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Abstract—UAV Videos and other remote-sensing innovations 

have increased the demand for multispectral image stitching 

methods, which can gather data on a broad area by looking at 

different aspects of the same scene. For large-scale hyperspectral 

remote-sensing images, state-of-the-art techniques frequently 

have accumulating errors and high processing costs. However, 

this research paper aims to produce high-precision multispectral 

mapping with minimal spatial and spectral distortion. The 

stitching framework was created in the following manner: First, 

UAV collects the raw input data, which is then labeled as a signal 

using a connected component labeling strategy that correlates to 

each pixel or label using the EEG (Alpha, Beta, Theta, and Delta) 

technique. Next, the feature extraction process follows a novel 

decortication Hydrolysis CNN approach which extracts active 

and passive characteristics. Then after feature extraction, a novel 

chromatographic classification approach is employed for 

separating features without overfitting. Finally, a novel yield 

mapping georeferencing technique is employed for all images 

stitched together with proper alignment and segmented 

overlapping fields of view. The suggested deep learning model is 

an effective method for real-time mosaic image feature extraction 

which is faster by an average of 11.5 times compared to existing 

approaches as noted on the samples for experimental analysis. 

Keywords—EEG signal extraction; feature extraction; image 

stitching; multispectral image; UAV video 

I. INTRODUCTION 

Unmanned Aerial Vehicles (UAVs) fascinated a whole lot 
of people in many nations as soon as they were developed and 
have since been widely used in both the military and civilian 
sectors (such as for mapping, catastrophe monitoring, and 
crowd monitoring) as well as for in-flight investigation and 
border patrol. The photographs captured by UAVs have several 
undesired qualities, like big numbers, short image vicinity, a 
partly cover degree, and multiple strips, due to the restrictions 
of flying height and camera focal length. It is crucial to achieve 
a complete panoramic perspective using quick image fusion 
techniques to gain more detailed information and broaden the 
range of vision in many particular tasks [1]. The usage of 
image fusion technology, which has become a hot research 
area, is common in multimedia applications including virtual 
reality, remote sensing image processing, and video 
surveillance where the watching component has a tiny field of 
view but the expected observation is large. Users have access 
to a variety of software applications, like Autopano and 
Panorama Photo Stitcher, in the market for creating panoramas. 

According to the registration strategy, there are four broad 
groups for picture mosaic techniques [2]. The first technique 
relies on the intensity levels or colors of each pixel; while this 
scheme is straightforward, it performs poorly in terms of noise 
avoidance and blending effectiveness. The second technique 
relies on the transform features, which has high noise 
resistivity, but the stitching requires a lot of calculations and 
the results are subpar when the image changes in view 
perspective or zoom. The other technique is based on features, 
for which the stitching efficiency, resilience, and accuracy of 
the algorithms are often high and they are typically similar to 
image size editing, transformation, and rotation. The three 
conventional feature extraction algorithms are Harris, Scale-
Invariant Feature Transform [3], and Oriented Fast and Rotated 
Brief. On deep learning, the final one is based. Many deep 
learning methods based on feature extraction and matching 
have been created to perform picture registration [4]. Despite 
the recent advancements in image mosaic technology, several 
techniques still fall short of the instantaneous, reliable, and 
accuracy demands of UAV image fusions. UAV pictures have 
a lot of data, tiny phase amplitude, and a higher degree of 
overlapping [5], among other qualities. Since a UAV 
video/image contains a lot of data, the mosaic process takes an 
unacceptably long time [6]. Second, because they are 
frequently small, UAVs struggle to maintain themselves and 
are poorly wind-resistant. There will unavoidably be some 
tilting when taking pictures, even though they have an 
autopilot and a stabilizing gyroscope. Images captured by 
UAVs contain significant affine distortion in comparison to the 
actual scene due to the geometric distortion of the camera 
caused by the lens [7]. To address this problem, researchers 
have proposed mounting high-resolution cameras on a UAV. 
The dimensional fault, which is the difference between the 
relative offset and the absolute offset, can be thought of as low-
frequency noise brought on by the UAV drift, and it can be 
addressed by using a high-pass filter [8]. 

