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Abstract—Brain tumors represent one of the most perilous 

and lethal forms of tumors in both children and adults. Early 

detection and treatment of such malignant disease types may 

reduce the mortality rate. However, manual procedures can be 

used to diagnose such disorders, and this process necessitates a 

careful, in-depth analysis which is prone to errors, tedious for 

health professionals, and time-consuming. Therefore, this 

research aims to design a Texton Tri-alley Separable Feature 

Merging (TSFM) Capsule Network based on dynamic routing, 

suitable for the automatic detection of brain tumors. The TSFM 

Capsule Network’s Texton layer helps to extract important 

features from the input image, and the separable convolutions 

coupled with the use of fewer filters and kernel sizes help to 

reduce the time for training, the size of the model on disk, and 

the number of trainable parameters generated by the model. The 

model’s evaluation results on the brain tumor dataset consisting 

of four classes show better performance than the traditional 

capsule network, and are comparable to the state-of-the-art 

models, with an overall accuracy of 97.64%, specificity of 

99.24%, precision of 97.43%, sensitivity of 97.45%, f1-score of 

97.44%, ROC rate of 99.50%, PR rate of 99.00%. The 

components and properties of the proposed model make the 

model deployable on devices with low memory like mobile 

devices. This model with better performance can assist 

physicians in the diagnosis of brain tumors. 

Keywords—Texton; separable convolutions; capsule neural 

network; dynamic routing; brain tumor; brain tumor detection 

I. INTRODUCTION 

Brain tumor is among the most fatal and dangerous tumors 
in both children and adults [1]. Brain and spinal cord tumors 
are assemblages of abnormal cells that have multiplied 
uncontrollably inside the brain or spinal cord. There will be 
25,050 diagnoses of malignant brain and spinal tumors by 
2023 in both men and women[2]. 

Medical imaging plays a vital role in the diagnosis, 
monitoring of tumor progression, and treatment of tumors. 
Magnetic Resonance Imaging (MRI) is the preferred 
technique for imaging due to its non-ionizing nature. It offers 
significant insights into the characteristics, dimensions, form, 
and positioning of brain tumors. 

Manually evaluating MRIs is laborious and error-prone, 
hence an Artificial intelligence (AI)-driven system that 
operates automatically is required to aid in medical diagnosis. 
Techniques rooted in machine learning, like support vector 
machines, have been utilized to aid in accurately detecting 

medical conditions [3]. Nevertheless, the outcomes of these 
approaches fell short of established benchmarks, and the 
process of extracting features is notably time-intensive.  To 
tackle these challenges, deep learning techniques like 
convolutional neural networks (CNNs) were embraced to 
enhance the process of extracting features. Remarkably, CNNs 
demonstrated a level of performance that is comparable to that 
of human experts. 

Despite CNN's strong achievements, the study found 
specific constraints including the need for extensive datasets, 
high computational demands [4], translational invariance [5], 
and adherence to particular criteria for optimal feature 
selection [6]. In the field of health, obtaining a voluminous 
dataset poses a significant hurdle, compounded by a scarcity 
of skilled annotators and privacy issues [4]. Consequently, to 
mitigate the overfitting of CNNs on these limited datasets, 
methods of data augmentation are employed. However, it 
should be noted that these data augmentation techniques are 
both time-consuming and labor-intensive [7]. 

Capsule Network (CapsNet) was introduced to tackle the 
issues of CNN [8]. In contrast to CNNs, CapsNet does not 
necessitate extensive datasets, and is resistant to uneven class 
distributions and spatial orientation changes. These properties 
of CapsNet render it appropriate for medical image diagnosis. 
However, CapsNets do have their own set of limitations[9]. 
They exhibit suboptimal performance on complex images, and 
those with diverse backgrounds, and try to account for every 
element in an image. As a result of these properties, the 
performance of the network may suffer when dealing with 
detailed malignant images. 

