
(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 14, No. 9, 2023

492 | P a g e

www.ijacsa.thesai.org

K-Means Extensions for Clustering Categorical Data

on Concept Lattice

Mohammed Alwersh
*
, László Kovács

Department of Information Technology, University of Miskolc, Miskolc, Hungary

Abstract—Formal Concept Analysis (FCA) is a key tool in

knowledge discovery, representing data relationships through

concept lattices. However, the complexity of these lattices often

hinders interpretation, prompting the need for innovative

solutions. In this context, the study proposes clustering formal

concepts within a concept lattice, ultimately aiming to minimize

lattice size. To address this, The study introduces introduce two

novel extensions of the k-means algorithm to handle categorical

data efficiently, a crucial aspect of the FCA framework. These

extensions, namely K-means Dijkstra on Lattice (KDL) and K-

means Vector on Lattice (KVL), are designed to minimize the

concept lattice size. However, the current study focuses on

introducing and refining these new methods, laying the

groundwork for our future goal of lattice size reduction. The

KDL utilizes FCA to build a graph of formal concepts and their

relationships, applying a modified Dijkstra algorithm for

distance measurement, thus replacing the Euclidean distance in

traditional k-means. The defined centroids are formal concepts

with minimal intra-cluster distances, enabling effective

categorical data clustering. In contrast, the KVL extension

transforms formal concepts into numerical vectors to leverage

the scalability offered by traditional k-means, potentially at the

cost of clustering quality due to oversight of the data's inherent

hierarchy. After rigorous testing, KDL and KVL proved robust

in managing categorical data. The introduction and

demonstration of these novel techniques lay the groundwork for

future research, marking a significant stride toward addressing

current challenges in categorical data clustering within the FCA

framework.

Keywords—Clustering algorithms; categorical data; k-means;

cluster analysis; formal concept analysis; concept lattice

I. INTRODUCTION

The technique of data clustering involves an unsupervised
classification method that aims to group a set of unlabeled
objects into meaningful clusters based on their similarities and
differences. This process requires objects within the same
cluster to exhibit high similarity, while objects in different
clusters should have significant differences. Similarities and
dissimilarities between objects are evaluated by considering
attribute values that describe the objects, often using distance
measures. Typically, objects can be represented as vectors in a
multidimensional space, with each dimension representing a
feature. When numerical features describe objects, geometric
distance measures such as Euclidean or Manhattan distance can
be used to define their similarity. However, these distance
measures are unsuitable for categorical data, including values
like gender or location. In recent years, there has been
increasing interest in clustering categorical data [1-3]. For
categorical data, a comparison measure, rather than a distance

measure, is commonly used [4]. However, this metric does not
differentiate between different attribute values since it only
measures equality between pairs of values [5].

The widely acclaimed k-means algorithm [6] excels in
simplicity and efficiency, particularly for large numerical
datasets. However, it is restricted by its inability to handle
categorical data directly. To overcome this limitation,
adaptations such as the k-modes [3], k-representative [7], and
k-centers algorithms [8] have been introduced. The k-modes
algorithm uses simple matching similarity measures and
substitutes "means" with "modes" for cluster centers. This
modification, however, can result in multiple modes within a
cluster, which can influence the algorithm's performance. To
navigate this, the k-representative algorithm proposed in [9],
presents "cluster centers" uniquely suited to categorical data. In
this approach, the defining attribute of a cluster's representative
stems from the diversity of categorical values within the cluster
itself [9]. Although these adaptations of the k-means algorithm
share a similar clustering process, they define "cluster center"
and "similarity measure" differently for categorical data, which
could potentially result in information loss when categorical
data are directly transformed into vector space.

This paper introduces two novel extensions of the k-means
algorithm for clustering categorical data: K-means Dijkstra on
Lattice (KDL) and K-means Vector on Lattice (KVL). Existing
methods such as k-means and its variants are restricted by their
inability to adequately handle categorical data, often requiring
data transformation techniques that can result in information
loss. Additionally, they struggle with representing complex,
hierarchical relationships inherent in the data. Our proposed
methods, KDL and KVL, aim to overcome these limitations by
focusing on learning and integrating the representation of
categorical values based on their inherent graph structure. This
approach not only preserves the richness of the categorical data
but also effectively captures the potential similarity and
hierarchical relationships between the values. KDL utilizes
Formal Concept Analysis to construct a graph, with nodes
symbolizing formal concepts and edges representing
hierarchical relationships [10]. A customized Dijkstra
algorithm identifies the shortest path between formal concepts,
replacing the Euclidean distance from traditional k-means. The
centroids are those formal concepts with the least sum of intra-
cluster distances. This method accurately identifies data
patterns and relationships, providing insights often missed by
conventional vector representations. KVL, the second
extension, transforms formal concepts into numerical concept
description vectors and applies traditional k-means. It evaluates
concept similarity, groups related concepts, and positions each

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 14, No. 9, 2023

493 | P a g e

www.ijacsa.thesai.org

cluster's center as the mean of its concept description vectors.
This approach excels in scalability by converting categorical
data into numerical formats, enabling efficient analysis of
larger datasets. Both KDL and KVL significantly advance our
understanding of complex datasets by providing a unique
perspective on clustering categorical data. These novel
extensions of the k-means algorithm pave the way for further
research in this field. The primary contributions of this study
are the introduction of KDL and KVL as innovative extensions
of the k-means algorithm, the comparative evaluation of these
methods against existing algorithms, and the laying of
groundwork for future advancements in clustering categorical
data within the Formal Concept Analysis frameworks.

The remainder of this paper is structured as follows:
Section II provides an overview of Formal Concept Analysis
(FCA), elucidating key terminologies and notions. Section III
delves into Dijkstra's Algorithm and its variations employed
for addressing shortest-path problems. Section IV then
explores the k-means algorithm and its extended versions
tailored for categorical data. This segues into Section V, where
the proposed clustering methodologies are thoroughly
discussed. The experimental results and their implications are
exhibited in Section VI. The paper concludes in Section VII,
summarizing the study's main points and potential future
directions.

II. FCA: KEY TERMINOLOGY AND NOTIONS

Formal Concept Analysis (FCA) emerged as a distinctive
mathematical field in the early 1980s. Central to its application
are particular diagrams known as line or Hasse diagrams,
which are utilized to depict information via concept lattices
[10]. To enhance the comprehension of the study, the study
provide a succinct overview that delineates the critical concepts
and definitions within FCA, supplemented by an easily
digestible example. The terms and foundations of FCA
discussed in this paper are grounded in the work of [11].

Definition 1. Formal Context: A formal context is
characterized as a tripartite structure (), where
represents a collection of objects, stands for a set of
attributes, and , embodies the incidence
relationship between and . For each object g and
attribute , a binary relation (signifies
that object possesses attribute . Typically, a cross table
illustrates a formal context, where rows depict the object
names and columns exhibit the attribute names. The presence
or absence of a cross demonstrates the existence or non-
existence of an incidence relationship between and ,
respectively. This context is also referred to as a binary
context, as demonstrated in Table I.

Expanding on Table I shows a compact formal context in
which the object set includes { }, and the
attribute set comprises { }. The cross (x)
at the intersection of the object row and the attribute
column indicates that the object possesses the attribute ,
while its absence signifies a lack of relationship between and
 . For instance, within this formal context, object is
associated with the attributes { }.

Definition 2. Derivation Operators: In a formal context
(), derivation operators ,
are established for every subset of objects within and a
subset of attributes within . They are precisely defined as

 { | , { |
 . The upward operator represents the
collective attributes shared by all objects in , and the

downward operator comprises all objects that possess all
attributes in .

These derivation operators and are also referred to as
 and . For example, within the context provided in Table I,
it can be easily discerned that:

 {
 {

 {
 {

 {
 {

 {
 {

Definition 3. Formal Concepts: In a provided context
denoted as k=(), a formal concept is recognized as a pair
 , where , a subset of , is referred to as the 'extent' part
of the formal concept , while , a subset of , is known
as the 'intent' part of the formal concept , provided that
 . For instance, considering the formal context
illustrated in Table I, the pair ({o1, o3}, {a6}) emerges as a
formal concept, where {o1, o3} represents the extent part and
{a6} embodies the intent part.

Definition 4. Concept Lattices: Formal concepts can be
arranged based on the subconcept-super concept relation ≤,
expressed as follows:
 , where is a
subconcept (more specific) and is a super concept
(more general). Within a formal context , the assembly of all
formal concepts, in conjunction with the partial order ≤,
generally defines a complete lattice, referred to as a concept
lattice . The notation signifies the concept
lattice derived from a formal context (.

Fig. 1. Concept lattice corresponding to the formal context from Table I.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 14, No. 9, 2023

494 | P a g e

www.ijacsa.thesai.org

By the initial part of the core theorem on concept lattices
[10], a concept lattice is identified as a complete
lattice where the infimum and supremum are present for any
arbitrary set. This is represented as

 and

 .

