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Abstract—Formal Concept Analysis (FCA) is a key tool in 

knowledge discovery, representing data relationships through 

concept lattices. However, the complexity of these lattices often 

hinders interpretation, prompting the need for innovative 

solutions. In this context, the study proposes clustering formal 

concepts within a concept lattice, ultimately aiming to minimize 

lattice size. To address this, The study introduces introduce two 

novel extensions of the k-means algorithm to handle categorical 

data efficiently, a crucial aspect of the FCA framework. These 

extensions, namely K-means Dijkstra on Lattice (KDL) and K-

means Vector on Lattice (KVL), are designed to minimize the 

concept lattice size. However, the current study focuses on 

introducing and refining these new methods, laying the 

groundwork for our future goal of lattice size reduction. The 

KDL utilizes FCA to build a graph of formal concepts and their 

relationships, applying a modified Dijkstra algorithm for 

distance measurement, thus replacing the Euclidean distance in 

traditional k-means. The defined centroids are formal concepts 

with minimal intra-cluster distances, enabling effective 

categorical data clustering. In contrast, the KVL extension 

transforms formal concepts into numerical vectors to leverage 

the scalability offered by traditional k-means, potentially at the 

cost of clustering quality due to oversight of the data's inherent 

hierarchy. After rigorous testing, KDL and KVL proved robust 

in managing categorical data. The introduction and 

demonstration of these novel techniques lay the groundwork for 

future research, marking a significant stride toward addressing 

current challenges in categorical data clustering within the FCA 

framework. 
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I. INTRODUCTION 

The technique of data clustering involves an unsupervised 
classification method that aims to group a set of unlabeled 
objects into meaningful clusters based on their similarities and 
differences. This process requires objects within the same 
cluster to exhibit high similarity, while objects in different 
clusters should have significant differences. Similarities and 
dissimilarities between objects are evaluated by considering 
attribute values that describe the objects, often using distance 
measures. Typically, objects can be represented as vectors in a 
multidimensional space, with each dimension representing a 
feature. When numerical features describe objects, geometric 
distance measures such as Euclidean or Manhattan distance can 
be used to define their similarity. However, these distance 
measures are unsuitable for categorical data, including values 
like gender or location. In recent years, there has been 
increasing interest in clustering categorical data [1-3]. For 
categorical data, a comparison measure, rather than a distance 

measure, is commonly used [4]. However, this metric does not 
differentiate between different attribute values since it only 
measures equality between pairs of values [5]. 

The widely acclaimed k-means algorithm [6] excels in 
simplicity and efficiency, particularly for large numerical 
datasets. However, it is restricted by its inability to handle 
categorical data directly. To overcome this limitation, 
adaptations such as the k-modes [3], k-representative [7], and 
k-centers algorithms [8] have been introduced. The k-modes 
algorithm uses simple matching similarity measures and 
substitutes "means" with "modes" for cluster centers. This 
modification, however, can result in multiple modes within a 
cluster, which can influence the algorithm's performance. To 
navigate this, the k-representative algorithm proposed in [9], 
presents "cluster centers" uniquely suited to categorical data. In 
this approach, the defining attribute of a cluster's representative 
stems from the diversity of categorical values within the cluster 
itself [9]. Although these adaptations of the k-means algorithm 
share a similar clustering process, they define "cluster center" 
and "similarity measure" differently for categorical data, which 
could potentially result in information loss when categorical 
data are directly transformed into vector space. 

This paper introduces two novel extensions of the k-means 
algorithm for clustering categorical data: K-means Dijkstra on 
Lattice (KDL) and K-means Vector on Lattice (KVL). Existing 
methods such as k-means and its variants are restricted by their 
inability to adequately handle categorical data, often requiring 
data transformation techniques that can result in information 
loss. Additionally, they struggle with representing complex, 
hierarchical relationships inherent in the data. Our proposed 
methods, KDL and KVL, aim to overcome these limitations by 
focusing on learning and integrating the representation of 
categorical values based on their inherent graph structure. This 
approach not only preserves the richness of the categorical data 
but also effectively captures the potential similarity and 
hierarchical relationships between the values. KDL utilizes 
Formal Concept Analysis to construct a graph, with nodes 
symbolizing formal concepts and edges representing 
hierarchical relationships [10]. A customized Dijkstra 
algorithm identifies the shortest path between formal concepts, 
replacing the Euclidean distance from traditional k-means. The 
centroids are those formal concepts with the least sum of intra-
cluster distances. This method accurately identifies data 
patterns and relationships, providing insights often missed by 
conventional vector representations. KVL, the second 
extension, transforms formal concepts into numerical concept 
description vectors and applies traditional k-means. It evaluates 
concept similarity, groups related concepts, and positions each 
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cluster's center as the mean of its concept description vectors. 
This approach excels in scalability by converting categorical 
data into numerical formats, enabling efficient analysis of 
larger datasets. Both KDL and KVL significantly advance our 
understanding of complex datasets by providing a unique 
perspective on clustering categorical data. These novel 
extensions of the k-means algorithm pave the way for further 
research in this field. The primary contributions of this study 
are the introduction of KDL and KVL as innovative extensions 
of the k-means algorithm, the comparative evaluation of these 
methods against existing algorithms, and the laying of 
groundwork for future advancements in clustering categorical 
data within the Formal Concept Analysis frameworks. 

The remainder of this paper is structured as follows: 
Section II provides an overview of Formal Concept Analysis 
(FCA), elucidating key terminologies and notions. Section III 
delves into Dijkstra's Algorithm and its variations employed 
for addressing shortest-path problems. Section IV then 
explores the k-means algorithm and its extended versions 
tailored for categorical data. This segues into Section V, where 
the proposed clustering methodologies are thoroughly 
discussed. The experimental results and their implications are 
exhibited in Section VI. The paper concludes in Section VII, 
summarizing the study's main points and potential future 
directions. 

II. FCA: KEY TERMINOLOGY AND NOTIONS 

Formal Concept Analysis (FCA) emerged as a distinctive 
mathematical field in the early 1980s. Central to its application 
are particular diagrams known as line or Hasse diagrams, 
which are utilized to depict information via concept lattices 
[10]. To enhance the comprehension of the study, the study 
provide a succinct overview that delineates the critical concepts 
and definitions within FCA, supplemented by an easily 
digestible example. The terms and foundations of FCA 
discussed in this paper are grounded in the work of [11]. 

Definition 1. Formal Context: A formal context is 
characterized as a tripartite structure (      ), where   
represents a collection of objects,   stands for a set of 
attributes, and         , embodies the incidence 
relationship between   and  . For each object g    and 
attribute     , a binary relation     (         signifies 
that object   possesses attribute  . Typically, a cross table 
illustrates a formal context, where rows depict the object 
names and columns exhibit the attribute names. The presence 
or absence of a cross demonstrates the existence or non-
existence of an incidence relationship between   and  , 
respectively. This context is also referred to as a binary 
context, as demonstrated in Table I. 

Expanding on Table I shows a compact formal context in 
which the object set   includes {              }, and the 
attribute set   comprises {                 }. The cross (x) 
at the intersection of the object   row and the attribute   
column indicates that the object   possesses the attribute  , 
while its absence signifies a lack of relationship between   and 
 . For instance, within this formal context, object     is 
associated with the attributes {     }. 

Definition 2. Derivation Operators: In a formal context 
(     ), derivation operators                   , 
are established for every subset of objects   within   and a 
subset of attributes   within  . They are precisely defined as 

   {   |                ,    {   |     
           . The upward operator    represents the 
collective attributes shared by all objects in  , and the 

downward operator    comprises all objects that possess all 
attributes in  . 

These derivation operators    and    are also referred to as 
   and   . For example, within the context provided in Table I, 
it can be easily discerned that: 

 {   
  {       

 {      
  {    

 {   
  {    

 {      
  {    

Definition 3. Formal Concepts: In a provided context 
denoted as k=(     ), a formal concept is recognized as a pair 
     , where  , a subset of  , is referred to as the 'extent' part 
of the formal concept      , while  , a subset of  , is known 
as the 'intent' part of the formal concept      , provided that 
         . For instance, considering the formal context 
illustrated in Table I, the pair ({o1, o3}, {a6}) emerges as a 
formal concept, where {o1, o3} represents the extent part and 
{a6} embodies the intent part. 

Definition 4. Concept Lattices: Formal concepts can be 
arranged based on the subconcept-super concept relation ≤, 
expressed as follows:                      
                             , where         is a 
subconcept (more specific) and         is a super concept 
(more general). Within a formal context  , the assembly of all 
formal concepts, in conjunction with the partial order ≤, 
generally defines a complete lattice, referred to as a concept 
lattice     . The notation          signifies the concept 
lattice derived from a formal context (      . 