In order to further improve CapsNets textural, color, and 
spatial recognition capabilities, this paper adopts 
CapsNets dynamic routing algorithm and implements a 
Texton layer [10],  separable convolutions, and a max-pooling 
layer. This allows CapsNet to decide on which features are 
essential and the coupling coefficients that need to be 
decreased in enhancing the hierarchical relationship of closely 
related capsules. The Texton Tri-alley Separable Feature 
Merging (TTSFM) Capsule Network model proposed helps to 
address the crowding problem in CapsNet and performs better 
than the traditional CapsNet and some other models found in 
literature on brain tumor detection. The proposed model 
exhibits better convergence speed and can generalize well on 
unknown data, hence can serve as an intelligent tool, assisting 
physicians in diagnosing and administering appropriate 
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treatments for brain tumors. Fig. 1 depicts the adopted 
workflow for the proposed work. 

Most of the models found in literature performed dataset 
balancing, data segmentation, data augmentation, and 
thorough data preparation, before model fitting. This study 
utilized raw datasets without any data augmentation and data 
preprocessing to evaluate the proposed model’s effectiveness 
with natural or raw data since data augmentation or 
segmentation might not be practical in medical emergency 
situations. Also, this study offers detailed visual 
representations of image regions that capture the focus of 
specific parts of our model, evaluation performance on 
imbalanced datasets using ROC and Precision-Recall (PR) 
curves, clusters of features at the class capsule layer to assess 
the model’s effectiveness, and the model’s transparency and 
understandability was enhanced by reconstructing input 
images. 

The contributions of this study are: 

1) A fast, robust, and low-parameterized TTSFM 

CapsNet, that has efficient feature extraction capabilities is 

proposed. 

2) Separable convolutions are employed to reduce the 

size and trainable parameters of the model. 

3) A comparative analysis was conducted to assess the 

proposed model with other CapsNet models. 

4) The study presented a comprehensive visual 

representation of the outputs of layers to help offer notable 

contributions to the explainable artificial intelligence field. 

The study is organized as follows: Related works are 
presented in Section II. Methodology is presented in 
Section III. Section IV deals with results and discussion and 
Section V deals with the conclusion and future works of the 
study. 

II. RELATED WORKS 

Manual diagnosis in the medical field is prone to error, 
tedious for health professionals, and time-consuming. These 
limitations led to the employment of algorithms for predicting 
and detecting radiomic medical conditions. For instance, Gao 
et al., [11] utilized both 2D and 3D convolutional neural 
networks (CNNs), the researchers employed these networks to 
categorize individuals as having tumors, no tumors, or 
Alzheimer's disease based on CT scans. They were able to 
attain an accuracy level of 87.6%. A hybrid approach 
employing CNN and Neutrosophy (NS-CNN), was proposed 
by Özyurt et al [12]. The approach was used to categorize 
benign or malignant segmented tumor regions from brain 
tumor images. The accuracy of the suggested model was 95.62 
%. Sajjad et al. [13] presented a modified (CNN) based multi-
grade system for classifying brain tumor grades. The model's 
accuracy was 90.67 %. In order to solve the classification 
challenge for brain tumors, Ayadi et al. [14] suggested a new 
model that makes use of the CNN sequential model. The 
model has several layers and was designed to categorize MRI 
brain cancers. The model had a 94.74 % accuracy rate. 
A CNN model was proposed by Badža and Barjaktarovic [15] 
for classing three distinct forms of brain tumors. The 