TABLE I. FORMAL CONTEXT

Objects/

Attributes
a1 a2 a3 a4 a5 a6

o1 x x

o2 x

o3 x x x

o4 x

o5 x x

The concept lattice derived from the formal context
showcased in Table I is portrayed in Fig. 1 through a line
diagram. The lattice is constituted by formal concepts, which
are generated depending on the formal context and their
relationship defined by the subconcept-superconcept paradigm
[11]. Every node in the line diagram symbolizes a formal
concept. These formal concepts in the diagram can be
categorized into object concepts, described as ({ ,{), or
attribute concepts, defined as ({ {), indicating the
concepts tied to objects or attributes, respectively. An object
concept is represented as , while an attribute concept is
signified as . When labeling , The convention
adhered to in this study specifies that each object gets its
label for the corresponding formal concept , and each
attribute is labeled as for the formal concept .
Certain concept nodes carry objects below them, while others
have attributes above them. More often than not, object
labeling is placed underneath a node, while attribute labeling is
positioned above it in a line diagram. It's worth highlighting
that not every concept within a particular context is necessarily
an object or an attribute concept. Any concept has the potential
to be an object concept, an attribute concept, a blend of the
two, or neither [12,13].

III. DIJKSTRA'S ALGORITHM AND ITS VARIATIONS FOR

SHORTEST PATH PROBLEMS

Dijkstra's algorithm was introduced in 1959 by Dutch
computer scientist Edsger W. Dijkstra; Dijkstra's algorithm
serves as a leading method for finding optimal paths. This
algorithm, notable for its efficiency and effectiveness, has
found broad application across various fields. One crucial
application is in routing through the Internet's vast
interconnected web, determining the shortest paths between
network nodes. The algorithm operates on a directed weighted
graph denoted as { , where is the set of vertices
and E the set of edges. Each edge e has an associated weight,
Edge-Cost (e), representing the traversal cost. It's essential for
the algorithm's efficiency that all weights are non-negative. By
applying Dijkstra's algorithm, one can efficiently ascertain the
shortest path from a source vertex to every other vertex in the
graph. Such information finds applications in diverse fields,
including transportation, logistics, and network communication
[14].

The algorithm proceeds by assigning temporary and visited
states to vertices and updating their distances from the source.
It marks vertices as visited, updating the temporary vertices'
distances as it progresses. After visiting all vertices, the
algorithm terminates. However, it has limitations: it involves a
blind search, leading to inefficient resource use and longer
operations. Moreover, it cannot handle negative edges, leading
to potential inaccuracies in shortest path calculations [15]. The
efficiency of Dijkstra's algorithm can be expressed using Big-O
notation. The complexity depends on the number of vertices
 | | and the updates for priority queues | | . Different
data structures can be used for the priority queue, resulting in
different complexities:

 If Fibonacci heap is used, the complexity is | |
 | | | | , with DeleteMin operations taking
 | | .

 If a standard binary heap is used, the complexity is
 | | | | , with | | updates for the standard heap.

 If a priority queue is used, the complexity is | |
 | | , where the | | term arises from | | scans of the
unordered set New Frontier to find the vertex with the
least sDist value.

There are numerous variants of Dijkstra's algorithm, each
addressing specific needs and modifications. Among the most
well-known is the Bellman-Ford algorithm [16], which caters
to negative-weighted graphs. The Floyd-Warshall algorithm
[17], employs dynamic programming to find shortest paths,
accommodating both positive and negative edge weights. The
Johnson algorithm uses the Bellman-Ford algorithm to re-
weight the graph, eliminating negative weights, then applies
Dijkstra's algorithm, effectively reducing execution time for
sparse graphs [18]. Lastly, the A* algorithm extends Dijkstra's
by combining breadth-first search and heuristic methods,
potentially increasing speed but failing to ensure absolute
accuracy [14]. Depending on the problem's requirements and
characteristics, one can choose the most suitable variant to
obtain optimal results. Dijkstra's algorithm is utilized to
measure distance in the particular use case of clustering
categorical data within a concept lattice. This approach allows
us to interpret the intricate structures of the lattice effectively,
paving the way for efficient clustering and insight generation.

IV. K‑MEANS ALGORITHM AND ITS EXTENSIONS FOR

CATEGORICAL DATA

The k-means algorithm [6], is a widely used partitional or
non-hierarchical clustering method. Given a set of
numerical data objects, a natural number (where is less
than or equal to), and a distance measure between objects,
the algorithm aims to find a partition of into non-empty
and disjoint clusters. The objective is to minimize the sum of
squared distances between each data object and its assigned
cluster center.

Mathematically, the k-means algorithm can be formulated
as an optimization problem. Let [] be the partition

matrix, where is a binary indicator variable representing

whether object belongs to cluster . Let

 { be the set of cluster centers. The squared

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 14, No. 9, 2023

495 | P a g e

www.ijacsa.thesai.org

Euclidean distance between two objects and is

used as the distance measure [19].

The objective function to be minimized is given by
problem, as specified in Eq. (1):

 ∑ ∑ ()

 (1)

The objective function presented in Eq. (1) is to be
minimized, and this operation is constrained by specific
conditions as outlined in Eq. (2):

∑

 (2)

 {

where represent a partition matrix, where

each element equals 1 if object belongs to cluster and

0 otherwise. { denotes the set of cluster
centers. The function (·, ·) calculates the squared Euclidean
distance between two objects.

The k-means algorithm follows a four-step process until the
objective function converges to a local minimum:

 Initialize cluster centers as =
 ,...,

 , and set
 .

 With fixed cluster centers , solve to obtain
partition matrix . Each object is assigned to the
cluster with the nearest cluster center.

 With fixed partition matrix , generate updated cluster
centers to minimize P (,). The new cluster
centers are computed as the mean of the objects within
each cluster.

 If convergence is reached or a stopping criterion is
satisfied, output the final result and terminate.
Otherwise, increment by 1 and go back to step 2.

By iteratively updating the partition matrix and the cluster
centers, the k-means algorithm converges to a local minimum,
providing an effective approach for clustering numerical data
objects. As mentioned above, the K-means algorithm [3] is
primarily designed for numerical data. However, the
algorithm's direct application to categorical data presents
challenges due to the need for a natural numerical
representation for categorical variables. Several extensions and
adaptations of the K-means algorithm have been proposed to
overcome this limitation to enable its use with categorical data.
One widely used extension is the K-modes algorithm [3].
Unlike the original K-means algorithm, which relies on the
Euclidean distance, the K-modes algorithm utilizes a
dissimilarity measure specifically tailored for categorical
variables. Instead of computing distances based on coordinates
in a multidimensional space, the K-modes algorithm uses a
simple matching distance measure and defines "cluster centers"
as modes. In the K-modes algorithm, the dissimilarity between
two categorical objects, and described by categorical
attributes, is computed by counting the total number of
matching attribute values between the two objects. The
dissimilarity measure is defined as shown in Eq. (3):

 ∑

 (3)

where,

 {

For a cluster of categorical objects, { , ..., }, where
= (, ...,) and , the K-modes algorithm
defines the mode of the cluster by assigning
 , , as the most frequently appearing value
within { , ..., }. The authors in [3] introduced these
modifications to develop the K-modes algorithm, which
resembles the K-means method for clustering categorical data.
However, it should be noted that the mode of a cluster is not
generally unique, which introduces instability into the
algorithm depending on the selection of modes during the
clustering process.

The k-Representative algorithm [7] is a further extension of
the K-means algorithm which incorporates the idea of cluster
representatives. Rather than utilizing modes as cluster centers,
this concept was brought forward by [7], defining
representatives in the following manner. Let's take a cluster ,
comprised of categorical objects, expressed as
 { . Each object can be represented as (, ...,

) with the condition . For each attribute
ranging from ,

 symbolizes the set of categorical
values derived from , ..., within the cluster, that means

 denotes the set of unique categorical values for attribute

within a specific cluster .This is essentially a collection of all
distinct categories for attribute across all objects in the
cluster . For instance, suppose a cluster consisting of the
following three objects:

 Object 1: (Red, Circle, Large)

 Object 2: (Blue, Circle, Medium)

 Object 3: (Red, Square, Medium)

Upon examining the attribute 1 (color), then
 would be

{Red, Blue}, since these are the unique color values within

cluster . Similarly,
 for attribute 2 (shape) would be

{Circle, Square}, and
 for attribute 3 (size) would be

{Large, Medium}. The representative of cluster , denoted by

 , is characterized as:

 { |

 (4)

Here, signifies the proportional frequency of
category within cluster . This is computed by dividing the
number of objects in , possessing the category for the

 attribute, by the total count of objects in . This is
represented by and , respectively:

 (5)

In essence, each
 is a distribution over

 , defined by
the proportional frequencies of categorical values inside the
cluster. The k-Representative algorithm employs a simple
matching measure, δ, to determine the dissimilarity between an
object and the representative . The
dissimilarity is characterized as defined in Eq. (6):