 

Fig. 1. Concept lattice corresponding to the formal context from Table I. 
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By the initial part of the core theorem on concept lattices 
[10], a concept lattice          is identified as a complete 
lattice where the infimum and supremum are present for any 
arbitrary set. This is represented as                 
              

    and                 
         

         . 

TABLE I.  FORMAL CONTEXT 

Objects/ 

Attributes 
a1 a2 a3 a4 a5 a6 

o1  x    x 

o2    x   

o3 x    x x 

o4    x   

o5  x x    

The concept lattice derived from the formal context 
showcased in Table I is portrayed in Fig. 1 through a line 
diagram. The lattice is constituted by formal concepts, which 
are generated depending on the formal context and their 
relationship defined by the subconcept-superconcept paradigm 
[11]. Every node in the line diagram symbolizes a formal 
concept. These formal concepts in the diagram can be 
categorized into object concepts, described as ({    ,{   ), or 
attribute concepts, defined as ( {    {    ), indicating the 
concepts tied to objects or attributes, respectively. An object 
concept is represented as     , while an attribute concept is 
signified as     . When labeling         , The convention 
adhered to in this study specifies that each object   gets its 
label   for the corresponding formal concept     , and each 
attribute   is labeled as   for the formal concept     . 
Certain concept nodes carry objects below them, while others 
have attributes above them. More often than not, object 
labeling is placed underneath a node, while attribute labeling is 
positioned above it in a line diagram. It's worth highlighting 
that not every concept within a particular context is necessarily 
an object or an attribute concept. Any concept has the potential 
to be an object concept, an attribute concept, a blend of the 
two, or neither [12,13]. 

III. DIJKSTRA'S ALGORITHM AND ITS VARIATIONS FOR 

SHORTEST PATH PROBLEMS 

Dijkstra's algorithm was introduced in 1959 by Dutch 
computer scientist Edsger W. Dijkstra; Dijkstra's algorithm 
serves as a leading method for finding optimal paths. This 
algorithm, notable for its efficiency and effectiveness, has 
found broad application across various fields. One crucial 
application is in routing through the Internet's vast 
interconnected web, determining the shortest paths between 
network nodes. The algorithm operates on a directed weighted 
graph denoted as     {    , where   is the set of vertices 
and E the set of edges. Each edge e has an associated weight, 
Edge-Cost (e), representing the traversal cost. It's essential for 
the algorithm's efficiency that all weights are non-negative. By 
applying Dijkstra's algorithm, one can efficiently ascertain the 
shortest path from a source vertex to every other vertex in the 
graph. Such information finds applications in diverse fields, 
including transportation, logistics, and network communication 
[14]. 

The algorithm proceeds by assigning temporary and visited 
states to vertices and updating their distances from the source. 
It marks vertices as visited, updating the temporary vertices' 
distances as it progresses. After visiting all vertices, the 
algorithm terminates. However, it has limitations: it involves a 
blind search, leading to inefficient resource use and longer 
operations. Moreover, it cannot handle negative edges, leading 
to potential inaccuracies in shortest path calculations [15]. The 
efficiency of Dijkstra's algorithm can be expressed using Big-O 
notation. The complexity depends on the number of vertices 
 | |       and the updates for priority queues  | | . Different 
data structures can be used for the priority queue, resulting in 
different complexities: 

 If Fibonacci heap is used, the complexity is    | |   
 | |     | | , with DeleteMin operations taking 
     | | . 

  If a standard binary heap is used, the complexity is 
   | |     | | , with | | updates for the standard heap. 

  If a priority queue is used, the complexity is    | |   
 | |  , where the | |  term arises from | | scans of the 
unordered set New Frontier to find the vertex with the 
least sDist value. 

There are numerous variants of Dijkstra's algorithm, each 
addressing specific needs and modifications. Among the most 
well-known is the Bellman-Ford algorithm [16], which caters 
to negative-weighted graphs. The Floyd-Warshall algorithm 
[17], employs dynamic programming to find shortest paths, 
accommodating both positive and negative edge weights. The 
Johnson algorithm uses the Bellman-Ford algorithm to re-
weight the graph, eliminating negative weights, then applies 
Dijkstra's algorithm, effectively reducing execution time for 
sparse graphs [18]. Lastly, the A* algorithm extends Dijkstra's 
by combining breadth-first search and heuristic methods, 
potentially increasing speed but failing to ensure absolute 
accuracy [14]. Depending on the problem's requirements and 
characteristics, one can choose the most suitable variant to 
obtain optimal results. Dijkstra's algorithm is utilized to 
measure distance in the particular use case of clustering 
categorical data within a concept lattice. This approach allows 
us to interpret the intricate structures of the lattice effectively, 
paving the way for efficient clustering and insight generation.  

IV. K‑MEANS ALGORITHM AND ITS EXTENSIONS FOR 

CATEGORICAL DATA 

The k-means algorithm [6], is a widely used partitional or 
non-hierarchical clustering method. Given a set   of   
numerical data objects, a natural number   (where   is less 
than or equal to  ), and a distance measure between objects, 
the algorithm aims to find a partition of   into   non-empty 
and disjoint clusters. The objective is to minimize the sum of 
squared distances between each data object and its assigned 
cluster center. 

Mathematically, the k-means algorithm can be formulated 
as an optimization problem. Let     [    ] be the partition 

matrix, where      is a binary indicator variable representing 

whether object    belongs to cluster   . Let 

    {              be the set of cluster centers. The squared 



(IJACSA) International Journal of Advanced Computer Science and Applications, 

Vol. 14, No. 9, 2023 

495 | P a g e  

www.ijacsa.thesai.org 

Euclidean distance           between two objects    and    is 

used as the distance measure [19]. 

The objective function to be minimized is given by   
problem, as specified in Eq. (1): 

        ∑ ∑        (     )
 
   

 
    (1)

The objective function presented in Eq. (1) is to be 
minimized, and this operation is constrained by specific 
conditions as outlined in Eq. (2): 

∑     
 
             (2)

     {                

where                represent a partition matrix, where 

each element      equals 1 if object    belongs to cluster    and 

0 otherwise.     {               denotes the set of cluster 
centers. The function     (·, ·) calculates the squared Euclidean 
distance between two objects. 

The k-means algorithm follows a four-step process until the 
objective function        converges to a local minimum: 

 Initialize cluster centers as   =   
 ,...,   

 , and set 
     . 

 With fixed cluster centers   , solve          to obtain 
partition matrix   . Each object    is assigned to the 
cluster with the nearest cluster center. 

 With fixed partition matrix   , generate updated cluster 
centers      to minimize P (  ,     ). The new cluster 
centers are computed as the mean of the objects within 
each cluster. 

 If convergence is reached or a stopping criterion is 
satisfied, output the final result and terminate. 
Otherwise, increment   by 1 and go back to step 2. 

By iteratively updating the partition matrix and the cluster 
centers, the k-means algorithm converges to a local minimum, 
providing an effective approach for clustering numerical data 
objects. As mentioned above, the K-means algorithm [3] is 
primarily designed for numerical data. However, the 
algorithm's direct application to categorical data presents 
challenges due to the need for a natural numerical 
representation for categorical variables. Several extensions and 
adaptations of the K-means algorithm have been proposed to 
overcome this limitation to enable its use with categorical data. 
One widely used extension is the K-modes algorithm [3]. 
Unlike the original K-means algorithm, which relies on the 
Euclidean distance, the K-modes algorithm utilizes a 
dissimilarity measure specifically tailored for categorical 
variables. Instead of computing distances based on coordinates 
in a multidimensional space, the K-modes algorithm uses a 
simple matching distance measure and defines "cluster centers" 
as modes. In the K-modes algorithm, the dissimilarity between 
two categorical objects,   and   described by   categorical 
attributes, is computed by counting the total number of 
matching attribute values between the two objects. The 
dissimilarity measure is defined as shown in Eq. (3): 

         ∑         
 
     (3)

where, 

         {
                       
                      



For a cluster of categorical objects, {  , ...,   }, where    
= (   , ...,    ) and          , the K-modes algorithm 
defines the mode                 of the cluster by assigning 
  ,          , as the most frequently appearing value 
within {   , ...,    }. The authors in [3] introduced these 
modifications to develop the K-modes algorithm, which 
resembles the K-means method for clustering categorical data. 
However, it should be noted that the mode of a cluster is not 
generally unique, which introduces instability into the 
algorithm depending on the selection of modes during the 
clustering process. 