The projection matrix-based approach can also be used to 
extract supreme structural offset from the drone footage, 
presuming that out-of-plane offsets can be disregarded. The 
projection matrix was determined using stationary backdrop 
features, and then it was further honed using the constrained 
bundle adjustment optimization approach to reduce the re-
projection error. Additionally, for this technique to work, the 
camera must move rather quickly; otherwise, the camera 
settings in successive frames would be very much close, which 
will cause a major inaccuracy when applying the bundle 
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adjustment. However, in-field measurements, the expanse 
between immobile locale objects and the drone is typically 
many times greater than the drone motion itself, thus making 
this approach inapplicable. With the help of homography, also 
referred to as perspective transformation, it is possible to adjust 
the camera movement for a planar outlook without the use of 
camera constraints [9]. 

Although the homography related methods are numerically 
effective, there are numerous obstacles in the way of its 
straight-forward application to the counting of dynamic offsets 
of massive structures. Because of the limited pixel resolution, 
it's possible that the camera won't be able to sufficiently 
capture both the offset measurement points and immobile areas 
of the organization (i.e., the homography characteristics) in a 
single image. However, choosing at random from these areas 
could cause big inaccuracies in the homography computation 
result. The chosen homography characteristics is expected to 
be over or near the flat surface in which structural motion 
occurs since homography requires a planar scene and not all 
random homographies are realistic picture alterations [10]. And 
the system's created aerial panorama could have poor aesthetic 
flaws at pivot points. Then, the stitching is successful for 
neighboring frames in image sequences where the stitching has 
been successful in order, but it can be challenging to guarantee 
the overall stitching effect in multistrip long-distance trips [11]. 
Additionally, it is challenging to produce useful data from 
sequences gathered by UAVs during multistrip missions and it 
is laborious to manually track the chosen homography 
elements in each frame of a video. The stitching effect, 
however, can be diminished with a greater volume of images 
and much identical parts in the prospect [12]. However, it is 
difficult finding a stationary landmark during an earthquake. 

 In this work proposed, a novel live drone image mosaic 
system is proposed.  The main contributions are as follows: 

 First, proposed a state-of-the-art, real-time framework 
for drone image mosaicking. The architecture 
comprises automatic initialization, feature extraction & 
classification, and live mosaic generation. The setup 
procedure uses EEG to automatically identify the image 
clips based on brainwaves (Alpha, Beta, Theta, and 
Delta). 

 After that, all four of these brainwaves are subjected to 
a feature extraction procedure utilizing deep learning, 
where a mixture of alpha and beta is used to examine 
active features while theta and delta are used to 
consider passive features. 

 After feature extraction, the classification process is 
done then finally real-time mosaic creation makes up 
the framework’s entire structure. 

 The primary tasks required in the controlling of large 
areas, including mosaicking, feature extraction, and 
classification, are improved in accuracy compared to 
existing drone-based techniques. 

The remaining portion of the paper is structured as follows: 
Section II explains briefly the existing literature and the 
research gaps. Section III gives an overview of the proposed 

work. Section IV details the proposed system architecture. 
Section V discusses the results and analysis of implementation. 
Section VI finally concludes the work. 

II. RELATED STUDY 

There has been interesting works available in the literature 
that paves way for the growth of the techniques and the 
technology responsible for image applications. Avola et al. 
[13] proposed the best parameters to automatically predict, 
specifically, depth and frame rate to recognize the three factors 
in previous section are suggested and tested. The dimensions of 
the aimed object to be analyzed, the UAVs’ travel speed, and 
the primary inner dimensions of the video sensor, such as the 
focal length, field of view, and pixel size, are some of the 
criteria that are used to estimate the parameters. Both man-
made videos produced with the in-flight data and Robotics 
Simulation (AirSim) and actual film sequences reported in the 
UAV Mosaicking and Change Detection (UMCD) and NPU 
Drone-Map datasets served to demonstrate the suggested 
method's complete effectiveness on the objective. However, 
ensuring the minimal spatial resolution necessary to complete a 
given activity is the primary issue to be addressed regarding 
flying height. 