 ∑ ∑

 (6)

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 14, No. 9, 2023

496 | P a g e

www.ijacsa.thesai.org

In this context, the dissimilarity is
predominantly influenced by two key factors: the proportional
frequencies of categorical values within the cluster and the
basic matching of these categorical values. The proportional
frequencies reflect the relative importance and prevalence of
different categories within the cluster, while the matching
mechanism assesses the similarity between the categorical
values of the data object and the representative center . By
considering both the proportional frequencies and the matching
aspect, the dissimilarity measure captures the distinctive
characteristics and relationships of categorical variables within
the cluster. To illustrate this, let's continue with the example
above and consider a new object 4: (Blue, Circle, Small). The
dissimilarity between object 4 and the representative of the
cluster would be calculated as follows: The representative
for the previous example cluster would be:

 For attribute 1 (Color): {('Red', 0.67), ('Blue', 0.33)}

 For attribute 2 (Shape): {('Circle', 0.67), ('Square',
0.33)}

 For attribute 3 (Size): {('Large', 0.33), ('Medium', 0.67)}

Let's calculate the dissimilarity between Object 4 and the
representative using Eq. (6). For each attribute, the
contribution to the overall dissimilarity is individually
calculated:

For attribute 1 (Color):

 in
 : {('Red'), ('Blue')}

 : {0.67, 0.33}

δ ('Blue', 'Red’) =1, δ ('Blue', 'Blue') =0

Contribution for attribute 1:

 δ ('Blue', 'Red’) + δ ('Blue', 'Blue')
= 0.67 1 + 0.33 0 = 0.67

For attribute 2 (Shape):

 in
 : {('Circle'), ('Square')}

 : {0.67, 0.33}

δ ('Circle', 'Circle') = 0, δ ('Circle', 'Square') =1

Contribution for attribute 2:

 δ ('Circle', 'Circle') + δ
('Circle', 'Square')= 0.67 0 + 0.33 1= 0.33

For attribute 3 (Size):

 in
 : {('Large'), ('Medium')}

 : {0.33, 0.67}

δ ('Small', 'Large') = 1, δ ('Small', 'Medium') =1

Contribution for attribute 2:

 δ ('Small', 'Large') + δ
('Small', 'Medium’) = 0.33 1 + 0.67 1 =1

Finally, sum up the contributions from all attributes:

Therefore, the dissimilarity between object 4 and the
representative of cluster is 2. Based on this dissimilarity,
the cluster assignment of object 4 can be determined by
comparing its dissimilarity with other cluster representatives.
Object 4 will be assigned to the cluster with the lowest
dissimilarity, indicating the cluster it is most similar to.

Several extensions have been proposed to tackle specific
issues related to categorical data clustering. The k-Centers
algorithm [8] is an extension of the K-means algorithm,
defining the cluster center as a set of probability distributions
estimated using a kernel density estimation method.
Dissimilarities between data objects and cluster centers are
calculated using indicator vectors and squared Euclidean
distance, providing an effective method for clustering
categorical data while preserving the key principles of K-
means. Other extensions have been proposed to address
specific challenges associated with clustering categorical data.
These extensions include fuzzy K-modes [20], scalable K-
modes [21], and probabilistic K-modes [22], among others.
Fuzzy K-modes permit soft assignments, allowing data points
to belong to multiple clusters with various degrees of
membership. Scalable K-modes enhance computational
efficiency for large-scale categorical datasets, while
probabilistic K-modes incorporate probabilistic models for
uncertainty in cluster assignments, giving a more refined view
of cluster membership.

The development of these extensions demonstrates the
ongoing efforts to adapt the K-means algorithm for categorical
data clustering. These approaches not only consider the unique
characteristics of categorical variables but also address
challenges such as missing data, scalability, and uncertainty in
cluster assignments. The availability of these extensions
expands the applicability of the K-means algorithm, allowing it
to be effectively utilized in a wide range of domains where
categorical data analysis is prevalent.

V. PROPOSED CLUSTERING METHODS

A. K-means Dijkstra on Lattice (KDL)

The K-means Dijkstra on Lattice (KDL) method uniquely
merges the structural representation of Formal Concept
Analysis (FCA) with the computational efficiency of a
customized version of Dijkstra's algorithm. This innovative
procedure addresses the distinctive challenges associated with
clustering categorical data while duly considering the data's
inherent structure. KDL method harmoniously integrates the
mathematical rigor of FCA and the algorithmic strength of
Dijkstra's approach, crafting a new path in categorical data
analysis. The general procedure of KDL as follows:

 Data Conversion to Formal Context: In the initial phase,
the categorical data is transformed into a formal
context. This context is represented by a binary matrix,
where rows correspond to distinct objects, and columns
represent various attributes. A value of 1 signifies that a
given object belongs to a certain attribute category, and
a 0 indicates the lack of such a relationship.

 Formal Concept Derivation: The FCA is then applied to
this formal context. It uses the "NextClosure" algorithm

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 14, No. 9, 2023

497 | P a g e

www.ijacsa.thesai.org

[23], which ensures that all possible formal concepts in
the context are generated. These concepts represent
significant associations between objects and attributes
and capture the underlying structure and dependencies
within the data. The hierarchical relationships among
these concepts are represented in a lattice structure or
graph, which is constructed using the "Ipred" algorithm,
modified to suit the needs of the current study. ―Ipred‖
algorithm is very fast for building the Hasse diagram.
For more information about this algorithm, refer to [24].
In the quest for an analytical solution to count concepts,
Schüt [25] proposed an upper approximation for the

count, expressed as | | | | , where
| | denotes the number of concepts and | | represents
the number of entries in the formal context. This
approximation accommodates not merely the number of
objects or attributes but also the overall size of the
context, providing a potentially more precise estimate
of the concept count [26].

 Assigning Edge Weights: This step is critical for
defining the cost of moving between concepts within
the lattice. Each transition has an associated cost, which
can vary depending on the direction of movement. For
example, transitioning from a parent concept to a child
concept can be assigned a higher cost (let’s say a cost of
2), than moving from child to parent (let’s say a cost of
1), reflecting the importance of specific transitions in
categorical attributes.

 Using Dijkstra's Algorithm for Distance Measurement:
The method employs the Dijkstra algorithm to measure
distance within the concept lattice. It calculates the
minimum cost of the shortest path between two formal
concepts in a concept lattice using the weights assigned
to the edges. This provides an effective measurement
for the optimal path within the concept lattice.

 Calculation and Updating of Cluster Centroids: The
centroids of the clusters, which need to be formal
concepts themselves, are calculated and continually
updated until the values stabilize. The representative
centroid of a cluster is the formal concept with the
smallest sum of distances to all other concepts within
the cluster, minimizing the overall clustering cost
function.

In the context of the proposed clustering method utilizing
Formal Concept Analysis (FCA) and Dijkstra’s algorithm, an
important property arises, for any pair of concepts and
within the concept lattice, there always exists a path connecting
 to . The concept lattice, constructed through FCA,
represents the hierarchy of formal concepts derived from the
categorical data. The property asserts that no matter which two
concepts are chosen within the lattice, there is always a path
connecting them. This means there is a sequence of edges to
traverse, moving from one concept to another, ultimately
leading from to . By relying on the subconcept-super
concept relation (≤) transitivity in the lattice prove that a path
exists between any two concepts in a lattice as described in
Definition 4 in Section II. Let's consider two concepts and
in the lattice. If and are directly connected (i.e., ≤ or

 ≤), then a path exists between them as they are adjacent
concepts in the lattice. If and are not directly connected,
consideration can be given to all concepts that are reachable
from in the lattice. Let's denote this set as . Similarly,
the set of all concepts reachable from as can be defined
 . Since the lattice is a partially ordered set, and
 are subsets of the lattice. Now, let's consider the
intersection of and , denoted as ∩ . If
their intersection is not empty, it means that there exists at least
one concept that is reachable from both and . Let's denote
this concept as . Since is in , there is a path from to
 . Similarly, because is within , a path leads from to
 . Thus, by connecting these two paths, a continuous path is
formed from to .

If ∩ is empty, no concepts can be reached
from both and . Nonetheless, establish a pathway between
 and by considering the concepts that are reachable from
each and locating a shared concept that functions as an
intermediary. This process can be conducted iteratively,
broadening the search for concepts reachable from both and
 until a common concept is discovered. By exploiting the
transitivity of the subconcept-super concept relationship and
considering the accessibility of concepts within the lattice, a
path between any two lattice concepts can always be found.