suggested model, which has a straightforward architecture 
akin to traditional CNN, accurately classified 96.56 % of the 
brain tumor MRI images in the dataset. Also, Afshar et al. 
[16], introduced a boosted capsule network (also known as 
BoostCaps), that makes use of boosting approaches’ capacity 
to accommodate poor learners, by steadily boosting the 
models.  The BootsCaps architecture, according to the results, 
classified brain tumors with an accuracy of 92.45%. DCNet 
and DCNet++ were suggested by Phaye et al.[17]. By 
substituting densely connected convolutions for the typical 
convolutional layers in the two suggested models, the CapsNet 
was modified. On Brain Tumor Dataset, the two models were 
assessed and achieved a validation accuracy of 93.04 % and 
95.03%, respectively. A capsule network for automatic brain 
tumor classification that achieves a 92.65% accuracy was 
proposed by Goceri. This network includes three fully 
connected layers and utilizes an expectation-maximization 
(EM)-based dynamic routing algorithm to extract important 
features from images [18]. In order to increase the focus 
of CapsNet, Afshar and colleagues suggested an improved 
CapsNet architecture for classifying brain tumors that 
incorporates the tumor coarse boundaries as additional inputs. 
The validation accuracy for the model was 90.89% [19]. 
According to Adu and friends, an improved CapsNets with 
several convolutional layers and dilation to preserve image 
resolution and boost classification accuracy was proposed. 
The proposed system can guarantee an increase in CapsNets 
focus by inputting segmented tumor regions within the 
structure. This model's performance obtained an accuracy 
of 95.54 % [20]. Some researchers presented the BayesCap, a 
Bayesian CapsNet architecture that can offer both the mean 
forecasts and entropy as a gauge of uncertainty in forecasting. 
According to the findings, accuracy can be increased by 
filtering out uncertain forecasts. The model's maximum 
accuracy was 73.9 % with a CI of: (73.5%, and 74.4%) [21]. 

All the existing models performed well on the various 
datasets. But for medical image diagnosis, there is a need for a 
more robust and efficient model for better diagnosis, hence 
this study aims to propose an improved, fast, low-
parameterized, and robust Capsule Network which 
incorporates Texton and Separable convolutions for effective 
feature extraction and better classification of brain tumor 
diseases. Most of the studies mentioned above performed 
dataset balancing, data segmentation, data augmentation, and 
thorough data preparation, before model fitting. 

III. METHODOLOGY 

This section presents the methodologies employed to attain 
our goal of developing a deployable CapsNet that has an 
effective ability to extract features efficiently with lesser 
parameters and size on disk. Fig. 1 shows the proposed 
methods block diagram for the automatic classification of 
brain tumor types. 

A. Capsule Network 

The structure of the baseline CapsNet on which the 
proposed model is based is found in Fig. 2. 
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B. Texton Detection 

The notion of Texton involves the identification of clusters 
of shapes within an image that possess a shared characteristic. 
Julesz further developed this concept [22], placing emphasis 
on the significance of measuring the distances between texture 
elements when calculating gradients of Textons. Textures 
emerge only when neighboring elements are in proximity, and 
the scale of the elements impacts the surrounding region. 
Larger elements oriented in a particular direction can slightly 
impede the initial, instinctive differentiation. Gradients of 
Texton are only present at the borders of textures, so utilizing 
a smaller element size, such as 2x2, can enhance the 

distinction of textures. The approach of Multi Texton 
Detection (MTD), utilized to extract information regarding 
edges and colors, involves the use of six distinct types of 
Texton (T1, T2, T3, T4, T5, and T6) on a 2x2 grid (shown in Fig. 
3) to identify textons. A Texton is generated by the grid when 
the two shaded pixels share the same value. By systematically 
shifting the 2x2 block across the image C (x, y), textons can 
be detected in a stepwise manner. If a texton is identified, the 
original pixel values are preserved; otherwise, the block is 
disregarded. The resultant image containing textons is 
represented as T (x, y) [10], as illustrated in Fig. 4. 

 

Fig. 1. Workflow diagram of the study. 

 

Fig. 2. Architecture of the baseline capsule network model. 
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Fig. 3. Six Texton types used in Texton detection process: (T) 2x2 grid. 

 

Fig. 4. Illustration of the Texton detection process. 

C. Depthwise Separable Convolution 

Two separable convolutions types exist in separable 
convolutional neural networks. These are depthwise separable 
convolutions (DSC) and spatial separable convolutions (SSC). 
DSC is adopted for this study, and can be viewed as grouped 
convolutions, similar to the concept of 'inception modules' 
employed in the design of the Xception architecture [23]. It 
relies on spatial convolution, which operates separately on 
each input channel. After the spatial convolution, a pointwise 
convolution (PC) is executed, which involves a standard 
convolution using 1 × 1 windows. This leads to the creation of 
a new channel space as a result of projecting the channels 
calculated during the depthwise convolution (DC). The 
mathematical expression for depthwise convolution (DC) and 
pointwise convolution (PC) is presented as follows: 