The k-Representative algorithm [7] is a further extension of 
the K-means algorithm which incorporates the idea of cluster 
representatives. Rather than utilizing modes as cluster centers, 
this concept was brought forward by [7], defining 
representatives in the following manner. Let's take a cluster  , 
comprised of categorical objects, expressed as    
 {          . Each object    can be represented as (   , ..., 

   ) with the condition          . For each attribute   
ranging from       ,   

  symbolizes the set of categorical 
values derived from    , ...,     within the cluster, that means 

  
  denotes the set of unique categorical values for attribute   

within a specific cluster   .This is essentially a collection of all 
distinct categories for attribute   across all objects in the 
cluster  . For instance, suppose a cluster   consisting of the 
following three objects: 

 Object 1: (Red, Circle, Large) 

 Object 2: (Blue, Circle, Medium) 

 Object 3: (Red, Square, Medium) 

Upon examining the attribute 1 (color), then   
  would be 

{Red, Blue}, since these are the unique color values within 

cluster  . Similarly,   
  for attribute 2 (shape) would be 

{Circle, Square}, and   
  for attribute 3 (size) would be 

{Large, Medium}. The representative of cluster  , denoted by 

        
        

  , is characterized as: 

  
    {              |                        

  (4)

Here,          signifies the proportional frequency of 
category     within cluster  . This is computed by dividing the 
number of objects in  , possessing the category     for the 

    attribute, by the total count of objects in  . This is 
represented by         and  , respectively: 

                (5)

In essence, each   
   is a distribution over   

 , defined by 
the proportional frequencies of categorical values inside the 
cluster. The k-Representative algorithm employs a simple 
matching measure, δ, to determine the dissimilarity between an 
object                 and the representative   . The 
dissimilarity           is characterized as defined in Eq. (6): 

            ∑ ∑                            
 

 
   (6)
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In this context, the dissimilarity            is 
predominantly influenced by two key factors: the proportional 
frequencies of categorical values within the cluster and the 
basic matching of these categorical values. The proportional 
frequencies reflect the relative importance and prevalence of 
different categories within the cluster, while the matching 
mechanism assesses the similarity between the categorical 
values of the data object   and the representative center   . By 
considering both the proportional frequencies and the matching 
aspect, the dissimilarity measure captures the distinctive 
characteristics and relationships of categorical variables within 
the cluster. To illustrate this, let's continue with the example 
above and consider a new object 4: (Blue, Circle, Small). The 
dissimilarity between object 4 and the representative    of the 
cluster   would be calculated as follows: The representative    
for the previous example cluster would be: 

 For attribute 1 (Color): {('Red', 0.67), ('Blue', 0.33)} 

 For attribute 2 (Shape): {('Circle', 0.67), ('Square', 
0.33)} 

 For attribute 3 (Size): {('Large', 0.33), ('Medium', 0.67)} 

Let's calculate the dissimilarity between Object 4 and the 
representative     using Eq. (6). For each attribute, the 
contribution to the overall dissimilarity is individually 
calculated: 

For attribute 1 (Color): 

    in   
 : {('Red'), ('Blue')} 

       : {0.67, 0.33} 

δ ('Blue', 'Red’) =1, δ ('Blue', 'Blue') =0 

Contribution for attribute 1: 

            δ ('Blue', 'Red’) +              δ ('Blue', 'Blue') 
= 0.67   1 + 0.33   0 = 0.67 

For attribute 2 (Shape): 

    in   
 : {('Circle'), ('Square')} 

       : {0.67, 0.33} 

δ ('Circle', 'Circle') = 0,  δ ('Circle', 'Square') =1 

Contribution for attribute 2: 

               δ ('Circle', 'Circle') +                δ 
('Circle', 'Square')= 0.67   0 + 0.33   1= 0.33 

For attribute 3 (Size): 

    in   
 : {('Large'), ('Medium')} 

       : {0.33, 0.67} 

δ ('Small', 'Large') = 1,  δ ('Small', 'Medium') =1 

Contribution for attribute 2: 

              δ ('Small', 'Large') +                δ 
('Small', 'Medium’) = 0.33   1 + 0.67   1 =1 

Finally, sum up the contributions from all attributes: 

                             

Therefore, the dissimilarity between object 4 and the 
representative    of cluster   is 2. Based on this dissimilarity, 
the cluster assignment of object 4 can be determined by 
comparing its dissimilarity with other cluster representatives. 
Object 4 will be assigned to the cluster with the lowest 
dissimilarity, indicating the cluster it is most similar to. 

Several extensions have been proposed to tackle specific 
issues related to categorical data clustering. The k-Centers 
algorithm [8] is an extension of the K-means algorithm, 
defining the cluster center as a set of probability distributions 
estimated using a kernel density estimation method. 
Dissimilarities between data objects and cluster centers are 
calculated using indicator vectors and squared Euclidean 
distance, providing an effective method for clustering 
categorical data while preserving the key principles of K-
means. Other extensions have been proposed to address 
specific challenges associated with clustering categorical data. 
These extensions include fuzzy K-modes [20], scalable K-
modes [21], and probabilistic K-modes [22], among others. 
Fuzzy K-modes permit soft assignments, allowing data points 
to belong to multiple clusters with various degrees of 
membership. Scalable K-modes enhance computational 
efficiency for large-scale categorical datasets, while 
probabilistic K-modes incorporate probabilistic models for 
uncertainty in cluster assignments, giving a more refined view 
of cluster membership. 

The development of these extensions demonstrates the 
ongoing efforts to adapt the K-means algorithm for categorical 
data clustering. These approaches not only consider the unique 
characteristics of categorical variables but also address 
challenges such as missing data, scalability, and uncertainty in 
cluster assignments. The availability of these extensions 
expands the applicability of the K-means algorithm, allowing it 
to be effectively utilized in a wide range of domains where 
categorical data analysis is prevalent. 

V. PROPOSED CLUSTERING METHODS 

A. K-means Dijkstra on Lattice (KDL) 

The K-means Dijkstra on Lattice (KDL) method uniquely 
merges the structural representation of Formal Concept 
Analysis (FCA) with the computational efficiency of a 
customized version of Dijkstra's algorithm. This innovative 
procedure addresses the distinctive challenges associated with 
clustering categorical data while duly considering the data's 
inherent structure. KDL method harmoniously integrates the 
mathematical rigor of FCA and the algorithmic strength of 
Dijkstra's approach, crafting a new path in categorical data 
analysis. The general procedure of KDL as follows: 

 Data Conversion to Formal Context: In the initial phase, 
the categorical data is transformed into a formal 
context. This context is represented by a binary matrix, 
where rows correspond to distinct objects, and columns 
represent various attributes. A value of 1 signifies that a 
given object belongs to a certain attribute category, and 
a 0 indicates the lack of such a relationship. 

 Formal Concept Derivation: The FCA is then applied to 
this formal context. It uses the "NextClosure" algorithm 
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[23], which ensures that all possible formal concepts in 
the context are generated. These concepts represent 
significant associations between objects and attributes 
and capture the underlying structure and dependencies 
within the data. The hierarchical relationships among 
these concepts are represented in a lattice structure or 
graph, which is constructed using the "Ipred" algorithm, 
modified to suit the needs of the current study. ―Ipred‖ 
algorithm is very fast for building the Hasse diagram. 
For more information about this algorithm, refer to [24]. 
In the quest for an analytical solution to count concepts, 
Schüt [25] proposed an upper approximation for the 

count, expressed as | |             | |       , where 
| | denotes the number of concepts and | | represents 
the number of entries in the formal context. This 
approximation accommodates not merely the number of 
objects or attributes but also the overall size of the 
context, providing a potentially more precise estimate 
of the concept count [26]. 

 Assigning Edge Weights: This step is critical for 
defining the cost of moving between concepts within 
the lattice. Each transition has an associated cost, which 
can vary depending on the direction of movement. For 
example, transitioning from a parent concept to a child 
concept can be assigned a higher cost (let’s say a cost of 
2), than moving from child to parent (let’s say a cost of 
1), reflecting the importance of specific transitions in 
categorical attributes. 

 Using Dijkstra's Algorithm for Distance Measurement: 
The method employs the Dijkstra algorithm to measure 
distance within the concept lattice. It calculates the 
minimum cost of the shortest path between two formal 
concepts in a concept lattice using the weights assigned 
to the edges. This provides an effective measurement 
for the optimal path within the concept lattice. 