Ranghao et al. [14] proposed a live drone image fusion 
architecture that solely utilizes the UAV picture frames and 
does not depend on the global positioning system (GPS), 
ground control points (CGPs), or any other auxiliary data. 
Through the use of this framework, it is hoped to produce high-
quality panoramas while reducing spatial distortion and 
speeding up mosaicking operations before choosing key frames 
to increase efficiency, the framework evaluates the general 
setting of every new frame to be added. Then, to perform an 
accurate position computation of the existing scene and lessen 
the bend brought on by increasing mistakes, a new 
optimization method based on minimizing weighted 
reprojection errors is implemented. To produce the best mosaic 
output, the local picture is fused and updated in real-time using 
the weighted partition fusion approach based on the Laplacian 
pyramid. UAVs frequently capture multi-strip and large-scale 
image sequences, however, it is challenging to create 
panoramas directly from the stitched photos, and some of the 
feature points are unstable and challenging to extract. 

Srivastva et al. [15] proposed an overview of deep learning 
methods for on-ground vehicle recognition utilizing aerial data 
obtained by UAVs (often referred to as drones). To review the 
works, it is important to consider both the optimization goal 
and the method used to increase accuracy and decrease 
computation overhead. To illustrate the parallels and 
discrepancies between different approaches and to draw 
attention to the remaining issues in this field, this work is a 
useful study. Researchers studying AI, traffic surveillance, and 
UAV applications will find this survey to be useful. However, 
the processing of a picture takes a long time and results in a lot 
of false positives. 

Woo et al. [16] proposed to drastically lower the error 
level, identification of fissures was determined using 
comparative position between components in drone-captured 
photos rather than using absolute position information. A total 
of 97 photos were collected using aerial photography. Five 
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fissures and three reference components were defined using the 
point-cloud approach, image blending, and homography 
domain algorithm. Importantly, the comparison of calculated 
localized values with concrete values obtained from field 
measurement showed that errors in the range of 24-84 mm and 
8-48 mm, respectively, were received based on the coordinates. 
Additionally, RMSE errors ranging from 37.95 to 91.24 mm 
were verified. The target concrete construction, however, 
might not always have enough or the right reference objects 
accessible. 

Rui et al. [17] proposed a Rapid Scale-Invariant Feature 
Transform (RSIFT) operator to shorten computation time. 
Then used is the As-Natural-As-Possible (AANAP) technique 
for picture registration. To remove the motion ghosting, an 
image segmentation method is used. Finally, a unique 
collection of aerial photos is created for image mosaics, using 
which analogous tests using cutting-edge image mosaic 
techniques are carried out. However, research indicates that 
SIFT has huge computational complexity. 

Zhang et al. [18] proposed an approach based on Oriented 
Fast and Rotated Brief (ORB) and semantic segmentation. To 
distinguish between the forefront and surroundings of the 
image and to get the forefront content, a semantic segmentation 
network is introduced by the algorithm during image 
registration. It simultaneously extracts feature points using the 
quadtree decomposition concept and the conventional ORB 
approach. The foreground feature points can be removed to 
achieve feature point matching by comparing the feature point 
information with the foreground semantic information. The 
homography domain and the weighted fusion technique will be 
used to stitch and fuse the images based on precise image 
registration. However, it is challenging to find trait points in 
areas with weedy texture, and the major drawback of SIFT is 
that real-time performance cannot be attained without the aid 
of hardware or specialized image processors. 

In order to locate an intuitively optimal seam in 
uninterrupted areas of high similarity, Yaun et al. [19] 
suggested an innovative super pixel-based performance 
function that incorporates data on material difficulty, color 
distinction, and gradient difference. Finally, to eliminate seams 
and provide seamless color transitions, employ an exceptional 
pixel-based color blending technique. The method is superior 
to several cutting-edge UAV photo stitching techniques, 
according to experimental data, and can effectively and rapidly 
perform seamless stitching. However, owing to the existence of 
parallax, artifacts always show up in overlapped areas. 

Yang et al [20] proposed a straightforward yet effective 
approach for sewing durable and precise blade images. 
Introduce the Blade30 dataset, which includes 1,302 real 
drone-captured photos of 30 entire blades taken in a variety of 
environments (both on and off-shore) and richly annotated with 
information on flaws and contaminations, among other things, 
to encourage further research. By using the recommended 
patching strategy based on drone-blade lengths and rotor 
margins at the coarse-grained level, the initial blade portrait is 
produced. Then, utilizing regression-based roughness and 
shape losses, fine-grained modifications are optimized. 
Additionally, this approach makes full use of the drone's 

existing knowledge and the characteristics of blade pictures. 
However, it may be challenging to gather enough labeled data 
to initiate this, which is primarily due to inefficient inspection 
techniques. 