The concept lattice structure inherently guarantees a path
between any pair of concepts, rooted in its construction, which
encapsulates all potential combinations of objects and
attributes as formal concepts. As a result, the lattice forms a
connected structure, allowing for traversal from one concept to
another through a series of links. This trait is vital for the
suggested clustering method, ensuring the computation of the
least costly shortest path between any formal concept pair
using the Dijkstra-based distance measure. It confirms that all
concepts in the lattice can be accessed, and their dissimilarities
compared, facilitating precise cluster assignments based on
categorical profiles. The clustering method efficiently
leverages this connectivity within the concept lattice, capturing
hierarchical relationships, semantic constraints, and directional
costs embedded in the data. This inherent lattice connectivity
aids in delivering meaningful and accurate cluster assignments,
ensuring all concepts within the lattice remain interconnected
and accessible.

1) Dijkstra-based distance measure description: The

Dijkstra-Based Distance Measure is a key component of the

K-means Dijkstra on Lattice (KDL) method, serving as a more

efficient substitute for the Euclidean distance metric in

standard K-means algorithms. The KDL method incorporates

Dijkstra's algorithm on a lattice structure generated from

categorical data via Formal Concept Analysis (FCA). The

algorithm computes the shortest path between two formal

concepts in the lattice, considering both cost and path

direction. Notably, upward transitions (parent-to-child

concept) may incur higher costs than downward transitions

(child-to-parent). The algorithm utilizes a min-heap-based

priority queue for optimization.

Formally, the Hasse diagram built from a concept lattice
 , can be represented as , where is the set of

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 14, No. 9, 2023

498 | P a g e

www.ijacsa.thesai.org

formal concepts, and denotes the edges representing the
hierarchical relationships among them. The start and end
formal concepts are denoted as and , respectively. The
cost to reach a concept from the start concept is
represented as . The algorithm also defines cost functions
"UpCost" and "DownCost," representing the costs of moving
upwards and downwards in the lattice. The Dijkstra-based
distance measure uses a priority queue , based on a min-heap,
where each element is a pair sorted by . It also
maintains a set to keep track of the nodes already visited.
The cost function { is defined with and
 being two formal concepts in the lattice:

 {

 (7)

Subsequently, the Dijkstra-based distance measure,
represented as { , computes the minimum
cost path from the start concept to the end concept in the
lattice:

 {∑

 |

 (8)

Here, is the number of formal concepts in a specific path
from to . For each possible path from to , sum the
costs from each step to in the path, and) is the
minimum of these sums over all possible paths. The algorithm
functions as follows:

Algorithm 1: The Dijkstra-based distance measure algorithm
on the concept lattice.

Inputs: , , , UpCost, DownCost.
Output: minimum cost from to
Initialize:

While

Return

 :

 :

In Algorithm 1, several symbols are introduced for clarity.
The symbol denotes the starting concept in the concept
lattice, while represents the ending concept. refers
to the concept lattice itself, composed of concepts and edges
 . The terms 'UpCost' and 'DownCost' specify the costs for
upward and downward movements within the lattice,
respectively. is used to signify the current shortest path
distance from to any given concept A predecessor map is
denoted by , where reveals the predecessor of a concept
 in the shortest path originating from . Finally, and
 serve as a priority queue for upcoming nodes to visit and a
set for nodes already visited, respectively. The algorithm
always returns the minimum cost of the shortest path between
 and due to the property of the lattice structure, which
ensures a path exists between any two concepts.

This approach has a time complexity of ,
where is the number of edges (relationships between formal
concepts), and is the total count of formal concepts in the
lattice. By leveraging the lattice structure, the cost function,
and an efficient min-heap-based priority queue, the Dijkstra-
Based Distance Measure provides a more accurate
representation of dissimilarities in categorical data. This results
in an optimized clustering process and yields more accurate
and meaningful cluster assignments.

2) Cluster centers: Defining the cluster centers, or

centroids, in a concept lattice is vital for effectively

implementing the K-means Dijkstra on Lattice (KDL) method.

These centroids need to be formal concepts within the lattice.

The continual updating and calculation of these representative

centroids significantly influence the minimization of the

overall clustering cost function. To formally describe this,

consider a cluster composed of a set of formal concepts {
where | | The representative formal concept,

denoted as , is defined as the concept within that

minimizes the sum of the distances to all other concepts in the

same cluster. This can be mathematically expressed as:

 (∑
| |
) (9)

Here,

 represents each concept within the cluster

In Eq. (9), is the Dijkstra-based distance from the
potential centroid to each concept within the cluster. The
argmin operation is employed to find the formal concept in
that yields the smallest sum of distances to all other concepts in
the cluster . It is important to note that inherently belongs to
the cluster , which allows for a more efficient calculation of
the minimal sum of distances to all other concepts within .
Furthermore, the existence of a center for any set of formal
concepts is ensured due to the properties of the Dijkstra-based
distance measure. This consistency makes the method
universally applicable, regardless of the specific set of formal
concepts under consideration. This method of defining cluster
centers in the concept lattice adheres to mathematical rigor
while being practically feasible, offering a systematic way to

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 14, No. 9, 2023

499 | P a g e

www.ijacsa.thesai.org

manage and interpret complex categorical datasets. This
method enhances the interpretability of clustering results by
identifying representative formal concepts for each cluster,
fostering more comprehensive and insightful data analysis.

3) The clustering algorithm: The K-Means Dijkstra on

Lattice (KDL) clustering algorithm, grounded in Formal

Concept Analysis (FCA) and the Dijkstra-based distance

measure, can be articulated through the following sequential

stages:

Algorithm 2: K-Means Dijkstra on Lattice (KDL)

clustering algorithm
Inputs: , the number of clusters; , the lattice of formal

concepts.

Output: The resulting clusters { .
Initialize:

Select formal concepts { from the lattice

randomly as the initial centroids of the clusters.

Assignment:

 formal concept :

Assign to the cluster for which the Dijkstra-based

distance measure is minimized, where is the

centroid of cluster .

Using Equations (7, 8)

Centroid Update:

 cluster :

Recalculate the centroid as the formal concept that

minimizes the total distance to all other concepts within

Using Equation (9)

Iteration:

 centroids change between iterations :

 steps 2 and 3.

Finalization:

 Output the resulting clusters { .

4) Cost analysis of k-means dijkstra on lattice (KDL)

method: This section analyzes the computational complexity

of the proposed K-Means Dijkstra on Lattice (KDL) method.

The computational cost of each step will be evaluated, from

the initialization of clusters to their final assignment. This

analysis will provide insights into the efficiency and

scalability of the KDL method.
Given the parameters:

 represents the number of clusters.

 represents the number of objects.

 represents the number of attributes.

 represents the number of concepts.

 represents the number of edges in the lattice.

 represents the maximum number of border elements
in the lattice construction.

The proposed K-Means Dijkstra on Lattice (KDL) method
commences with data preprocessing, wherein the categorical
dataset transforms a formal context. This stage involves a
binary translation of each dataset entry, leading to a time
complexity of . Subsequently, a lattice is generated
from the formal concepts obtained in the previous stage. This

phase necessitates looping over all border elements for each
concept, inducing a worst-case time complexity of . The
final stage of the process encompasses a K-means-like
clustering operation. This phase includes iterations over all the
concepts to assign clusters and update centroids. The
computation of the shortest paths between pairs of concepts
within the lattice primarily influences this stage's time
complexity. This is achieved using Dijkstra's distance
algorithm. Assuming I iterations are required to reach
convergence, the time complexity for computing the shortest
paths between all pairs of concepts culminates in
 . To summarize, the KDL method's overall time
complexity, significantly influenced by the data preprocessing,
lattice construction, and lattice-based clustering stages, can be
approximated as . It is
worth noting that this is a rough estimation, with actual time
complexity potentially varying based on the characteristics and
data distribution within the formal context. However, focusing
on the dominant term for the sake of simplification, the time
complexity of the KDL method becomes
 .

B. K-means Vector on Lattice (KVL)

The K-means Vector on Lattice (KVL) method is essential
for converting categorical data into numerical data. Leveraging
the classical k-means algorithm facilitates data grouping,
making it instrumental for various data analysis operations,
especially when dealing with predominantly categorical or
non-numeric data. The essence of this method lies in its
capacity to convert formal concepts, regardless of their abstract
or categorical nature, into 'concept description vectors'. These
vectors exist in a real-valued vector space, which not only
makes them easily adaptable to standard mathematical
procedures but also optimizes them for computational analysis.
Each vector represents the formal concept from which it was
derived, encapsulating its fundamental attributes. Every
dimension within the vector signifies a different attribute of the
concept, with its magnitude corresponding to the prevalence or
significance of the attribute within the concept. This forms a
compressed yet efficient way to contain the information
intrinsic to the formal concept.

With the creation of concept description vectors, these
entities can now be subjected to the k-means algorithm. This
renowned clustering method partitions the data into a specified
number 'k' of distinct clusters. Each cluster is identified by its
centroid, which serves as the symbolic or physical center of the
cluster. All data points, or concept description vectors in this
context, within a specific cluster have a closer similarity to
their cluster's centroid than to those of other clusters. This aids
in the aggregation of analogous concepts, thereby facilitating
insightful analysis of the data.