 Calculation and Updating of Cluster Centroids: The 
centroids of the clusters, which need to be formal 
concepts themselves, are calculated and continually 
updated until the values stabilize. The representative 
centroid of a cluster is the formal concept with the 
smallest sum of distances to all other concepts within 
the cluster, minimizing the overall clustering cost 
function. 

In the context of the proposed clustering method utilizing 
Formal Concept Analysis (FCA) and Dijkstra’s algorithm, an 
important property arises, for any pair of concepts    and    
within the concept lattice, there always exists a path connecting 
   to   . The concept lattice, constructed through FCA, 
represents the hierarchy of formal concepts derived from the 
categorical data. The property asserts that no matter which two 
concepts are chosen within the lattice, there is always a path 
connecting them. This means there is a sequence of edges to 
traverse, moving from one concept to another, ultimately 
leading from    to   . By relying on the subconcept-super 
concept relation (≤) transitivity in the lattice prove that a path 
exists between any two concepts in a lattice as described in 
Definition 4 in Section II. Let's consider two concepts   and    
in the lattice. If    and    are directly connected (i.e.,    ≤    or 

   ≤   ), then a path exists between them as they are adjacent 
concepts in the lattice. If    and    are not directly connected, 
consideration can be given to all concepts that are reachable 
from    in the lattice. Let's denote this set as      . Similarly, 
the set of all concepts reachable from    as can be defined 
     . Since the lattice is a partially ordered set,       and 
      are subsets of the lattice. Now, let's consider the 
intersection of       and      , denoted as       ∩      . If 
their intersection is not empty, it means that there exists at least 
one concept that is reachable from both    and   . Let's denote 
this concept as  . Since   is in      , there is a path from    to 
 . Similarly, because   is within      , a path leads from   to 
  . Thus, by connecting these two paths, a continuous path is 
formed from    to   . 

If       ∩       is empty, no concepts can be reached 
from both    and   . Nonetheless, establish a pathway between 
   and    by considering the concepts that are reachable from 
each and locating a shared concept that functions as an 
intermediary. This process can be conducted iteratively, 
broadening the search for concepts reachable from both    and 
   until a common concept is discovered. By exploiting the 
transitivity of the subconcept-super concept relationship and 
considering the accessibility of concepts within the lattice, a 
path between any two lattice concepts can always be found. 

The concept lattice structure inherently guarantees a path 
between any pair of concepts, rooted in its construction, which 
encapsulates all potential combinations of objects and 
attributes as formal concepts. As a result, the lattice forms a 
connected structure, allowing for traversal from one concept to 
another through a series of links. This trait is vital for the 
suggested clustering method, ensuring the computation of the 
least costly shortest path between any formal concept pair 
using the Dijkstra-based distance measure. It confirms that all 
concepts in the lattice can be accessed, and their dissimilarities 
compared, facilitating precise cluster assignments based on 
categorical profiles. The clustering method efficiently 
leverages this connectivity within the concept lattice, capturing 
hierarchical relationships, semantic constraints, and directional 
costs embedded in the data. This inherent lattice connectivity 
aids in delivering meaningful and accurate cluster assignments, 
ensuring all concepts within the lattice remain interconnected 
and accessible. 

1) Dijkstra-based distance measure description: The 

Dijkstra-Based Distance Measure is a key component of the 

K-means Dijkstra on Lattice (KDL) method, serving as a more 

efficient substitute for the Euclidean distance metric in 

standard K-means algorithms. The KDL method incorporates 

Dijkstra's algorithm on a lattice structure generated from 

categorical data via Formal Concept Analysis (FCA). The 

algorithm computes the shortest path between two formal 

concepts in the lattice, considering both cost and path 

direction. Notably, upward transitions (parent-to-child 

concept) may incur higher costs than downward transitions 

(child-to-parent). The algorithm utilizes a min-heap-based 

priority queue for optimization. 

Formally, the Hasse diagram built from a concept lattice 
      , can be represented as       , where   is the set of 
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formal concepts, and   denotes the edges representing the 
hierarchical relationships among them. The start and end 
formal concepts are denoted as    and   , respectively. The 
cost to reach a concept   from the start concept    is 
represented as     . The algorithm also defines cost functions 
"UpCost" and "DownCost," representing the costs of moving 
upwards and downwards in the lattice. The Dijkstra-based 
distance measure uses a priority queue  , based on a min-heap, 
where each element is a pair          sorted by     . It also 
maintains a set   to keep track of the nodes already visited. 
The cost function           {   is defined with   and 
   being two formal concepts in the lattice: 

        {
                      

                  
  (7)

Subsequently, the Dijkstra-based distance measure, 
represented as          {  , computes the minimum 
cost path from the start concept    to the end concept    in the 
lattice: 

         
   {∑           

   
   |                                     

 (8)

Here,   is the number of formal concepts in a specific path 
from    to   . For each possible path from    to   , sum the 
costs from each step    to      in the path, and         ) is the 
minimum of these sums over all possible paths. The algorithm 
functions as follows: 

Algorithm 1: The Dijkstra-based distance measure algorithm 
on the concept lattice.  

Inputs:   ,   ,       , UpCost, DownCost. 
Output: minimum cost from    to    
Initialize: 

                 
              
       
          
                       
                     

While           
                        
                  

Return        
      

                    
            

      

                             
                     : 

                              
                     

    : 

                       

      

                     
            

         

                        

      

      

       

         

In Algorithm 1, several symbols are introduced for clarity. 
The symbol   denotes the starting concept in the concept 
lattice, while    represents the ending concept.       refers 
to the concept lattice itself, composed of concepts   and edges 
 . The terms 'UpCost' and 'DownCost' specify the costs for 
upward and downward movements within the lattice, 
respectively.      is used to signify the current shortest path 
distance from   to any given concept   A predecessor map is 
denoted by  , where      reveals the predecessor of a concept 
  in the shortest path originating from   . Finally,   and 
  serve as a priority queue for upcoming nodes to visit and a 
set for nodes already visited, respectively. The algorithm 
always returns the minimum cost of the shortest path between 
   and    due to the property of the lattice structure, which 
ensures a path exists between any two concepts. 

This approach has a time complexity of                , 
where   is the number of edges (relationships between formal 
concepts), and   is the total count of formal concepts in the 
lattice. By leveraging the lattice structure, the cost function, 
and an efficient min-heap-based priority queue, the Dijkstra-
Based Distance Measure provides a more accurate 
representation of dissimilarities in categorical data. This results 
in an optimized clustering process and yields more accurate 
and meaningful cluster assignments. 

2) Cluster centers: Defining the cluster centers, or 

centroids, in a concept lattice is vital for effectively 

implementing the K-means Dijkstra on Lattice (KDL) method. 

These centroids need to be formal concepts within the lattice. 

The continual updating and calculation of these representative 

centroids significantly influence the minimization of the 

overall clustering cost function. To formally describe this, 

consider a cluster   composed of a set of formal concepts {    
where           | |  The representative formal concept, 

denoted as  , is defined as the concept within   that 

minimizes the sum of the distances to all other concepts in the 

same cluster. This can be mathematically expressed as: 

           (∑        
| |
    )  (9)

Here, 

   represents each concept within the cluster   

In Eq. (9),         is the Dijkstra-based distance from the 
potential centroid   to each concept    within the cluster. The 
argmin operation is employed to find the formal concept   in   
that yields the smallest sum of distances to all other concepts in 
the cluster  . It is important to note that   inherently belongs to 
the cluster  , which allows for a more efficient calculation of 
the minimal sum of distances to all other concepts within  . 
Furthermore, the existence of a center for any set of formal 
concepts is ensured due to the properties of the Dijkstra-based 
distance measure. This consistency makes the method 
universally applicable, regardless of the specific set of formal 
concepts under consideration. This method of defining cluster 
centers in the concept lattice adheres to mathematical rigor 
while being practically feasible, offering a systematic way to 
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manage and interpret complex categorical datasets. This 
method enhances the interpretability of clustering results by 
identifying representative formal concepts for each cluster, 
fostering more comprehensive and insightful data analysis. 

3) The clustering algorithm: The K-Means Dijkstra on 

Lattice (KDL) clustering algorithm, grounded in Formal 

Concept Analysis (FCA) and the Dijkstra-based distance 

measure, can be articulated through the following sequential 

stages: 

Algorithm 2: K-Means Dijkstra on Lattice (KDL) 

clustering algorithm 
Inputs:  , the number of clusters;  , the lattice of formal 

concepts. 