 

Fig. 1. Block diagram for real-time image stitching of UAV video. 

Some of the research gaps identified are: Low-textured 
picture sewing still presents a number of complicated 
challenges; since multiple photos were captured from various 
angles, the patched images also contain projective distortions; 
Picture stitching combines a number of overlapping images to 
create a single, larger mosaic with a wider angle of perspective 
because cameras have a low angle of perspective. Global 
geometric transformations were typically approximated by 
older methods for stitching together overlapping pictures; 
These methods, however, rely on rigid premises that are 
commonly violated in reality, resulting in defects in the merged 
images like misalignments or ghosting, such as the camera 
rotation having a fixed projective center or the scene having a 
constrained depth variance; Only a small number of points are 
recognized and matched in some homogeneous regions, 
making it challenging to predict an exact transformation. The 
proposed method tries to overcome these challenges and 
develops an efficient method for image stitching. 

III. OVERVIEW OF THE PROPOSED WORK 

The suggested architecture seeks to address the several 
issues mentioned above for improved target surveillance and 
real-time image stitching of UAV video. Enhancing real-time 
target tracks and stitching image serves several purposes, 
including improved accuracy, easier long-distance stitching, 
accurate information, and overall performance. It also captures 
both displacement measurements and homography properties 
in a single image. UAVs, such as drones or planes, equipped 
with cameras, sensors, software for control, and interactions, 
first gather raw data. UAVs can collect visual sensing data via 
their camera-equipped device. [21]. The pixels or labels in 
these images are designated as signals, utilizing an analogy to 
EEG patterns such as alpha, beta, delta, and theta, each linked 
to distinct frequencies [22]. The process of extracting active 
and passive features utilizing statistical methodology to 
ascertain the average weight for all waves and set thresholds is 
then carried out. If the weighted average value is higher than 
the threshold, it is considered active else passive. Algorithms 
based on CNN relate active attributes to alpha and beta, 
whereas passive attributes are linked to delta and theta. 
However, this method permits accurate feature extraction, 
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captures the qualities of both displacement measurement and 
homography, and has superior accuracy. After this, the 
classification process follows, effectively segregating these 
features to prevent overfitting. Finally, using overlapping fields 
of view, the images are seamlessly combined to provide a 
segmented, high-resolution image. However, this method 
makes stitching across large distances simple, provides 
accurate information, and enhances overall performance. Fig. 1 
depicts a block diagram for real-time image stitching of UAV 
video, which demonstrates raw data. Video is acquired by 
UAV like a drone or plane, and comprises of a sequence of 
image clips assessed using EEG. Images are categorized as 
signals using the connected component labeling technique. 
Then feature extraction and classification are performed. 
Finally, the images are seamlessly stitched together to produce 
a cohesive output. 

IV. ARCHITECTURE OF THE PROPOSED METHODOLOGY  

The proposed design solves low accuracy, overfitting 
difficulty ensuring stitching effect over long distances, 
incorrect data, and difficulty capturing both displacement and 
homography characteristics in a single image. In the beginning, 
raw data is collected by UAV to capture illustrated sensing 
information by its camera installed, and the pixels or labels in 
these images are designated as signals using the connected 
component labeling technique for using an analogy to EEG 
patterns such as alpha, beta, delta, and theta, where each linked 
to distinct frequencies. For removing noise or error in the 
signal and the signal is then split into two halves using 
decortification CNN, a proposed feature extraction method that 
collects both active and passive features. While delta and theta 
represent passive features, alpha, and beta indicate active 
features. To identify the alpha, beta, delta, and theta features, 
use a statistical method. To ensure this, average weights for 
each wave must be determined, and global thresholds must be 
set. The characteristic is regarded as active if the estimated 
weighted average value is higher than the threshold; otherwise, 
it is regarded as passive.  

After feature extraction, classification is carried out by 
employing the chromatographic approach to separate active 
and passive features separately without overfitting. However, 
this approach enables precise feature extraction and 
categorization and captures both the characteristics of 
displacement measurement and homography. Finally, a high-
resolution image is created by combining all the photographs 
with their overlapping fields of view, utilizing a yield mapping 
geo-referenced approach to appropriately align and segment 
each image. However, this approach makes stitching across 
vast distances straightforward, high accuracy offers correct 
data, especially finding stable landmarks after an earthquake is 
simple and improves overall performance. 