             ∑     
 
           (1) 

             ∑         
   
                 (2) 

                          (                ) (3) 

   and    represent the inputs used for pointwise and 

depthwise convolutions in the above equations, respectively. 
The operator   within Eq. (2) pertains to the element-wise 
multiplication. Consequently, the fundamental idea 
underpinning depthwise separable convolutions involves 
splitting the feature extraction process carried out by regular 
convolutions across a unified "space-cross-channels domain" 
into two distinct stages: spatial pattern learning and channel 
fusion. This approach represents a generalization when 
dealing with convolution operations on 2D or 3D inputs 
having both relatively independent channels and closely 
interconnected spatial positions. 

D. Proposed Model 

Fig. 5 shows the proposed Texton Tri-alley Separable 
Feature Merging (TTSFM) CapsNet model that employs 
Texton, separable convolution, traditional convolutions, max 
pooling, dropout and reconstruction layers. The Texton layer 
is used to extract important texture and edge features from the 
input image. The output features from the Texton layer are 
processed by three different separable convolutions (each 
having 32 filters, kernel size of 2x2, depth multiplier of 1, 
depthwise and pointwise initializers of ―ones‖ and a stride of 
1) followed with batch normalization and max pooling, 
contributing to reduced number of parameters, model size, 
computational time and complexity of the model, as can be 
seen at alley_1_conv1, alley_2_conv1, and alley_3_conv1. 
The feature map from alley_1_conv1 serves as input in into 
alley_1_conv2, and the feature maps from alley_2_conv1, and 
alley_3_conv1 are merged and serves as input into 
alley_2_conv2, and alley_3_conv2. The feature maps from 
alley_1_conv2, alley_2_conv2, and alley_3_conv2 (all conv2 
layers employs 64 filters, kernel size of 3x3, and a stride of 1) 
are then concatenated and sent as input into a dropout layer, 
followed with a batch normalization layer. This feature map is 
sent as input into the primary capsule layer consisting of 32 
channels with eight dimensions, a kernel size of 3x3, and a 
stride of two. Features from this primary capsule are then sent 
to the TumorCaps layer (by employing dynamic routing 
algorithm) for classification. This TumorCaps consist of the 
total classes number in 16D capsules. The output of 
TumorCaps is directed to the reconstruction layer, which 
works on rebuilding the characteristics acquired from the 
TumorCaps. The features are then transferred to the decoder 
layer within the capsule, which decodes the properties of the 
entity. This decoder is composed of three layers of fully 
connected neurons, with counts of 512, 1024, and 3072 
respectively. The Texton, max pooling, and convolution layers 
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help to extract important features from the input images using 
separable convolutions results in reduced number of 
parameters, model size, computational time and complexity of 
the model. 

E. Dataset Description 

Brain Tumor: The dataset comprises 7022 MRI scans of 
the human brain, which are grouped into four categories: (1) 
glioma, (2) meningioma, (3) pituitary, and (4) no tumor. To 
make the dataset more manageable, the images were resized to 
32 × 32 × 3 and redistributed using 70:20:10 leave-out 
approach.  This publicly available dataset can be found at: 
https://www.kaggle.com/datasets/masoudnickparvar/brain-
tumor-mri-dataset. 

F. Experimental Setup 

The proposed model was developed and assessed using 
Keras, Python via Anaconda, and employed the TensorFlow 
backend on a 64-bit Windows computer. The hardware 
configuration encompassed an NVIDIA GeForce RTX 2080 
SUPER GPU having 8GB of dedicated GPU memory along 
with 32GB of system RAM. During the training stage, Adam 
optimizer was employed with a learning rate set to 0.001, and 
training operations were executed using batches of 100 
samples. In order to ensure optimal training progress, the 
model achieving the highest performance was saved during 
the training iterations. The evaluation of loss was conducted 
using the margin loss, represented as     in Eq. (4), with 
specific details provided below: 

                      
                       

     (4) 

where, Tk is 1 when class k is active and 0 otherwise. 
Hyper-parameters λ, m-, m+ are set during the learning 
process. 