Definition 5. Concept Description Vector: Let
be a formal concept, where , , and a context
 has | | , | | , the incidence
relation can be represented as a binary matrix,
where the rows correspond to the elements of (objects), the
columns correspond to the elements of (attributes), and each
entry of the matrix is either 1 or 0, indicating whether the
relation exists or not. Let's denote this matrix as , with

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 14, No. 9, 2023

500 | P a g e

www.ijacsa.thesai.org

dimensions , where is the number of objects in and
 is the number of attributes in . The rows of the matrix can
be labeled by , ,…, and the columns by , ,…,
 , the matrix can be defined as shown in Table II:

The concept description vector is defined as

 .
 (ranging from 1 to) is

obtained as follows [5]:

 {

∑ ()

 (10)

where .

The method to calculate each attribute within a concept is
different. It depends on whether the attribute is in the intent of
each concept or not. The concept vector is the base for getting
the similarity between concepts. This vector is obtained from
the context based on the intent of each concept. Depending on
whether the attribute is a part of the intent . If is a part
of the intent, it is assigned a value of 1, indicating its high
importance in defining the concept. If not, it's calculated as the
average association of this attribute across all objects,

represented as

∑ ()

 . This can be

perceived as the frequency or relevance of this attribute across
the object set . The computation of each attribute forms the
concept description vector used to ascertain the similarity
between concepts.

After defining the concept description vectors, the KVL
method introduces the concept similarity measure. This
measure, often referred to as Concept Similarity (), as
explicated in Definition 6, is used to ascertain the proximity of
these concepts. Concept Similarity is calculated using the
Euclidean Distance between any two concept description
vectors and . The equation helps us to quantify the
closeness between two concepts, taking into account each
component of their respective concept description vectors.

Definition 6. Concept Similarity: Concept Similarity ()
is calculated based on the concept description vector in
Definition 5 using traditional Euclidean distance. For any two
concept description vectors

 and

 , the Euclidean distance is defined

as per Eq. (5):

√

 (11)

TABLE II. MATRIX CORRESPONDING TO THE RELATION I

Objects/Attributes 1 …

 …

 …

… … … … …

 …

This framework of concept description vectors and concept
similarity lays the groundwork for the k-means clustering
algorithm. The algorithm takes the concept description vectors
as inputs and leverages the concept similarity measure to
identify which concepts most resemble each other. Concepts
exhibiting high similarity are then grouped into clusters. The
center of each cluster, represented by , is calculated as the
mean of all concept description vectors within that cluster.

Let's denote as the cluster , where is
the number of clusters. The centroid of each cluster can be
defined as:

| |
∑

| |

 (12)

The k-means algorithm aims to minimize the within-cluster
sum of squares (WCSS) of Euclidean distances. This objective
function Q is as follows:

 ∑ ∑ ||
 ||

 | |

 (13)

The algorithm alternates between assigning each concept
description vector to the nearest centroid and recalculating the
centroid of each cluster using Eq. (11) and (12), until the
clusters stabilize. The algorithm has converged, and the
clusters are optimally partitioned concerning the given concept
description vectors.

1) The clustering algorithm: The main idea is as follows.

Suppose is a formal context and is the set

of all concept description vectors and the number of clusters is

 . Firstly, the initial centers,
 = , of

 clusters are selected randomly, and the corresponding

clusters are
 = {

 }. Secondly, join a concept description

vector into one cluster according to the following

rule: if the distance between and
 is lower than that of

and other centers, then, is put into
 . Each vector in

can be adjusted according to this rule. Thirdly, the new center

of each cluster can be determined by calculating the mean

value of vectors within each cluster and set it as a new center.

Finally, repeat the above process till the twice computation of

each cluster and center are the same. The algorithm steps are

as follows:

Algorithm 3. K-means clustering of concepts.
Input: All the description vectors of concepts in , .
Output: The clusters and corresponding centers.

Initialize:
Set

 ,
 , ...,

 ;
 ,

Select initial center vectors of clusters:
 ,

 …,
 ;

Assignment:

-Find such that

 (
) (

)

 then,

 ;

Centroid Update:

 :

| |
∑

| |
 , using Equation (12)

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 14, No. 9, 2023

501 | P a g e

www.ijacsa.thesai.org

 ={ | (

) (
)}

 using Equation (11)

Convergence Check:

 =
 ,

 =
 , ,

 Go to step5.
Else:
 ,
 Go to Step 2.

Output: clusters
 ,

 , ...,
 and the corresponding centers

 ,
 ,

…,
 .

Algorithm 1 outlines the process for performing K-means
clustering on the set of concept description vectors. The input
to the algorithm is the set of all concept description vectors,
and the output is the resulting clusters and their centers. The
algorithm begins by randomly initializing the clusters and
selecting the initial centers for the clusters. It then assigns each
concept description vector to the cluster whose center it is
closest to, based on the concept similarity measure in Eq. (11).
It then updates the clusters' centers based on the mean of the
concept description vectors within each cluster using Eq. (12)
and repeats this process until the clusters stabilize. mapping the
vectors back to the original concepts. Once the K-means
clustering is done and the clusters are stabilized, the vectors
within each cluster can be traced back to their original
concepts. The mapping uses the concept description vectors
created in the first step.

Algorithm 4: Mapping vectors to original concepts.

Input: The clusters
 ,

 , …,
 and the corresponding centers

 ,

 …,

 .

Output: Clusters of original concepts.

Initialize:

 ← ,

For each description vector in
 do:

Map back to its original concept and add to .
Using the relationship between the concept description

vector and the original concept established in Definition

5.
EndFor

Output: the new clusters , each containing the
original concepts.

In this way, the numerical data obtained from the K-means
clustering is transformed back into categorical data, giving us
clusters of similar concepts rather than clusters of similar
vectors. This method of approximation and mapping allows for
efficient and meaningful clustering of concepts in a context,
making it easier to understand and interpret the relationships
and similarities between different concepts.

2) Cost Analysis of the KVL Method: This section

thoroughly reviews the computational complexity of the KVL

method to assess its efficiency and scalability. The first stage

is data preprocessing, which involves the transformation of a

dataset into a formal context. Here, a binary representation of

each object with N objects and A attributes is needed,

introducing a time complexity of O(NA). After preprocessing,

formal concepts are generated and then converted into vectors

in an A-dimensional attribute space. For each of the C

concepts, an equivalent vector in the attribute space needs to

be calculated, leading to a time complexity of O(AC). The

algorithm starts by randomly selecting K centroids from the

pool of C concepts, resulting in a time complexity of O(K).

Subsequent stages include iterative assignment and update,

where each concept is assigned to its nearest centroid, and

centroids are updated based on new assignments. This incurs a

time complexity of O(CK) per iteration. These processes are

performed I times until convergence, resulting in a total time

complexity of this stage being O(ICK).

Lastly, the mapped vectors are reconverted to their original
formal concepts, which involves a time complexity of O(CK).
Summing up the complexities from each phase, the total time
complexity of the KVL method is estimated to be O (NA+
AC+K+ICK+CK). This is a heuristic estimate, and time
complexity could vary based on data distribution and other
runtime factors. However, focusing on the dominant term for
simplification, the time complexity of the KVL method
becomes O(IKC).

VI. EXPERIMENTAL RESULTS

In this section, the presented experimental results aimed at
demonstrating the performance of the Dijkstra-Based Distance
Measure, as well as the performance and scalability of the K-
means Dijkstra on Lattice (KDL) and K-means Vector on
Lattice (KVL) methods. The experiments were conducted on a
Mac system equipped with an Apple M1 chip and 8GB of
RAM, running Mac OS 13.2.1.

A. Testing and Evaluation of Dijkstra-based Distance

Measure

In the experimental section, the performance of the distance
measure based on Dijkstra's algorithm is rigorously evaluated.
The testing process involved the following steps:

1) Random generation of formal contexts: five formal

contexts are randomly generated with varying sizes and

densities; the characteristics of these formal contexts are

described in Table III. The density parameter in this context

refers to the proportion of filled entries (1s) compared to the

total number of possible entries in the binary matrix

representation of the formal context. It quantifies how much

information is present regarding the relationship between

objects and attributes. To explain the density parameter, let's

consider an example from Table III: Formal Context1 with

600 objects and 125 attributes. The density for Formal

Context1 is 0.10, indicating that, on average, each entry in the

binary matrix has a 0.10 probability of being filled (assigned a

value of 1). A lower density value implies sparser

relationships, where fewer objects belong to the given

attributes or categories. In contrast, a higher density value

indicates denser relationships, where a larger number of

objects are associated with the given attributes.

2) In the analysis, four datasets from the UCI Machine

Learning repository are meticulously examined. Prior to

conducting any experiments, these datasets are transformed

into formal contexts, with details outlined in Table III. The

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 14, No. 9, 2023

502 | P a g e

www.ijacsa.thesai.org

datasets were chosen based on two key criteria: public

accessibility and the categorical characteristics of their

attributes. The selected datasets include:

 The Balance-Scale dataset is designed to replicate
psychological experiment results. Each instance in this
dataset can be labeled based on whether the balance
scale leans to the left, right, or is balanced.