Output: The resulting clusters {             . 
Initialize: 

Select   formal concepts {              from the lattice   

randomly as the initial centroids of the   clusters. 

Assignment: 

         formal concept       : 

Assign   to the cluster    for which the Dijkstra-based 

distance measure         is minimized, where    is the 

centroid of cluster   . 

Using Equations (7, 8) 

Centroid Update: 

         cluster      : 

Recalculate the centroid    as the formal concept   that 

minimizes the total distance to all other concepts within     

Using Equation (9) 

Iteration: 

      centroids change between iterations   : 

       steps 2 and 3. 

Finalization: 

       Output the resulting clusters {             . 

4) Cost analysis of k-means dijkstra on lattice (KDL) 

method: This section analyzes the computational complexity 

of the proposed K-Means Dijkstra on Lattice (KDL) method. 

The computational cost of each step will be evaluated, from 

the initialization of clusters to their final assignment. This 

analysis will provide insights into the efficiency and 

scalability of the KDL method. 
Given the parameters: 

   represents the number of clusters. 

   represents the number of objects. 

   represents the number of attributes. 

   represents the number of concepts. 

   represents the number of edges in the lattice. 

   represents the maximum number of border elements 
in the lattice construction. 

The proposed K-Means Dijkstra on Lattice (KDL) method 
commences with data preprocessing, wherein the categorical 
dataset transforms a formal context. This stage involves a 
binary translation of each dataset entry, leading to a time 
complexity of      . Subsequently, a lattice is generated 
from the formal concepts obtained in the previous stage. This 

phase necessitates looping over all border elements for each 
concept, inducing a worst-case time complexity of      . The 
final stage of the process encompasses a K-means-like 
clustering operation. This phase includes iterations over all the 
concepts to assign clusters and update centroids. The 
computation of the shortest paths between pairs of concepts 
within the lattice primarily influences this stage's time 
complexity. This is achieved using Dijkstra's distance 
algorithm. Assuming I iterations are required to reach 
convergence, the time complexity for computing the shortest 
paths between all pairs of concepts culminates in          
          . To summarize, the KDL method's overall time 
complexity, significantly influenced by the data preprocessing, 
lattice construction, and lattice-based clustering stages, can be 
approximated as                              . It is 
worth noting that this is a rough estimation, with actual time 
complexity potentially varying based on the characteristics and 
data distribution within the formal context. However, focusing 
on the dominant term for the sake of simplification, the time 
complexity of the KDL method becomes          
          . 

B. K-means Vector on Lattice (KVL) 

The K-means Vector on Lattice (KVL) method is essential 
for converting categorical data into numerical data. Leveraging 
the classical k-means algorithm facilitates data grouping, 
making it instrumental for various data analysis operations, 
especially when dealing with predominantly categorical or 
non-numeric data. The essence of this method lies in its 
capacity to convert formal concepts, regardless of their abstract 
or categorical nature, into 'concept description vectors'. These 
vectors exist in a real-valued vector space, which not only 
makes them easily adaptable to standard mathematical 
procedures but also optimizes them for computational analysis. 
Each vector represents the formal concept from which it was 
derived, encapsulating its fundamental attributes. Every 
dimension within the vector signifies a different attribute of the 
concept, with its magnitude corresponding to the prevalence or 
significance of the attribute within the concept. This forms a 
compressed yet efficient way to contain the information 
intrinsic to the formal concept. 

With the creation of concept description vectors, these 
entities can now be subjected to the k-means algorithm. This 
renowned clustering method partitions the data into a specified 
number 'k' of distinct clusters. Each cluster is identified by its 
centroid, which serves as the symbolic or physical center of the 
cluster. All data points, or concept description vectors in this 
context, within a specific cluster have a closer similarity to 
their cluster's centroid than to those of other clusters. This aids 
in the aggregation of analogous concepts, thereby facilitating 
insightful analysis of the data. 

Definition 5. Concept Description Vector: Let         
be a formal concept, where    ,    , and a context 
            has   | |      , | |      , the incidence 
relation           can be represented as a binary matrix, 
where the rows correspond to the elements of   (objects), the 
columns correspond to the elements of   (attributes), and each 
entry of the matrix is either 1 or 0, indicating whether the 
relation       exists or not. Let's denote this matrix as  , with 
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dimensions      , where   is the number of objects in   and 
  is the number of attributes in  . The rows of the matrix can 
be labeled by   ,   ,…,    and the columns by   ,   ,…, 
  , the matrix can be defined as shown in Table II:  

The concept description vector is defined as      
     

     
         

  .     
 (   ranging from 1 to   ) is 

obtained as follows [5]: 

   
 {

                                                       
 

 
∑  (     )                    

   
  (10) 

where      . 

The method to calculate each attribute within a concept is 
different. It depends on whether the attribute is in the intent of 
each concept or not. The concept vector is the base for getting 
the similarity between concepts. This vector is obtained from 
the context based on the intent of each concept. Depending on 
whether the attribute    is a part of the intent  . If    is a part 
of the intent, it is assigned a value of 1, indicating its high 
importance in defining the concept. If not, it's calculated as the 
average association of this attribute across all objects, 

represented as 
 

 
∑  (     )            

   . This can be 

perceived as the frequency or relevance of this attribute across 
the object set  . The computation of each attribute forms the 
concept description vector used to ascertain the similarity 
between concepts. 

After defining the concept description vectors, the KVL 
method introduces the concept similarity measure. This 
measure, often referred to as Concept Similarity (   ), as 
explicated in Definition 6, is used to ascertain the proximity of 
these concepts. Concept Similarity is calculated using the 
Euclidean Distance between any two concept description 
vectors     and    . The    equation helps us to quantify the 
closeness between two concepts, taking into account each 
component of their respective concept description vectors. 

Definition 6. Concept Similarity: Concept Similarity (  ) 
is calculated based on the concept description vector in 
Definition 5 using traditional Euclidean distance. For any two 
concept description vectors 

            
       

           
    and      

       
       

           
   , the Euclidean distance is defined 

as per Eq. (5): 

           

√      
        

            
        

                 
       

    

 (11)

TABLE II.  MATRIX CORRESPONDING TO THE RELATION I 

Objects/Attributes 1      …    

                     …          

                     …          

… … … … … 

                     …          

This framework of concept description vectors and concept 
similarity lays the groundwork for the k-means clustering 
algorithm. The algorithm takes the concept description vectors 
as inputs and leverages the concept similarity measure to 
identify which concepts most resemble each other. Concepts 
exhibiting high similarity are then grouped into clusters. The 
center of each cluster, represented by   , is calculated as the 
mean of all concept description vectors within that cluster. 

Let's denote    as the     cluster                , where   is 
the number of clusters. The centroid of each cluster    can be 
defined as: 

   
 

|  |
∑    

|  |
       

     (12)

The k-means algorithm aims to minimize the within-cluster 
sum of squares (WCSS) of Euclidean distances. This objective 
function Q is as follows: 

  ∑ ∑ ||   
   ||

 |  |
     

       
        (13)

The algorithm alternates between assigning each concept 
description vector to the nearest centroid and recalculating the 
centroid of each cluster using Eq. (11) and (12), until the 
clusters stabilize. The algorithm has converged, and the 
clusters are optimally partitioned concerning the given concept 
description vectors. 

1) The clustering algorithm: The main idea is as follows. 

Suppose           is a formal context and      is the set 

of all concept description vectors and the number of clusters is 

 . Firstly, the initial centers,   
 =                     , of 

  clusters are selected randomly, and the corresponding 

clusters are   
 = {  

 }. Secondly, join a concept description 

vector        into one cluster according to the following 

rule: if the distance between   and   
  is lower than that of   

and other centers, then,   is put into   
 . Each vector in      

can be adjusted according to this rule. Thirdly, the new center 

of each cluster can be determined by calculating the mean 

value of vectors within each cluster and set it as a new center. 

Finally, repeat the above process till the twice computation of 

each cluster and center are the same. The algorithm steps are 

as follows: 

Algorithm 3. K-means clustering of concepts. 
Input: All the description vectors of concepts in      ,  .  
Output: The clusters and corresponding centers.  

Initialize: 
Set   

   ,   
   , ...,   

   ; 
    ,  

Select initial center vectors of   clusters:   
 ,   

  …,   
 ;  

Assignment: 
                     

-Find   such that 

            (    
 )              (    

 )      

         then, 

    
 ; 

       

Centroid Update: 
           

    : 

   
    

 

|  |
∑     

|  |
        , using Equation (12)  
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   ={      |  (    

   )    (    
   )} 

                           using Equation (11) 
       

Convergence Check: 
     

 =  
   ,   

 =  
    ,            ,      

         Go to step5.  
Else:  
                 ,  
           Go to Step 2.  