G. Performance Evaluation Measures 

The following metrics were employed in this study for the 
purpose of classification: 

Validation Accuracy: Calculates the proportion of 
accurately classified classes from the total number of classes. 
The attained overall validation accuracy for the entire set of 
experiments is reported. 

Loss: Evaluates the variance between the model's 
predictions and the actual labels. This assessment employs the 
margin loss during testing. 

Confusion Matrix: Assist in providing a thorough 
examination of the tally of correctly and incorrectly 
categorized images. Factors like True Positive (TP), True 
Negative (TN), False Positive (FP), and False Negative (FN) 
are employed to evaluate diverse measurements such as 
precision, accuracy, specificity, sensitivity (recall), and 
additional indicators. 

Precision (P): The proportion of accurately detected 
positive instances compared to the overall number of predicted 
positive instances. 

Recall (R) or Sensitivity: the proportion of accurately 
detected positive instances in relation to the overall count of 
positive instances within the dataset. 

Specificity: The proportion of negative instances have 
been accurately recognized in relation to the overall count of 
negative instances present in the dataset. 

F1-Score: The Mean that combines precision and recall in 
a harmonic manner. 

Area under the curve (AUC): The model's performance is 
assessed on datasets where classes are imbalanced or unevenly 
distributed by creating Receiver Operating Characteristic 
(ROC) and precision-recall (PR) curves [24]-[25]. Higher 
AUC values are favored compared to their smaller 
equivalents. 

Clustering: We utilize t-distributed stochastic neighbor 
embedding to acquire and examine the clusters within the 
class capsule layer of the models. 

IV. RESULTS AND DISCUSSIONS 

In this section, we present the outcomes of our 
experiments and demonstrate the favorable performance of the 
model when tested on the brain tumor dataset in comparison 
with the baseline Capsule Network [5]. To bolster confidence 
and ensure the reliability of the model's outcomes, we 
employed and meticulously executed various evaluation 
methods. These techniques included evaluating metrics such 
as classification accuracy and loss, specificity, sensitivity, 
precision, F1-Score, number of parameters, Area Under the 
Curve (AUC) for both the Receiver Operating Characteristic 
Curve (ROC) and Precision-Recall (PR) curves. We also 
trained a traditional capsule network [5] using the same 
dataset and compared its results with our model's performance 
using the aforementioned metrics.  

A. Performance Evaluation 

Graphs presented in Fig. 6 illustrate the accuracy and loss 
trends for both CapsNet models: the proposed and the baseline 
model. The accuracy and loss graphs during training and 
validation reveals that the proposed model outperform the 
baseline CapsNet model, exhibiting superior and consistent 
accuracy with quicker convergence. It is important to 
highlight that while accuracy is widely used to assess 
classification algorithms, it may not be suitable for evaluating 
medical images due to their small size and significant class 
imbalance [26]. Despite its limitations, accuracy can offer an 
overview of overall system. 

Fig. 7 displays the ROC and PR curves for both the 
proposed and baseline models. Analyzing the data from these 
curves, it becomes evident that the performance of the 
proposed model surpasses that of the baseline model. This 
shows that the proposed model performs better on small and 
imbalanced datasets like medical images [27] than the baseline 
model. 

Fig. 8 depicts confusion matrices illustrating the accurate 
and erroneous image identifications. The results presented in 
Table I highlight that the proposed model outperformed the 
CapsNet baseline by exhibiting fewer misclassifications. 

https://www.kaggle.com/datasets/masoudnickparvar/brain-tumor-mri-dataset
https://www.kaggle.com/datasets/masoudnickparvar/brain-tumor-mri-dataset
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Hence resulted in better per class accuracy, specificity, 
sensitivity, precision and F1-Score for each class, as compared 
to the baseline Capsule Network model.  

B. Ablation Study 

Conducting ablation experiments involves analyzing the 
elements of the model that significantly influenced its 
performance [28][29]. The model's layers are systematically 
removed in succession to assess their effects on the overall 
model's performance. As depicted in Table II, the model's 
performance shows a significant improvement through the 
integration of the Texton and max-pooling layers. 