 The Breast Cancer dataset obtained from the University
of Wisconsin hospitals, classifies each instance into one
of two potential categories: benign or malignant.

 The Car Evaluation dataset, which results from a simple
hierarchical decision model initially designed for DEX's
demonstration, classifies each instance into one of four
classes: unacc, acc, good, and vgood.

 Tae dataset representing teaching performance
assessment over five semesters (three regular and two
summers) includes 151 teaching assistant assignments
from the University of Wisconsin-Madison's Statistics
Department. All instances fall into one of three
categories: low, medium, and high.

3) Extraction of formal concepts: The NextClosure

algorithm was used to extract the set of formal concepts from

each formal context. The number of formal concepts

generated from each formal context is shown in Table IV.

4) Hasse diagram construction: Utilizing the Ipred

algorithm, a Hasse diagram was structured optimally for the

case study, as elaborated in Section V. The characteristics of

the generated Hasse diagrams are shown in Table V, by

considering the density parameter in the construction of the

Hasse diagram. The density parameter influences the number

of edges and nodes in the Hasse diagram. A denser formal

context with a higher density value tends to result in a larger

number of formal concepts and, consequently, a more

extensive concept lattice with a higher number of edges

connecting the concepts. On the other hand, a sparser formal

context with a lower density value leads to a smaller concept

lattice with fewer edges.

TABLE III. CHARACTERISTICS OF RANDOM AND REAL-WORLD FORMAL

CONTEXTS

Formal Contexts #objects #attributes density

Formal Context1 600 125 0.10

Formal Contex2 11000 30 0.10

Formal Context3 1350 120 0.05

Formal Context4 2000 20 0.15

Formal Context5 12000 20 0.23

Balance-Scale 625 20 0.20

Breast Cancer 182 35 0.25

Tae 151 101 0.04

Car Evaluation 1728 21 0.28

TABLE IV. FORMAL CONCEPTS GENERATED FROM THE FORMAL

CONTEXTS IN TABLE III

Formal Contexts #formal concepts.

Formal Context1 29926

Formal Contex2 15117

Formal Context3 9882

Formal Context4 2989

Formal Context5 39931

Balance-Scale 1297

Breast Cancer 2569

Tae 276

Car Evaluation 8001

TABLE V. HASSE DIAGRAM TRAITS VIA IPRED ALGORITHM

Formal Contexts #formal concepts
Inclusion relationship

between concepts (edges)

Concept lattice1 29926 122839

Concept lattice2 15117 67040

Concept lattice3 9882 36797

Concept lattice4 2989 12175

Concept lattice5 39931 228427

Balance-Scale 1297 4945

Breast Cancer 2569 9513

Tae 276 619

Car Evaluation 8001 38928

The analysis involved running a Dijkstra-based distance
measure on concept lattices generated from five random formal
contexts and four real-world datasets. The formal contexts
varied in number of objects, attributes, and density. On the
other hand, the real-world datasets were diverse, encompassing
balance scale, breast cancer, teaching assistant evaluation, and
car evaluation data. After generating the formal contexts and
preparing the datasets, Formal Concept Analysis (FCA) using
the NextClosure algorithm has been performed to derive
formal concepts. The count of these formal concepts varied
significantly across the contexts and datasets, ranging from as
low as 2989 in Formal Context 4 to as high as 39931 in Formal
Context 5. Using these formal concepts, Hasse diagrams
(concept lattices) constructed with the help of the Ipred
algorithm. The concept lattices illustrated the inclusion
relationship between concepts. Again, the number of inclusion
relationships was directly related to the complexity and size of
the corresponding formal context. Subsequently, the distance
measure was evaluated. Concept pairs were randomly chosen
from each concept lattice, constituting 25% of the total
concepts. The minimum cost of the shortest path between these
pairs was calculated using the designated distance measure.
This evaluation was performed across ten trials, with both the
average runtime and mean distance documented for each.

We're observing a comparison of the average run time of
the Dijkstra-based distance measure algorithm and the mean
distance between concepts for both randomly generated formal
datasets and real-world datasets. As indicated in Fig. 2 and

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 14, No. 9, 2023

503 | P a g e

www.ijacsa.thesai.org

Fig. 3 for randomly generated datasets, there is a clear
correlation between the number of concepts in the lattice and
the algorithm's runtime. An increase in the number of concepts
leads to a corresponding rise in runtime. This finding aligns
with expectations, as a lattice with a greater number of
concepts and relationships is likely to be more complex.
Consequently, calculating the shortest path between pairs in
this intricate structure would naturally demand more
computational time and resources. The mean distances were
mostly consistent for each context, indicating a relatively stable
distance measure despite potential variance in the random
generation of the formal contexts. This reinforces the efficacy
of the Dijkstra-based distance measure, highlighting its
stability across multiple trials of randomly generated data.

Patterns similar to those observed in randomly generated
datasets were also evident in real-world datasets, as
demonstrated in Fig. 4 and Fig. 5. The runtimes correlate with
the number of concepts in the lattice, with larger lattices taking
longer to calculate the shortest paths. Interestingly, the Car
Evaluation dataset, which had the highest number of concepts
(8001), exhibited the shortest mean distance (6.5735) among
the real-world datasets. This suggests that although the dataset
is complex, the relationships within the data are more
straightforward or closer than the other datasets. Meanwhile,
the Balance-Scale and Breast Cancer datasets had a more
moderate number of concepts (1297 and 2569, respectively)
and showed a higher mean distance. This might indicate that,
despite having fewer concepts, the relationships in these
datasets could be more complex or convoluted.

Fig. 2. Average runtime of distance calculation algorithm on different

concept lattice sizes for the random contexts in Table IV.

Fig. 3. Mean distance of distance measure algorithm on different concept

lattice sizes for the random contexts in Table IV.

Fig. 4. Average runtime of distance calculation algorithm on different

concept lattice sizes of real-world datasets.

Fig. 5. Mean distance of distance measure algorithm on different concept

lattice sizes of real-world datasets.

Overall, the results suggest that the Dijkstra-based distance
measure is robust and stable across various randomly generated
and real-world contexts. The run time increases as expected
with the size and complexity of the dataset, and the measure
captures the inherent complexity in the data (as reflected in the
mean distances) and provides valuable insights into the
structural properties of concept lattices. It allows for
identifying concept pairs relatively closer or farther apart
within the lattice structure. The results contribute to a better
understanding of relationships and structural characteristics
within formal contexts and concept lattices. The consistent
performance of the measure across different scenarios
reinforces its potential utility in handling diverse and complex
categorical datasets.

Adapting the FCA, the Dijkstra-based distance measure
applies the robust Dijkstra's algorithm to compute the shortest
path between two categorical data points. This method,
mindful of the hierarchical structure of categorical data,
quantifies dissimilarity by evaluating paths within the data
space. It provides a viable alternative to Euclidean distance
within the clustering context when enhancing the K-means
algorithm for categorical data analysis. Replacing Euclidean
distance with the Dijkstra-based measure allows the K-means
algorithm to cluster categorical datasets better, accurately
reflecting the relationships and similarities between categorical
variables. Incorporating the Dijkstra-based distance measure in
the K-means algorithm aids cluster identification based on
categorical patterns, providing meaningful insights and
potential applications across numerous domains. It’s ushers in
new avenues for examining and interpreting categorical data.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 14, No. 9, 2023

504 | P a g e

www.ijacsa.thesai.org

B. Clustering Performance

In the present section, the performance of two distinct
clustering approaches designed for categorical data: K-means
Dijkstra on Lattice (KDL) and K-means Vector on Lattice
(KVL) is scrutinized. We've chosen the Silhouette Coefficient
and the Davies-Bouldin Index (DBI) as the evaluation metrics
due to their ability to assess clustering performance without the
need for ground truth labels, making them especially useful in
real-world applications where such labels might not be
available. The Silhouette Coefficient serves as a measure to
ascertain the suitability of a data point's allocation to its cluster
in comparison to other clusters. The coefficient fluctuates
between -1 and 1, with a high positive value implying a well-
clustered data point, while a negative one indicates potential
misplacement within a cluster. Here's the mathematical
expression for the Silhouette Coefficient:

Silhouette Score (14)

Where is the mean intra-cluster distance and is the
mean nearest-cluster distance. In contrast, the Davies-Bouldin
Index (DBI) is a metric that evaluates the separation and
compactness of clusters. A lower DBI value implies an optimal
clustering solution. The DBI is calculated as follows:

1) Calculate the average distance between each point in a

cluster and all other points in the same cluster. This is often

referred to as the intra-cluster distance. Denote this as for

cluster .

 = (1 /) || ||

where:

 is the number of points in cluster ,

 is a point in cluster ,

 is the centroid of cluster ,

 || || is the distance between point and centroid
 .