Output: clusters   
 ,   

 , ...,   
  and the corresponding centers   

 ,   
 , 

…,   
 . 

Algorithm 1 outlines the process for performing K-means 
clustering on the set of concept description vectors. The input 
to the algorithm is the set of all concept description vectors, 
and the output is the resulting clusters and their centers. The 
algorithm begins by randomly initializing the clusters and 
selecting the initial centers for the clusters. It then assigns each 
concept description vector to the cluster whose center it is 
closest to, based on the concept similarity measure in Eq. (11). 
It then updates the clusters' centers based on the mean of the 
concept description vectors within each cluster using Eq. (12) 
and repeats this process until the clusters stabilize. mapping the 
vectors back to the original concepts. Once the K-means 
clustering is done and the clusters are stabilized, the vectors 
within each cluster can be traced back to their original 
concepts. The mapping uses the concept description vectors 
created in the first step. 

Algorithm 4: Mapping vectors to original concepts.  

Input: The clusters   
 ,   

 , …,   
  and the corresponding centers   

 , 

  
  …,   

 .  

Output: Clusters of original concepts. 

Initialize: 

             ←  , 
                   

For each description vector in   
  do: 

Map back to its original concept and add to    . 
Using the relationship between the concept description 

vector and the original concept established in Definition 

5. 
EndFor 

Output: the new clusters             , each containing the 
original concepts. 

In this way, the numerical data obtained from the K-means 
clustering is transformed back into categorical data, giving us 
clusters of similar concepts rather than clusters of similar 
vectors. This method of approximation and mapping allows for 
efficient and meaningful clustering of concepts in a context, 
making it easier to understand and interpret the relationships 
and similarities between different concepts. 

2) Cost Analysis of the KVL Method: This section 

thoroughly reviews the computational complexity of the KVL 

method to assess its efficiency and scalability. The first stage 

is data preprocessing, which involves the transformation of a 

dataset into a formal context. Here, a binary representation of 

each object with N objects and A attributes is needed, 

introducing a time complexity of O(NA). After preprocessing, 

formal concepts are generated and then converted into vectors 

in an A-dimensional attribute space. For each of the C 

concepts, an equivalent vector in the attribute space needs to 

be calculated, leading to a time complexity of O(AC). The 

algorithm starts by randomly selecting K centroids from the 

pool of C concepts, resulting in a time complexity of O(K). 

Subsequent stages include iterative assignment and update, 

where each concept is assigned to its nearest centroid, and 

centroids are updated based on new assignments. This incurs a 

time complexity of O(CK) per iteration. These processes are 

performed I times until convergence, resulting in a total time 

complexity of this stage being O(ICK). 

Lastly, the mapped vectors are reconverted to their original 
formal concepts, which involves a time complexity of O(CK). 
Summing up the complexities from each phase, the total time 
complexity of the KVL method is estimated to be O (NA+ 
AC+K+ICK+CK). This is a heuristic estimate, and time 
complexity could vary based on data distribution and other 
runtime factors. However, focusing on the dominant term for 
simplification, the time complexity of the KVL method 
becomes O(IKC). 

VI.  EXPERIMENTAL RESULTS 

In this section, the presented experimental results aimed at 
demonstrating the performance of the Dijkstra-Based Distance 
Measure, as well as the performance and scalability of the K-
means Dijkstra on Lattice (KDL) and K-means Vector on 
Lattice (KVL) methods. The experiments were conducted on a 
Mac system equipped with an Apple M1 chip and 8GB of 
RAM, running Mac OS 13.2.1. 

A. Testing and Evaluation of Dijkstra-based Distance 

Measure 

In the experimental section, the performance of the distance 
measure based on Dijkstra's algorithm is rigorously evaluated. 
The testing process involved the following steps: 

1) Random generation of formal contexts: five formal 

contexts are randomly generated with varying sizes and 

densities; the characteristics of these formal contexts are 

described in Table III. The density parameter in this context 

refers to the proportion of filled entries (1s) compared to the 

total number of possible entries in the binary matrix 

representation of the formal context. It quantifies how much 

information is present regarding the relationship between 

objects and attributes. To explain the density parameter, let's 

consider an example from Table III: Formal Context1 with 

600 objects and 125 attributes. The density for Formal 

Context1 is 0.10, indicating that, on average, each entry in the 

binary matrix has a 0.10 probability of being filled (assigned a 

value of 1). A lower density value implies sparser 

relationships, where fewer objects belong to the given 

attributes or categories. In contrast, a higher density value 

indicates denser relationships, where a larger number of 

objects are associated with the given attributes. 

2) In the analysis, four datasets from the UCI Machine 

Learning repository are meticulously examined. Prior to 

conducting any experiments, these datasets are transformed 

into formal contexts, with details outlined in Table III. The 
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datasets were chosen based on two key criteria: public 

accessibility and the categorical characteristics of their 

attributes. The selected datasets include: 

 The Balance-Scale dataset is designed to replicate 
psychological experiment results. Each instance in this 
dataset can be labeled based on whether the balance 
scale leans to the left, right, or is balanced. 

 The Breast Cancer dataset obtained from the University 
of Wisconsin hospitals, classifies each instance into one 
of two potential categories: benign or malignant. 

 The Car Evaluation dataset, which results from a simple 
hierarchical decision model initially designed for DEX's 
demonstration, classifies each instance into one of four 
classes: unacc, acc, good, and vgood. 

 Tae dataset representing teaching performance 
assessment over five semesters (three regular and two 
summers) includes 151 teaching assistant assignments 
from the University of Wisconsin-Madison's Statistics 
Department. All instances fall into one of three 
categories: low, medium, and high. 

3) Extraction of formal concepts: The NextClosure 

algorithm was used to extract the set of formal concepts from 

each formal context. The number of formal concepts 

generated from each formal context is shown in Table IV. 

4) Hasse diagram construction: Utilizing the Ipred 

algorithm, a Hasse diagram was structured optimally for the 

case study, as elaborated in Section V. The characteristics of 

the generated Hasse diagrams are shown in Table V, by 

considering the density parameter in the construction of the 

Hasse diagram. The density parameter influences the number 

of edges and nodes in the Hasse diagram. A denser formal 

context with a higher density value tends to result in a larger 

number of formal concepts and, consequently, a more 

extensive concept lattice with a higher number of edges 

connecting the concepts. On the other hand, a sparser formal 

context with a lower density value leads to a smaller concept 

lattice with fewer edges. 

TABLE III.  CHARACTERISTICS OF RANDOM AND REAL-WORLD FORMAL 

CONTEXTS 

Formal Contexts #objects #attributes density 

Formal Context1 600 125 0.10 

Formal Contex2 11000 30 0.10 

Formal Context3 1350 120 0.05 

Formal Context4 2000 20 0.15 

Formal Context5 12000 20 0.23 

Balance-Scale 625 20 0.20 

Breast Cancer 182 35 0.25 

Tae 151 101 0.04 

Car Evaluation 1728 21 0.28 

TABLE IV.  FORMAL CONCEPTS GENERATED FROM THE FORMAL 

CONTEXTS IN TABLE III 

Formal Contexts #formal concepts. 

Formal Context1 29926 

Formal Contex2 15117 

Formal Context3 9882 

Formal Context4 2989 

Formal Context5 39931 

Balance-Scale 1297 

Breast Cancer 2569 

Tae 276 

Car Evaluation 8001 

TABLE V.  HASSE DIAGRAM TRAITS VIA IPRED ALGORITHM 

Formal Contexts #formal concepts 
Inclusion relationship 

between concepts (edges) 

Concept lattice1 29926 122839 

Concept lattice2 15117 67040 

Concept lattice3 9882 36797 

Concept lattice4 2989 12175 

Concept lattice5 39931 228427 

Balance-Scale 1297 4945 

Breast Cancer 2569 9513 

Tae 276 619 

Car Evaluation 8001 38928 

The analysis involved running a Dijkstra-based distance 
measure on concept lattices generated from five random formal 
contexts and four real-world datasets. The formal contexts 
varied in number of objects, attributes, and density. On the 
other hand, the real-world datasets were diverse, encompassing 
balance scale, breast cancer, teaching assistant evaluation, and 
car evaluation data. After generating the formal contexts and 
preparing the datasets, Formal Concept Analysis (FCA) using 
the NextClosure algorithm has been performed to derive 
formal concepts. The count of these formal concepts varied 
significantly across the contexts and datasets, ranging from as 
low as 2989 in Formal Context 4 to as high as 39931 in Formal 
Context 5. Using these formal concepts, Hasse diagrams 
(concept lattices) constructed with the help of the Ipred 
algorithm. The concept lattices illustrated the inclusion 
relationship between concepts. Again, the number of inclusion 
relationships was directly related to the complexity and size of 
the corresponding formal context. Subsequently, the distance 
measure was evaluated. Concept pairs were randomly chosen 
from each concept lattice, constituting 25% of the total 
concepts. The minimum cost of the shortest path between these 
pairs was calculated using the designated distance measure. 
This evaluation was performed across ten trials, with both the 
average runtime and mean distance documented for each. 

