z. Shafri, M. I. Sameen, B. Pradhan, and S. Mansor, 
"Deep learning approach for building detection using lidar–orthophoto 
fusion," Journal of sensors, vol. 2018, 2018. 

[15] W. Zhang et al., "An easy-to-use airborne LiDAR data filtering method 
based on cloth simulation," Remote sensing, vol. 8, no. 6, p. 501, 2016. 

[16] C. R. Qi, H. Su, K. Mo, and L. J. Guibas, "Pointnet: Deep learning on 
point sets for 3D classification and segmentation," in Proceedings of the 
IEEE Conference on Computer Vision and Pattern Recognition, 2017, 
pp. 652-660. 

[17] C. R. Qi, L. Yi, H. Su, and L. J. Guibas, "Pointnet++: Deep hierarchical 
feature learning on point sets in a metric space," Advances in neural 
information processing systems, vol. 30, 2017. 

[18] Z. Jing et al., "Multispectral LiDAR point cloud classification using SE-
PointNet++," Remote Sensing, vol. 13, no. 13, p. 2516, 2021. 

[19] Y. Li, R. Bu, M. Sun, W. Wu, X. Di, and B. Chen, "Pointcnn: 
Convolution on x-transformed points," Advances in neural information 
processing systems, vol. 31, 2018. 

[20] A. Dhillon and G. K. Verma, "Convolutional neural network: a review 
of models, methodologies, and applications to object detection," 
Progress in Artificial Intelligence, vol. 9, no. 2, pp. 85-112, 2020. 

[21] L. Alzubaidi et al., "Review of deep learning: Concepts, CNN 
architectures, challenges, applications, future directions," Journal of Big 
Data, vol. 8, pp. 1-74, 2021. 

[22] N. Fareed, J. P. Flores, and A. K. Das, "Analysis of UAS-LiDAR 
Ground Points Classification in Agricultural Fields Using Traditional 
Algorithms and PointCNN," Remote Sensing, vol. 15, no. 2, p. 483, 
2023. 

[23] S. Ren, K. He, R. Girshick, and J. Sun, "Faster r-cnn: Towards real-time 
object detection with region proposal networks," Advances in neural 
information processing systems, vol. 28, 2015. 

[24] A. Mahmoud, S. Mohamed, R. El-Khoribi, and H. Abdel Salam, "Object 
detection using adaptive mask RCNN in optical remote sensing images," 
Int. J. Intell. Eng. Syst, vol. 13, no. 1, pp. 65-76, 2020. 

[25] T. O. Titan, "Multispectral LiDAR system: high precision environmental 
mapping," ed, 2015. 

[26] A. Carrilho, M. Galo, and R. C. Dos Santos, "STATISTICAL OUTLIER 
DETECTION METHOD FOR AIRBORNE LIDAR DATA," 
International Archives of the Photogrammetry, Remote Sensing & 
Spatial Information Sciences, vol. 42, no. 1, 2018. 

[27] K. Yu et al., "Comparison of classical methods and mask R-CNN for 
automatic tree detection and mapping using UAV imagery," Remote 
Sensing, vol. 14, no. 2, p. 295, 2022. 

[28] K. He, G. Gkioxari, P. Dollár, and R. Girshick, "Mask r-cnn," in 
Proceedings of the IEEE International Conference on Computer Vision, 
2017, pp. 2961-2969. 

[29] J. Long, E. Shelhamer, and T. Darrell, "Fully convolutional networks for 
semantic segmentation," in Proceedings of the IEEE Conference on 
Computer Vision and Pattern Recognition, 2015, pp. 3431-3440. 

[30] K. Zhao, J. Kang, J. Jung, and G. Sohn, "Building extraction from 
satellite images using mask R-CNN with building boundary 
regularization," in Proceedings of the IEEE Conference on Computer 
Vision and Pattern Recognition Workshops, 2018, pp. 247-251. 