The proposed architectural model for the real-time UAV 
video image stitching process is shown in Fig. 2 which start 
with the UAV obtaining the raw data and this data comprise a 
sequence of image clips. Each pixel/label within these images 
is categorized as a 'signal' using a connected component 
labeling technique. This idea makes use of the four types of 
brain waves alpha, beta, theta, and delta to extract active and 
passive features using CNN, based on their respective 

frequencies. The active attributes encompass alpha and beta 
waves, while the passive attributes encompass theta and delta 
waves. Subsequently, a classification process utilizing 
chromatography technique is applied to the extracted features. 
Finally, the process involves image stitching using a yield 
mapping geo-referenced technique, seamlessly combining the 
acquired images. 

 

Fig. 2. Proposed architectural model for Real-Time UAV video image 

stitching. 

All of these EEG signal properties (Alpha, Beta, Theta, and 
Delta) are described below, along with their mathematical 
expressions: 

Average frequency weighting (AFW): The average 
frequency weighting can be found to estimate the power 
spectrum of the obtained sequence of signal [22]. Using 
statistical methods an average value is found for all waves with 
certain frequency weighting elements. The following 
mathematical equation can be used to represent the AFW, S(k) 
for any N-point signal x(n). 

S(k) =
 

 
*W    

   |  (k)|  (1) 

where n is a variable that specifies the data points of the 
time-domain discrete-time input signal x(n). For a total number 
of temporal data points N,0≤n≤N-1.Similar to that, k also refers 
to a variable that specifies data points in spectral-domain form 
  (k) of x(n). For a total number of spectral data points N, 0 ≤ 

k ≤ N-1 [23].  

Repeating this calculation across all frequency bands yields 
the final Power Spectral Density (PSD) values for Delta, Theta, 
Alpha, and Beta [24]. 

The PSD according to Welch is expressed by: 

 



(IJACSA) International Journal of Advanced Computer Science and Applications, 

Vol. 14, No. 9, 2023 

469 | P a g e  

www.ijacsa.thesai.org 

  (f)=
 

  
|    
       (k)w(k)          (2) 

 

Fig. 3. Flow chart of the proposed architecture. 

Let x(n) be the sequence, with N = 1, 2, 3, ..., N-1 
representing the signal intervals, and M denoting each interval 
length. U is the normalization factor for the power in the 
window function, and w(n) is the windowed data, so: 

U= 
 

 
    
   |w(n)    (3) 

After extracting all PSD, the alpha, and beta signals are 
considered active and delta and theta are considered passive 
features to compare with the overall threshold   

PSD>  or PSD<   (4) 

The suggested architecture's flowchart is shown in Fig. 3, 
starting with raw data which is an aerial image that is collected 
by an UAV as input. A connected component labeling 
technique is used to classify each pixel or label in these images 
as a "signal". This concept uses the four different types of brain 
waves alpha, beta, theta, and delta to extract both active and 
passive properties. Using a statistical approach, the alpha, beta, 
delta, and theta features are identified and designated as B1, 
B2, B3, B4, respectively. To do this, average wave weights and 
global thresholds must be established. The attribute is 
considered active if the projected weighted average value 

exceeds the threshold; otherwise, it is considered passive. The 
procedure of classification is then performed following feature 
extraction. Finally segmented using yield mapping geo-
referenced approach and merged every image with proper 
alignment. 

Proposed Algorithm: 

Multispectral mapping for image stitching using EEG signal to 

extract robust feature extraction 

Require: Multispectral images   = 1,2,3_____N 

Ensure: Multispectral mapping with high alignment accuracy  

Step 1: Start   = 1,2,3_____N 

Step 2: Each pixel in the image is labeled as a signal. 

Step 3: i=1 

Step 4: for each sample,    do  

Step 5: Calculate the average weighted probability for each 

wave    ,   ,    ,     and set the threshold  . 