We're observing a comparison of the average run time of 
the Dijkstra-based distance measure algorithm and the mean 
distance between concepts for both randomly generated formal 
datasets and real-world datasets. As indicated in Fig. 2 and 
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Fig. 3 for randomly generated datasets, there is a clear 
correlation between the number of concepts in the lattice and 
the algorithm's runtime. An increase in the number of concepts 
leads to a corresponding rise in runtime. This finding aligns 
with expectations, as a lattice with a greater number of 
concepts and relationships is likely to be more complex. 
Consequently, calculating the shortest path between pairs in 
this intricate structure would naturally demand more 
computational time and resources. The mean distances were 
mostly consistent for each context, indicating a relatively stable 
distance measure despite potential variance in the random 
generation of the formal contexts. This reinforces the efficacy 
of the Dijkstra-based distance measure, highlighting its 
stability across multiple trials of randomly generated data. 

Patterns similar to those observed in randomly generated 
datasets were also evident in real-world datasets, as 
demonstrated in Fig. 4 and Fig. 5. The runtimes correlate with 
the number of concepts in the lattice, with larger lattices taking 
longer to calculate the shortest paths. Interestingly, the Car 
Evaluation dataset, which had the highest number of concepts 
(8001), exhibited the shortest mean distance (6.5735) among 
the real-world datasets. This suggests that although the dataset 
is complex, the relationships within the data are more 
straightforward or closer than the other datasets. Meanwhile, 
the Balance-Scale and Breast Cancer datasets had a more 
moderate number of concepts (1297 and 2569, respectively) 
and showed a higher mean distance. This might indicate that, 
despite having fewer concepts, the relationships in these 
datasets could be more complex or convoluted. 

 

Fig. 2. Average runtime of distance calculation algorithm on different 

concept lattice sizes for the random contexts in Table IV. 

 

Fig. 3. Mean distance of distance measure algorithm on different concept 

lattice sizes for the random contexts in Table IV. 

 

Fig. 4. Average runtime of distance calculation algorithm on different 

concept lattice sizes of real-world datasets. 

 

Fig. 5. Mean distance of distance measure algorithm on different concept 

lattice sizes of real-world datasets. 

Overall, the results suggest that the Dijkstra-based distance 
measure is robust and stable across various randomly generated 
and real-world contexts. The run time increases as expected 
with the size and complexity of the dataset, and the measure 
captures the inherent complexity in the data (as reflected in the 
mean distances) and provides valuable insights into the 
structural properties of concept lattices. It allows for 
identifying concept pairs relatively closer or farther apart 
within the lattice structure. The results contribute to a better 
understanding of relationships and structural characteristics 
within formal contexts and concept lattices. The consistent 
performance of the measure across different scenarios 
reinforces its potential utility in handling diverse and complex 
categorical datasets. 

Adapting the FCA, the Dijkstra-based distance measure 
applies the robust Dijkstra's algorithm to compute the shortest 
path between two categorical data points. This method, 
mindful of the hierarchical structure of categorical data, 
quantifies dissimilarity by evaluating paths within the data 
space. It provides a viable alternative to Euclidean distance 
within the clustering context when enhancing the K-means 
algorithm for categorical data analysis. Replacing Euclidean 
distance with the Dijkstra-based measure allows the K-means 
algorithm to cluster categorical datasets better, accurately 
reflecting the relationships and similarities between categorical 
variables. Incorporating the Dijkstra-based distance measure in 
the K-means algorithm aids cluster identification based on 
categorical patterns, providing meaningful insights and 
potential applications across numerous domains. It’s ushers in 
new avenues for examining and interpreting categorical data. 
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B. Clustering Performance 

In the present section, the performance of two distinct 
clustering approaches designed for categorical data: K-means 
Dijkstra on Lattice (KDL) and K-means Vector on Lattice 
(KVL) is scrutinized. We've chosen the Silhouette Coefficient 
and the Davies-Bouldin Index (DBI) as the evaluation metrics 
due to their ability to assess clustering performance without the 
need for ground truth labels, making them especially useful in 
real-world applications where such labels might not be 
available. The Silhouette Coefficient serves as a measure to 
ascertain the suitability of a data point's allocation to its cluster 
in comparison to other clusters. The coefficient fluctuates 
between -1 and 1, with a high positive value implying a well-
clustered data point, while a negative one indicates potential 
misplacement within a cluster. Here's the mathematical 
expression for the Silhouette Coefficient: 

Silhouette Score                    (14)

Where     is the mean intra-cluster distance and     is the 
mean nearest-cluster distance. In contrast, the Davies-Bouldin 
Index (DBI) is a metric that evaluates the separation and 
compactness of clusters. A lower DBI value implies an optimal 
clustering solution. The DBI is calculated as follows: 

1) Calculate the average distance between each point in a 

cluster    and all other points in the same cluster. This is often 

referred to as the intra-cluster distance. Denote this as     for 

cluster   . 

   = (1 /   )   ||      ||           

where: 

    is the number of points in cluster   , 

   is a point in cluster   , 

    is the centroid of cluster   , 

 ||      ||  is the distance between point   and centroid 
  . 

2) Calculate the distance     between cluster    and   , 

using a suitable distance measure between the centroids of the 

clusters. 

3) Calculate the ratio     between the sum of the intra-

cluster distances of cluster    and   , and the inter-cluster 

distance between    and   . 

    = (   +   ) /     

4) For each cluster   , find the maximum ratio    which is 

the maximum     for all      . 

   =          for all       

5) The Davies-Bouldin Index (DBI) is the average of all 

  . 

         ∑      (15)

where,   is the total number of clusters 

Again, lower DBI values indicate better clustering because 
this signifies clusters that are more compact (lower intra-cluster 

distances    ) and better separated (higher inter-cluster 
distances    ). 

The analysis is based on four real-world datasets described 
in the previous section as shown in Table V and the results in 
Tables VI and VII. The clustering is performed by setting the 
number of clusters (k value) equal to the number of classes for 
each dataset to maintain consistency with the inherent data 
structure. These results are recorded from the averages of 100 
runs for each method A closer examination of these tables 
allows for a comparative analysis of the performance of the K-
means Dijkstra on Lattice (KDL) and K-means Vector on 
Lattice (KVL) methods. Regarding the Silhouette Coefficient 
(Table VI), it is evident that the KDL method, which utilizes 
the inherent lattice graph structure of categorical data for 
clustering, consistently outperforms the KVL method, 
regardless of the dataset used. This outcome is further 
corroborated by the DBI results (Table VII), where the KDL 
method again demonstrates superior performance by 
consistently achieving lower index values across all datasets. 
This can be attributed to the design of the KDL method. The 
KDL strategy focuses on integrating the representation of 
categorical data based on the graph structure, effectively 
leveraging the potential similarity between these data points. It 
employs Formal Concept Analysis (FCA), a mathematical 
framework for generating a concept hierarchy, and Dijkstra's 
algorithm to calculate the shortest path between formal 
concepts in the FCA graph. This novel distance measure, 
which represents the minimal cost of moving from one formal 
concept to another, facilitates a more accurate clustering 
process. 

On the contrary, the KVL method, while simplifying the 
clustering process by converting categorical data into 
numerical vectors and using standard k-means algorithms, risks 
obscuring the inherent hierarchical relationships between 
categorical values. This transformation can potentially result in 
less effective clustering performance. 