C. Number of Parameters and Size on Disk 

A number of models found in literature expand their width 
and depth in order to enhance their performance on complex 
images. This causes a surge in the number of parameters. For 
example, ResNet50 [30], AlexNet [31], and VGG16 [32], 
among others, generate parameter counts of 23 million, 60 
million, and 138 million respectively. The intricacy of a model 
directly correlates with the parameters it generates, resulting 

in a substantial computational load that strains the resources of 
a system. Consequently, this poses a constraint on the 
feasibility of deploying such models on devices with limited 
memory, such as mobile phones. The comparison of the 
parameters of the models as well as size on disk is found in 
Table III. It can be seen that the size of the model on disk is 
small and less parameters were generated by the proposed 
model. This makes the proposed model suitable for 
deployment on mobile devices. 

D. Model Interpretability 

The inner workings of deep learning models are often 
labeled as black boxes. In order to rely on and employ these 
models for important functions, such as in the field of 
healthcare, it is essential that both the operations within the 
models and the results they produce are explainable. Through 
the utilization of saliency maps, mathematical models, 
activation maps, and similar techniques, explainable neural 
networks [33][34] and model interpretability [29] approaches 
aid in revealing insights into the operations occurring within 
the inner layers of deep learning models. 

TABLE I. PERFORMANCE METRICS ON THE BRAIN TUMOR DATASET FOR THE PROPOSED AND BASELINE CAPSNET MODELS 

Model (Dataset) Class TP FP TN FN Precision Sensitivity Specificity Accuracy F1-Score Data Size 

Baseline 

(Brain Tumor) 

0 271 16 995 29 0.9443 0.9033 0.9842 96.57% 0.9235 300 

1 283 30 975 23 0.9042 0.9248 0.9702 95.96% 0.9144 306 

2 296 6 1005 4 0.9801 0.9867 0.9941 99.24% 0.9834 300 

3 405 4 902 0 0.9902 1 0.9956 99.70% 0.9951 405 

Proposed 

(Brain Tumor) 

0 287 10 1001 13 0.9663 0.9569 0.9872 98.25% 0.9616 300 

1 289 12 993 17 0.9601 0.9444 0.9832 97.79% 0.9522 306 

2 299 9 1002 1 0.9708 0.9967 0.9990 99.24% 0.9836 300 

3 405 0 906 0 1 1 1 100% 1 405 

TABLE II. ABLATION STUDY RESULTS 

Layers Validation accuracy % 

-texton 95.04 

-alley_1_conv1 96.49 

-alley_2_conv1 96.11 

-alley_3_conv1 96.11 

-alley_1_conv2 97.48 

-alley_2_conv1 97.41 

-alley_3_conv1 97.41 

+ all layers 97.64 

TABLE III. COMPARISON OF PARAMETERS OF MODELS AND SIZE ON DISK 

Model 
Trainable 

Parameters 

Non-Trainable 

Parameters 
Size on disk 

Baseline CapsNet 

model 
10,127,104 0 38.6MB 

Proposed model 4,834,532 960 18.5MB 

E. Visualization of Activation Maps and Clusters 

Here, comparison of activation maps and clusters from the 
proposed and baseline models are done. This help to know the 
model that extract more important features from input images. 
Proposed model features from the Texton layer, extracted by 

one of the first separable convolutions is shown in Fig. 9. 1
st
 

row image 1 and baseline model features extracted by the 
convolution layer is shown in Fig. 9. In 2

nd
 row image 1, 

insufficient features were extracted. This exhibit that, the 
baseline convolution layer alone is not enough to extract 
important features. This inability of the convolution layer of 
the baseline model affected the primary capsule layer since it 
did not extract more important necessary to make 
differentiation between capsules, whereas the proposed model 
convolution layer extracted better edge and textural features 
from the Texton layer, hence its primary capsule produced 
better activation maps as seen in Fig. 9 1

st
 row image 2 than 

the baseline PC activation maps seen in Fig. 9 2
nd

 row image 
2.  These visualizations of layers help to improve the 
understandability of the inner workings of the black box 
models and contributes to explainable Artificial Intelligence 
[35][36][37]. 