Step 6: Compare weighted probability with threshold  

Step 7: if B>  or B<  then  

{ 

incorporate   ,  ; 

else { 

incorporate   ,  ; 

} 

} 

i++ 

end for 

V. RESULT AND DISCUSSION  

This section presents the detailed results of the proposed 
model. To provide a comprehensive performance evaluation, 
the suggested model was compared to two other models, the 
SIFT [25] and BRISK [26].  The work was implemented in 
Python 3.11.4 and the packages used are cv2 and math. Two 
sample images were used to test the performance of the 
proposed work. 

Fig. 4 shows the input sample 1 image pairs to be stitched. 
During feature extraction using SIFT algorithm, 4369 features 
from the first image and 4333 features from the second image 
are selected as shown in Fig. 5(a) using SIFT. Fig. 5(b) shows 
the 10038 features and 10774 features selected from images 1 
and 2 respectively using BRISK algorithm. Fig 5(c) shows the 
500 features from Image 1 and 500 features from image 2 
selected using the proposed approach. Fig 6(a), (b) and (c) 
shows the matching features between the pairs of images using 
SIFT, BRISK and the proposed algorithm respectively. Fig. 7 
shows the sample 1 image pairs fused. 

 

Fig. 4. Input Sample 1: Image1 and Image2. 
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(a) 

 
(b) 

 
(c) 

Fig. 5. Features Extracted (a) SIFT (b) BRISK (c) Proposed. 

 
(a) 

 
(b) 

 
(c) 

Fig. 6. Matching features (a) SIFT (b) BRISK (c) Proposed. 

 

Fig. 7. Final stitched image.

 

Fig. 8. Input sample 2: image1 and image2. 

 
(a) 

 
(b) 



(IJACSA) International Journal of Advanced Computer Science and Applications, 

Vol. 14, No. 9, 2023 

471 | P a g e  

www.ijacsa.thesai.org 

 
(c) 

Fig. 9. Features extracted (a) SIFT (b) BRISK (c) Proposed. 

 
(a) 

 
(b) 

 
(c) 

Fig. 10. Matching features (a) SIFT (b) BRISK (c) Proposed. 

 

Fig. 11. Final stitched image. 

Fig. 8 shows the input sample 2 image pairs to be stitched. 
During feature extraction using SIFT algorithm, 3532 features 
from the first image and 2754 features from the second image 
are selected as shown in Fig. 9(a) using SIFT. Fig. 9(b) shows 
the 5057 features and 5128 features selected from images 1 and 
2, respectively using BRISK algorithm. Fig. 9(c) shows the 

475 features from Image 1 and 480 features from image 2 
selected using the proposed approach. Fig. 10(a), (b) and (c) 
shows the matching features between the pairs of images using 
SIFT, BRISK and the proposed algorithm respectively. Fig. 11 
is the stitched image of sample 2 image pairs. 

Fig. 12(a) and (b) shows the detection time for feature 
selection for image mapping for sample 1 image pairs. 
Fig. 13(a) and (b) shows the detection time for feature selection 
for image mapping for sample 2 image pairs. The detection 
time for feature extraction clearly represents that the proposed 
work is 14 times and ten times faster than the SIFT and BRISK 
algorithms for the image 1 of sample 1; 17 times and 12 times 
faster than the SIFT and BRISK algorithms for the image 2 of 
sample 1; 11 times and nine times faster than the SIFT and 
BRISK algorithms for the image 1 of sample 2; 9 times and ten 
times faster than the SIFT and BRISK algorithms for the image 
2 of sample 2. Overall, the proposed algorithm on average is 13 
times faster than the SIFT algorithm and ten times faster than 
the BRISK algorithm. 

 
(a) 

 
(b) 

Fig. 12. Detection times of sample 1 image pairs. 

 
(a) 

 
(b) 

Fig. 13. Detection times of sample 2 image pairs. 
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VI. CONCLUSION 

In this work we have proposed a new technique for image 
fusion using signal extraction technique behind the brain waves 
using EEG. Decortification technique is used in processing and 
preparing the images for matching and blending. Live UAV 
video frames are fused and can be used for various applications 
like target tracking and distance measurement.  The proposed 
work is able to choose optimal features with good image 
understanding. The suggested approach outperforms the SIFT 
and BRISK algorithms on average by a factor of 13 and 10, 
respectively. In future the proposed work will be implemented 
in test-bed for live frame sequence transformations to fused 
images. 
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