TABLE VI.  SILHOUETTE COEFFICIENT SCORES OF CLUSTERING 

PERFORMANCE FOR K-MEANS DIJKSTRA ON LATTICE (KDL) AND K-MEANS 

VECTOR ON LATTICE (KVL) METHODS ACROSS DIVERSE DATASETS 

Datasets KDL KVL #Clusters 

Balance-Scale 0.406 
0.128 
0.090 

0.092 

0.106 

3 

Breast Cancer 0.239 2 

Tae 0.300 3 

Car Evaluation 0.563 4 

TABLE VII.  DBI SCORES OF CLUSTERING PERFORMANCE FOR K-MEANS 

DIJKSTRA ON LATTICE (KDL) AND K-MEANS VECTOR ON LATTICE (KVL) 

METHODS ACROSS DIVERSE DATASETS 

Datasets KDL KVL # Clusters 

Balance-Scale 1.48 
2,64 

2,78 

2.62 
2.92 

3 

Breast Cancer 1.83 2 

Tae 1.49 3 

Car Evaluation 1.90 4 
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Fig. 6. Silhouette scores by dataset and method. 

 

Fig. 7. DBI scores by dataset and method. 

The compelling evidence in Tables VI and VII and their 
corresponding graphical representations in Fig. 6 and Fig. 7 
illuminate the KDL method's superior performance over the 
KVL method for clustering categorical data. By directly 
handling categorical data and leveraging its inherent 
hierarchical structure, the KDL method offers more meaningful 
and accurate clustering results. This finding corroborates the 
hypothesis that leveraging the inherent similarities and 
structure of categorical data can yield improved results. While 
the KVL method simplifies the process by transforming 
categorical data into numerical vectors, it potentially obscures 
the intricate hierarchical relationships between categorical 
values, thus diminishing the method's effectiveness. This is 
reflected in the lower Silhouette, and higher DBI scores 
observed for the KVL method. These findings not only present 
solid evidence in favor of the KDL method as a more potent 
tool for clustering categorical data, but they also underscore the 
importance of utilizing the data's inherent structure where 
possible. However, these conclusions should uphold the utility 
of the KVL method. Instead, they serve as a critical reminder 
of the significance of selecting an appropriate tool for the data 
at hand, considering each method's potential trade-offs and 
benefits. 

C. Scalability Test Results Analysis 

1) Scalability in relation to the number of clusters: To 

bolster the robustness of the study concerning the K-means 

Dijkstra on Lattice (KDL) and K-means Vector on Lattice 

(KVL) clustering techniques, a meticulous analytical approach 

was employed. This rigorous methodology underscores the 

credibility of the performance assessments and findings 

presented. All results presented in this analysis were derived 

from the average runtime of five independent runs. This 

method was utilized to mitigate any outliers' influence and 

deliver a more precise portrayal of each method's 

performance. 

The investigation was particularly interested in the 
scalability of these methods in response to an increase in the 

number of clusters. The number of clusters was varied from 2 
to 18 in the analysis, with the dataset size held constant. This 
aspect is essential in real-world situations, especially when data 
is complex and needs to segregate into a limited number of 
clusters neatly. The performance of both methods in relation to 
the varying number of clusters was assessed using the 'Car 
Evaluation' dataset consisting of 8001 formal concepts. From 
Fig. 8, it is evident that the K-means Vector on Lattice (KVL) 
method demonstrates scalability. A linear relationship is 
observed between execution time and the increment in the 
number of clusters. The execution time varies approximately 
between 44.48 and 51.56 seconds as the number of clusters 
changes from 2 to 18. This pattern underscores the efficiency 
of the KVL method in handling larger and more complex 
datasets. 

This method, thus, shows promise in effectively managing 
a rise in the number of clusters without causing a substantial 
increase in execution time. On the other hand, Fig. 9 provides 
insights into the scalability of the KDL method. This method 
shows rapid growth in execution time as the number of clusters 
increases. The time jumps from about 1926.77 seconds for 2 
clusters to a massive 49600.10 seconds for 18 clusters. Given 
the complexity of the lattice graph and the number of formal 
concepts, the KDL method's computational load increases 
significantly with the number of clusters, suggesting lower 
scalability. 

The KVL method is better in terms of scalability and 
efficiency for an increasing number of clusters; the KDL 
method provides higher-quality clustering, though it demands 
significantly more computational time and resources. This 
highlights the importance of finding the right balance between 
computational efficiency and clustering quality. The preference 
for one over the other may vary depending on the specific 
situation and constraints. 

 

Fig. 8. Scalability of KVL Method to the number of clusters when clustering 

8001 formal concepts of the 'car evaluation' dataset. 

 

Fig. 9. Scalability of the KDL method to the number of clusters when 

clustering 8001 formal concepts of the 'car evaluation' dataset. 
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2) Scalability in relation to the number of formal 

concepts: In examining the scalability of KDL and KVL, 

performance was assessed with an increasing number of 

formal concepts, while keeping the cluster count constant at 

three. This analysis is grounded in multiple iterations of these 

methods on a selection of real-world datasets, namely 

Balance-Scale, Breast Cancer, Tae, and Car Evaluation, 

described in detail in Tables III, IV, and 5. Fig. 10, and Fig. 

11, represent the scalability of the KVL and KDL methods, 

respectively, demonstrating how they fare with a rising count 

of formal concepts. 

Diving into Fig. 10, it's evident that the KVL method shows 
admirable consistency. The recorded execution times from five 
separate runs, 43.14, 43.25, 44.15, and 46.35 seconds, 
corresponding to the datasets featuring 276, 1297, 2569, and 
8001 formal concepts. This suggests that as the number of 
formal concepts increases, the KVL method retains its 
efficiency, reflecting robust scalability - an attribute crucial for 
managing large datasets. In comparison, Fig. 11 encapsulates 
the performance of the KDL method. The execution times here 
are noticeably higher, registering at 53.67, 301.47, 830.02, and 
2026.79 seconds for the same gradual increase in formal 
concepts. It's clear that as the number of formal concepts 
expands, the KDL method's execution time climbs drastically, 
indicating an intensifying computational requirement and 
limited scalability when tasked with larger datasets. 

 

Fig. 10. Scalability of KVL method with increasing number of formal 

concepts. 

 

Fig. 11. Scalability of KDL method with increasing number of formal 

concepts. 

This investigation rigorously assesses the K-means Dijkstra 
on Lattice (KDL) and K-means Vector on Lattice (KVL) 
algorithms, identifying a trade-off between clustering quality 
and computational efficiency. KDL excels in quality but is 

resource-intensive, making it less scalable. Conversely, KVL is 
more scalable but may compromise on quality. The choice 
between the two hinges on task-specific needs: KDL is better 
for quality-focused tasks with sufficient resources, while KVL 
is ideal for tasks requiring scalability. Future research could 
aim to optimize each method's shortcomings, offering a more 
balanced clustering solution. These refinements would bring us 
closer to a unified, efficient, and high-quality clustering 
algorithm for handling categorical data. 

VII. CONCLUSION 

In the exploration, the efficacy of a Dijkstra-based distance 
measure is assessed for conceptual clustering across multiple 
categorical datasets. This distance measures demonstrated a 
powerful capability in determining hierarchical relationships 
among categorical variables, even within complex and dense 
datasets. The evaluations, conducted across randomly 
generated formal contexts and real-world datasets, confirmed 
its robust performance, scalability, and reliability. However, a 
correlation between the average runtime and the number of 
concepts suggests potential efficiency enhancements. 

The clustering tasks employed two methods: the K-means 
Dijkstra on Lattice (KDL) method, which uses Formal Concept 
Analysis (FCA) and the Dijkstra-based distance measure; and 
the K-means Vector on Lattice (KVL) method, which 
transforms categorical data into numerical vectors and applies 
standard k-means algorithms. The KDL method yielded high-
quality clusters that accurately mirrored the inherent 
hierarchical relationships within categorical data. However, 
when handling larger numbers of clusters or formal concepts, 
scalability emerged as a challenge for this method. On the 
other hand, the KVL method demonstrated impressive 
scalability. Nevertheless, due to its conversion of data into 
numerical vectors, there's a risk of overlooking the hierarchical 
structure of the data, which could affect the clustering quality. 

Future research has several promising pathways. The lattice 
structure in the KDL method could be simplified to boost 
scalability, and the KVL method could be further refined to 
better capture the structure of categorical data. Additionally, 
the exploration of alternate or complementary distance 
measures could be beneficial. A particularly intriguing 
direction for future research is integrating the Dijkstra-based 
distance measure into the k-means algorithm, which could 
significantly advance categorical data analysis. The study of 
the KDL and KVL methods has under-scored their respective 
strengths and limitations, illuminating potential areas for future 
research. These findings are instrumental to the ongoing 
development of categorical data analysis and refining data 
clustering methodologies. By investigating the complexities of 
concept lattices and streamlining the knowledge discovery 
process of FCA, The study offers a foundational understanding 
that serves as a basis for the development of more scalable and 
efficient solutions. 
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