The technique of t-distributed stochastic neighbor 
embedding (tsne) [38] [39], was employed to visually 
represent the distinctness of clusters formed within the class 
capsule layer of the models. The suggested model displays 
noticeable groupings in contrast to the clusters formed by the 
baseline model. While a few outliers are evident in both the 
suggested and baseline model clusters, the outliers in the 
suggested model remain relatively close to their respective 
clusters. This highlights the effective discriminatory capability 
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of the suggested model in comparison to the baseline model as 
it can be seen in Fig. 10. 

F. Prediction and Reconstruction 

The process of determining the likely class of an input 
image and determining if there is a strong likelihood for that 
categorization is achieved through the application of a 

reconstruction method. In light of this, this research showcases 
reconstructed images of Brain Tumor using the decoder 
network for both models. The images generated by the 
proposed model exhibit slightly improved visual quality and 
demonstrate higher class identification and emphatic 
probabilities per class compared to the images produced by 
the baseline model, as observed in Fig. 11. 

 

Fig. 5. Architecture of the proposed CapsNet model. 

 

Fig. 6. Accuracy and Loss graphs of the proposed and baseline CapsNet models. 
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Fig. 7. ROC and PR curves for the (1st row) proposed and (2nd row) baseline models. 

 

Fig. 8. Confusion Matrices of (left) proposed and (right) baseline models. 
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Fig. 9. Activation maps from the proposed and baseline convolution and primary capsule layers. 

 

Fig. 10. Clusters obtained by the (left) proposed and (right) baseline models class capsules. 

G. Comparison of Results 

To demonstrate the effectiveness of our novel approach, 
we conducted a performance comparison between our model 
and cutting-edge models on brain tumor datasets. Our 
modifications primarily center around the structure of capsule 
network, specifically focusing on dynamic routing. Although 
our main emphasis was on dynamic routing, we extended our 

investigation to encompass multiple routing techniques. The 
outcomes, as detailed in Table IV, indicate that our model's 
performance matches that of the current state-of-the-art 
capsule network models. The commendable performance 
achieved by our proposed model in medical image diagnosis 
can be attributed to its adeptness in extracting pertinent 
information from diverse images, which contributes to its 
capability in achieving accurate results. 
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Fig. 11. Reconstructed images (top) proposed and (down) baseline model. 

TABLE IV. PROPOSED MODEL AND PREVIOUS WORKS COMPARISON ON 

BRAIN TUMOR DATASET 

CapsNet Methods Validation accuracy (%) 

Baseline [5] 95.73 

BoostCaps [16] 92.45 

DCNet and DCNet++ [17] 93.04 and 95.03 

MLAF-CapsNet[40] 93.40 and 96.60 

Vimal Kurup et al.[41] 92.60 

Afshar et al. [19] 90.89 

Dilated CapsNet. [20] 95.54 

BayesCaps[21]. 73.9 

Proposed Model 97.64 

V. CONCLUSION AND FUTURE WORKS 

This study introduced a novel architecture that utilizes less 
time to train with less parameters, small size on disk, and 
proficient feature extraction capabilities, named Texton Tri-
alley Separable Feature Merging (TTSFM) CapsNet, utilizing 
a capsule network approach, aimed at the detection of brain 
tumors. Texton layer helps to extract important features from 
input image and the separable convolutions coupled with the 
use of less filters and kernel sizes resulted in using less 
amount of time for training, small size on disk, and a smaller 
number of trainable parameters. These components and 
properties lead to the appreciable performance of the proposed 
model, making the model deployable on devices with lower 
memory like mobile devices. We went on to enhance the 
model's interpretability and practical usability by conducting 

thorough analyses, including extensive visualization of layer 
activation maps, examination of feature clusters, and 
performing ablation study. 

In future, our focus will be on improving the performance 
of the model, and conducting in-depth experiments using 
medical datasets to advance the field of explainable artificial 
intelligence (XAI). Our objective is to remove all uncertainties 
from the outcomes of the models, ensuring that both 
professionals and other users can trust the reliable application 
of these models in disease diagnosis. 
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