2) Calculate the distance between cluster and ,

using a suitable distance measure between the centroids of the

clusters.

3) Calculate the ratio between the sum of the intra-

cluster distances of cluster and , and the inter-cluster

distance between and .

 = (+) /

4) For each cluster , find the maximum ratio which is

the maximum for all .

 = for all

5) The Davies-Bouldin Index (DBI) is the average of all

 .

 ∑ (15)

where, is the total number of clusters

Again, lower DBI values indicate better clustering because
this signifies clusters that are more compact (lower intra-cluster

distances) and better separated (higher inter-cluster
distances).

The analysis is based on four real-world datasets described
in the previous section as shown in Table V and the results in
Tables VI and VII. The clustering is performed by setting the
number of clusters (k value) equal to the number of classes for
each dataset to maintain consistency with the inherent data
structure. These results are recorded from the averages of 100
runs for each method A closer examination of these tables
allows for a comparative analysis of the performance of the K-
means Dijkstra on Lattice (KDL) and K-means Vector on
Lattice (KVL) methods. Regarding the Silhouette Coefficient
(Table VI), it is evident that the KDL method, which utilizes
the inherent lattice graph structure of categorical data for
clustering, consistently outperforms the KVL method,
regardless of the dataset used. This outcome is further
corroborated by the DBI results (Table VII), where the KDL
method again demonstrates superior performance by
consistently achieving lower index values across all datasets.
This can be attributed to the design of the KDL method. The
KDL strategy focuses on integrating the representation of
categorical data based on the graph structure, effectively
leveraging the potential similarity between these data points. It
employs Formal Concept Analysis (FCA), a mathematical
framework for generating a concept hierarchy, and Dijkstra's
algorithm to calculate the shortest path between formal
concepts in the FCA graph. This novel distance measure,
which represents the minimal cost of moving from one formal
concept to another, facilitates a more accurate clustering
process.

On the contrary, the KVL method, while simplifying the
clustering process by converting categorical data into
numerical vectors and using standard k-means algorithms, risks
obscuring the inherent hierarchical relationships between
categorical values. This transformation can potentially result in
less effective clustering performance.

TABLE VI. SILHOUETTE COEFFICIENT SCORES OF CLUSTERING

PERFORMANCE FOR K-MEANS DIJKSTRA ON LATTICE (KDL) AND K-MEANS

VECTOR ON LATTICE (KVL) METHODS ACROSS DIVERSE DATASETS

Datasets KDL KVL #Clusters

Balance-Scale 0.406
0.128
0.090

0.092

0.106

3

Breast Cancer 0.239 2

Tae 0.300 3

Car Evaluation 0.563 4

TABLE VII. DBI SCORES OF CLUSTERING PERFORMANCE FOR K-MEANS

DIJKSTRA ON LATTICE (KDL) AND K-MEANS VECTOR ON LATTICE (KVL)

METHODS ACROSS DIVERSE DATASETS

Datasets KDL KVL # Clusters

Balance-Scale 1.48
2,64

2,78

2.62
2.92

3

Breast Cancer 1.83 2

Tae 1.49 3

Car Evaluation 1.90 4

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 14, No. 9, 2023

505 | P a g e

www.ijacsa.thesai.org

Fig. 6. Silhouette scores by dataset and method.

Fig. 7. DBI scores by dataset and method.

The compelling evidence in Tables VI and VII and their
corresponding graphical representations in Fig. 6 and Fig. 7
illuminate the KDL method's superior performance over the
KVL method for clustering categorical data. By directly
handling categorical data and leveraging its inherent
hierarchical structure, the KDL method offers more meaningful
and accurate clustering results. This finding corroborates the
hypothesis that leveraging the inherent similarities and
structure of categorical data can yield improved results. While
the KVL method simplifies the process by transforming
categorical data into numerical vectors, it potentially obscures
the intricate hierarchical relationships between categorical
values, thus diminishing the method's effectiveness. This is
reflected in the lower Silhouette, and higher DBI scores
observed for the KVL method. These findings not only present
solid evidence in favor of the KDL method as a more potent
tool for clustering categorical data, but they also underscore the
importance of utilizing the data's inherent structure where
possible. However, these conclusions should uphold the utility
of the KVL method. Instead, they serve as a critical reminder
of the significance of selecting an appropriate tool for the data
at hand, considering each method's potential trade-offs and
benefits.

C. Scalability Test Results Analysis

1) Scalability in relation to the number of clusters: To

bolster the robustness of the study concerning the K-means

Dijkstra on Lattice (KDL) and K-means Vector on Lattice

(KVL) clustering techniques, a meticulous analytical approach

was employed. This rigorous methodology underscores the

credibility of the performance assessments and findings

presented. All results presented in this analysis were derived

from the average runtime of five independent runs. This

method was utilized to mitigate any outliers' influence and

deliver a more precise portrayal of each method's

performance.

The investigation was particularly interested in the
scalability of these methods in response to an increase in the

number of clusters. The number of clusters was varied from 2
to 18 in the analysis, with the dataset size held constant. This
aspect is essential in real-world situations, especially when data
is complex and needs to segregate into a limited number of
clusters neatly. The performance of both methods in relation to
the varying number of clusters was assessed using the 'Car
Evaluation' dataset consisting of 8001 formal concepts. From
Fig. 8, it is evident that the K-means Vector on Lattice (KVL)
method demonstrates scalability. A linear relationship is
observed between execution time and the increment in the
number of clusters. The execution time varies approximately
between 44.48 and 51.56 seconds as the number of clusters
changes from 2 to 18. This pattern underscores the efficiency
of the KVL method in handling larger and more complex
datasets.

This method, thus, shows promise in effectively managing
a rise in the number of clusters without causing a substantial
increase in execution time. On the other hand, Fig. 9 provides
insights into the scalability of the KDL method. This method
shows rapid growth in execution time as the number of clusters
increases. The time jumps from about 1926.77 seconds for 2
clusters to a massive 49600.10 seconds for 18 clusters. Given
the complexity of the lattice graph and the number of formal
concepts, the KDL method's computational load increases
significantly with the number of clusters, suggesting lower
scalability.

The KVL method is better in terms of scalability and
efficiency for an increasing number of clusters; the KDL
method provides higher-quality clustering, though it demands
significantly more computational time and resources. This
highlights the importance of finding the right balance between
computational efficiency and clustering quality. The preference
for one over the other may vary depending on the specific
situation and constraints.

Fig. 8. Scalability of KVL Method to the number of clusters when clustering

8001 formal concepts of the 'car evaluation' dataset.

Fig. 9. Scalability of the KDL method to the number of clusters when

clustering 8001 formal concepts of the 'car evaluation' dataset.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 14, No. 9, 2023

506 | P a g e

www.ijacsa.thesai.org

2) Scalability in relation to the number of formal

concepts: In examining the scalability of KDL and KVL,

performance was assessed with an increasing number of

formal concepts, while keeping the cluster count constant at

three. This analysis is grounded in multiple iterations of these

methods on a selection of real-world datasets, namely

Balance-Scale, Breast Cancer, Tae, and Car Evaluation,

described in detail in Tables III, IV, and 5. Fig. 10, and Fig.

11, represent the scalability of the KVL and KDL methods,

respectively, demonstrating how they fare with a rising count

of formal concepts.

Diving into Fig. 10, it's evident that the KVL method shows
admirable consistency. The recorded execution times from five
separate runs, 43.14, 43.25, 44.15, and 46.35 seconds,
corresponding to the datasets featuring 276, 1297, 2569, and
8001 formal concepts. This suggests that as the number of
formal concepts increases, the KVL method retains its
efficiency, reflecting robust scalability - an attribute crucial for
managing large datasets. In comparison, Fig. 11 encapsulates
the performance of the KDL method. The execution times here
are noticeably higher, registering at 53.67, 301.47, 830.02, and
2026.79 seconds for the same gradual increase in formal
concepts. It's clear that as the number of formal concepts
expands, the KDL method's execution time climbs drastically,
indicating an intensifying computational requirement and
limited scalability when tasked with larger datasets.

Fig. 10. Scalability of KVL method with increasing number of formal

concepts.

Fig. 11. Scalability of KDL method with increasing number of formal

concepts.

This investigation rigorously assesses the K-means Dijkstra
on Lattice (KDL) and K-means Vector on Lattice (KVL)
algorithms, identifying a trade-off between clustering quality
and computational efficiency. KDL excels in quality but is

resource-intensive, making it less scalable. Conversely, KVL is
more scalable but may compromise on quality. The choice
between the two hinges on task-specific needs: KDL is better
for quality-focused tasks with sufficient resources, while KVL
is ideal for tasks requiring scalability. Future research could
aim to optimize each method's shortcomings, offering a more
balanced clustering solution. These refinements would bring us
closer to a unified, efficient, and high-quality clustering
algorithm for handling categorical data.

VII. CONCLUSION

In the exploration, the efficacy of a Dijkstra-based distance
measure is assessed for conceptual clustering across multiple
categorical datasets. This distance measures demonstrated a
powerful capability in determining hierarchical relationships
among categorical variables, even within complex and dense
datasets. The evaluations, conducted across randomly
generated formal contexts and real-world datasets, confirmed
its robust performance, scalability, and reliability. However, a
correlation between the average runtime and the number of
concepts suggests potential efficiency enhancements.

The clustering tasks employed two methods: the K-means
Dijkstra on Lattice (KDL) method, which uses Formal Concept
Analysis (FCA) and the Dijkstra-based distance measure; and
the K-means Vector on Lattice (KVL) method, which
transforms categorical data into numerical vectors and applies
standard k-means algorithms. The KDL method yielded high-
quality clusters that accurately mirrored the inherent
hierarchical relationships within categorical data. However,
when handling larger numbers of clusters or formal concepts,
scalability emerged as a challenge for this method. On the
other hand, the KVL method demonstrated impressive
scalability. Nevertheless, due to its conversion of data into
numerical vectors, there's a risk of overlooking the hierarchical
structure of the data, which could affect the clustering quality.

Future research has several promising pathways. The lattice
structure in the KDL method could be simplified to boost
scalability, and the KVL method could be further refined to
better capture the structure of categorical data. Additionally,
the exploration of alternate or complementary distance
measures could be beneficial. A particularly intriguing
direction for future research is integrating the Dijkstra-based
distance measure into the k-means algorithm, which could
significantly advance categorical data analysis. The study of
the KDL and KVL methods has under-scored their respective
strengths and limitations, illuminating potential areas for future
research. These findings are instrumental to the ongoing
development of categorical data analysis and refining data
clustering methodologies. By investigating the complexities of
concept lattices and streamlining the knowledge discovery
process of FCA, The study offers a foundational understanding
that serves as a basis for the development of more scalable and
efficient solutions.

ACKNOWLEDGMENT

The authors express sincere gratitude to the Department of
Information Technology at the József Hatvany Doctoral
School, University of Miskolc, Hungary, for the necessary
support and resources for this study.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 14, No. 9, 2023

507 | P a g e

www.ijacsa.thesai.org

REFERENCES

[1] V. Ganti, J. Gehrke, and R. Ramakrishnan, ―CACTUS—clustering
categorical data using summaries,‖ in Proceedings of the fifth ACM
SIGKDD international conference on Knowledge discovery and data
mining, 1999, pp. 73–83. https://doi.org/10.1145/312129.312201.

[2] S. Guha, R. Rastogi, and K. Shim, ―Rock: A robust clustering algorithm
for categorical attributes,‖ Inf Syst, vol. 25, no. 5, pp. 345–366, Jul. 2000,
https://doi.org/10.1016/S0306-4379(00)00022-3.

[3] Z. Huang, ―Extensions to the k-means algorithm for clustering large data
sets with categorical values,‖ Data Min Knowl Discov, vol. 2, no. 3, pp.
283–304, 1998. https://doi.org/10.1023/A:1009769707641.

[4] Z. Huang, ―Clustering large data sets with mixed numeric and categorical
values,‖ in Proceedings of the 1st pacific-asia conference on knowledge
discovery and data mining,(PAKDD), Citeseer, 1997, pp. 21–34.
https://doi.org/10.4236/ojs.2017.72013.

[5] D. Ienco, R. G. Pensa, and R. Meo, ―Context-based distance learning for
categorical data clustering,‖ in Advances in Intelligent Data Analysis
VIII: 8th International Symposium on Intelligent Data Analysis, IDA
2009, Lyon, France, August 31-September 2, 2009. Proceedings 8,
Springer, 2009, pp. 83–94. https://doi.org/10.1007/978-3-642-03915-7_8.

[6] J. MacQueen, ―Classification and analysis of multivariate observations,‖
in 5th Berkeley Symp. Math. Statist. Probability, University of California
Los Angeles LA USA, 1967, pp. 281–297.
https://doi.org/10.4236/ojpp.2015.56041.

[7] O. M. San, V.-N. Huynh, and Y. Nakamori, ―An alternative extension of
the k-means algorithm for clustering categorical data,‖ International
journal of applied mathematics and computer science, vol. 14, no. 2, pp.
241–247, 2004.

[8] L. Chen and S. Wang, ―Central clustering of categorical data with
automated feature weighting,‖ in Twenty-Third International Joint
Conference on Artificial Intelligence, Citeseer, 2013.

[9] M. Ng, M. Li, J. Huang, and Z. He, ―On the Impact of Dissimilarity
Measure in k-Modes Clustering Algorithm,‖ IEEE Trans Pattern Anal
Mach Intell, vol. 29, no. 3, pp. 503–507, Mar. 2007. https://doi.org/
10.1109/TPAMI.2007.53.

[10] R. Wille, ―Restructuring lattices theory: an approach on hierarchies of
concepts.‖ Dordrecht, Holland: Springer, 1982.

[11] R. Ganter and R. Wille, ―Formal concept analysis: Mathematical
foundations Springer-Verlag Berlin Germany,‖ 1999.
https://doi.org/10.1007/978-3-642-59830-2.

[12] K. Sumangali and C. A. Kumar, ―A comprehensive overview on the
foundations of formal concept analysis,‖ Knowledge Management & E-
Learning: An International Journal, vol. 9, no. 4, pp. 512–538, 2017,
https://doi.org/10.34105/j.kmel.2017.09.032.

[13] M. Alwersh and L. Kovács, ―Survey on attribute and concept reduction
methods in formal concept analysis,‖ Indonesian Journal of Electrical
Engineering and Computer Science, vol. 30, no. 1, pp. 366–387, Apr.
2023, https://doi.org/10.11591/ijeecs.v30.i1.pp366-387.

[14] T. Abiy, H. Pang, C. Williams, J. Khim, and E. Ross, ―Dijkstra’s shortest
path algorithm,‖ Retrieved from, 2016.

[15] F. Mukhlif and A. Saif, ―Comparative study on Bellman-Ford and
Dijkstra algorithms,‖ in Int. Conf. Comm. Electric Comp. Net, 2020.

[16] R. Bellman, ―On a routing problem,‖ Q Appl Math, vol. 16, no. 1, pp. 87–
90, 1958. https://doi.org/10.1090/qam/102435

[17] R. W. Floyd, ―Algorithm 97: shortest path,‖ Commun ACM, vol. 5, no. 6,
p. 345, 1962. http://dx.doi.org/10.1145/367766.368168.

[18] M. Tropmann-Frick, ―Analysis of the Shortest Path Method Application
in Social Networks,‖ 2023. https://doi.org/10.3233/FAIA220500.

[19] T.-H. T. Nguyen and V.-N. Huynh, ―A k-means-like algorithm for
clustering categorical data using an information theoretic-based
dissimilarity measure,‖ in Foundations of Information and Knowledge
Systems: 9th International Symposium, FoIKS 2016, Linz, Austria,
March 7-11, 2016. Proceedings 9, Springer, 2016, pp. 115–130.
https://doi.org/10.1007/978-3-319-30024-5_7.

[20] Z. Huang and M. K. Ng, ―A fuzzy k-modes algorithm for clustering
categorical data,‖ IEEE transactions on Fuzzy Systems, vol. 7, no. 4, pp.
446–452, 1999, http://dx.doi.org/10.1109/91.784206.

[21] F. Cao, J. Liang, D. Li, L. Bai, and C. Dang, ―A dissimilarity measure for
the k-Modes clustering algorithm,‖ Knowl Based Syst, vol. 26, pp. 120–
127, 2012, doi: https://doi.org/10.1016/j.knosys.2011.07.011.

[22] M. Li, S. Deng, L. Wang, S. Feng, and J. Fan, ―Hierarchical clustering
algorithm for categorical data using a probabilistic rough set model,‖
Knowl Based Syst, vol. 65, pp. 60–71, 2014, doi:
https://doi.org/10.1016/j.knosys.2014.04.008.

[23] Bernhard Ganter, ―Two basic algorithms in concept analysis. FB4-
Preprint No 831, 1984.‖. https://doi.org/10.1007/978-3-642-11928-6_22.

[24] J. Baixeries, L. Szathmary, P. Valtchev, and R. Godin, ―Yet a faster
algorithm for building the Hasse diagram of a concept lattice,‖ in Formal
Concept Analysis: 7th International Conference, ICFCA 2009 Darmstadt,
Germany, May 21-24, 2009 Proceedings 7, Springer, 2009, pp. 162–177.
https://doi.org/10.1007/978-3-642-01815-2_13.

[25] D. Schütt, ―Abschätzungen für die Anzahl der Begriffe von Kontexten,‖
Master’s Thesis, TH Darmstadt, 1987.

[26] L. Kovács, ―Efficiency analsyis of concept lattice construction
algorithms,‖ Procedia Manuf, vol. 22, pp. 11–18, 2018,
https://doi.org/10.1016/j.promfg.2018.03.003.

