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Abstract—A key element of contemporary computer vision, 

image fusion tries to improve the quality and interpretability of 

images by combining complimentary data from several image 

sources or modalities. This paper offers a unique method for 

multi-modal image fusion, combining the benefits of Deep 

Convolutional Neural Networks (CNNs) and Non-Negative 

Matrix Factorization (NMF), by using current developments in 

deep learning and matrix factorization techniques. Deep CNNs 

have shown to be remarkably effective in extracting features 

from images, capturing complex patterns and discriminative 

data. A group of deep CNNs are trained using this suggested 

technique on a varied dataset of multi-modal images. With the 

help of these networks, which extract and encode pertinent 

characteristics from several modalities, information-rich 

representations may then be combined. Concatenating, the 

features that were derived from the CNNs throughout the fusion 

process results in a fused feature representation that perfectly 

expresses the input modalities. The main novelty is the two-stage 

integration of NMF: first, breaking down the fused feature 

representation into non-negative basis vectors and coefficients, 

and then, using NMF to further extract important patterns from 

the fused feature maps. The non-negativity requirement in NMF 

guarantees the preservation of the natural structures and 

characteristics present in the source images, resulting in fused 

images that are both aesthetically pleasing and semantically 

intelligible. Visual examination of the merged images 

demonstrates the method's capacity to successfully extract 

important information from several modalities. The better 

performance and robustness of the suggested approach, which 

has an accuracy of roughly 99.12%, are highlighted by 

comparison with existing fusion approaches. 

Keywords—Image fusion; deep convolution network; non-
negative matrix factorization; multi-modal images; vector space 
model 

I. INTRODUCTION  

Image fusion has a wide range of uses in both commercial 
and non-industrial sectors, including security. Due to technical 
or optical imaging limitations, only a portion of the 
information may be recorded in an image using a certain type 
of detector or firing configuration. For example, reflecting 

illumination data that has intensity in a constrained range and 
falls within a predetermined depth-of-field is a classic 
example of insufficient data. By combining complimentary 
data gathered from many source images that were taken with 
various sensors or optical settings, image fusion aims to create 
a synthesized image  [1]. Following visual assignments, 
including video monitoring, scene comprehension, target 
acknowledgment, etc., benefit from a single fusion image with 
greater environment representations and better perception of 
sight. It is challenging to efficiently and rapidly explore image 
on image-sharing systems due to the enormous volume of 
images submitted to services like Flickr and Picasa. This issue 
can be resolved using gathering images summarization. The 
goal of the image collection overview is to portray a huge, 
multi-modal library using only a small subset of the images 
and labels. The small subset shows the different elements of 
the initial collection, such as the attribute of interest and scene 
category. Image collection summarization may be employed 
for a variety of multimedia projects, such as automatic album 
building, search outcome optimization, etc. [2]. 

Different kinds of medical images serve an essential part in 
clinical diagnosis in contemporary medicine and are quite 
helpful in identifying disorders. Doctors typically need to 
integrate numerous different kinds of medical images from the 
same location in order to gather sufficient data for an 
appropriate evaluation, which frequently causes significant 
difficulty. When a doctor simply uses his or her own theories 
and conceptions to analyze a variety of medical visuals, the 
evaluation's objectivity is compromised and it's possible that 
some of the image's data is overlooked. Techniques for image 
fusion offer a practical solution to these problems. The 
collected healthcare images from various modes contain 
supplementary as well as duplication of data as the range of 
medical imaging technologies grows [3]. Other research has 
used a combination of verbal and graphic data to create image 
representations [4].  To create the visual short, the investigator 
developed an overview challenge that involved locating subset 
image examples using a homogeneous and heterogeneous 
message transmission technique. The image summary 
challenge was transformed into a hyper-graph division issue 
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through research, which took into account both visual and 
textual aspects. It suggested a max-margin assistance vector 
machine-based technique to extract visual ideas from 
multimodal dataset [5]. 

An imaging equipment, such as a digital single-lens reflex 
the device, frequently finds it challenging in the field of 
electronic imaging to take an image in which all the objects 
are sharply focused [6]. Only subjects in the depth-of-field 
(DOF) of an optically lens will usually look crisp in a shot at a 
given focal length; subjects outside the DOF will most likely 
to be blurry. Multi-focus image fusion, which combines many 
images of the same subject captured at various focal lengths to 
create an all-in-focus appearance, is a common approach. 
Additionally, a significant area within the field of image 
fusion is multi-focus fusion of images [7]. Many techniques 
for merging multi-focus images may be used, regardless of 
alterations, for additional image fusion applications like 
visible-infrared image fusion and multi-modal healthcare 
image synthesis. Investigating multi-focus image fusion has 
dual significance from this perspective, making it an explosive 
subject in the image computing field. Several image fusion 
techniques have been developed in recent years, and these 
techniques may be loosely divided into two distinct groups: 
transformation area techniques and spatially domain technique 
[8]. Data fusion and mining include integrating and analysing 
many data sources to draw out insightful conclusions and 
patterns. To get a complete picture of the data landscape, it 
aggregates data from multiple heterogeneous sources, 
including databases, sensors and social media. When data 
from many sources are combined, conflicts are resolved, and a 
single dataset is produced that more accurately depicts the 
underlying phenomenon [9]. Then, using data mining 
techniques, relevant relationships, trends, and patterns are 
identified from the pooled data. Using techniques from 
machine learning as well as statistical methodologies, 
anomalies, hidden trends, and predictions or suggestions are 
found in this process. Data fusion and mining are widely used 
in a variety of industries, such as health care, banking, 
marketing, and cybersecurity, and they allow companies to 
make data-driven decisions that improve productivity, 
efficiency, and decision-making [10]. 

To generate the multi-modal overview successively, 
Camargo and Gonzlez i [11] used convex non-negative matrix 
factorization (convex NMF) to visual modalities expressed as 
BoW and textual modalities expressed as vector space model 
(VSM). However, they did consider the sequential association 
between the images and labels. The characteristics of the 
literary topic were first taken into account. Next, images were 
used as inspiration for the visual concept. The sequential 
method, however, limits the dissemination of information 
from various data. They primarily relied on the textual aspects 
of visual summaries, ignoring the visual aspects of the literary 
issue and the diverse interactions between the two mediums. 
As a result, older summary techniques are unable to generate 
outcomes that exactly match the initial collection. Early 
spatial domain approaches frequently employed block-based 
fusion. Depending on the subject of the images, blocks of 
various sizes can be created adaptively from the images. The 
concept of block-based techniques is shared by a different 

class of spatial domain techniques that rely on image 
segmentation. However, the effectiveness of the classification 
has a big influence on how effectively these tactics work 
together. Many unique gradient-based, pixel-based spatial 
domain approaches have been created recently that can 
produce state-of-the-art multi-focus image fusion results. 
These approaches usually use rather complex fusion strategies 
(which can be thought of as rules in a broad sense) to their 
computation findings from activity degree analysis in order to 
boost the fusion efficacy. 

The key contributions of the Multi-Modal Image Fusion 
using Deep Convolutional Neural Networks (CNNs) and Non-
Negative Matrix Factorization (NMF) approach are: 

 By concatenating the features obtained from the CNNs 
during the fusion process, a fused feature 
representation is produced that accurately captures the 
essence of the input modalities, improving image 
quality and interpretability.  

 Deep CNNs are used to extract features from multi-
modal images, showcasing their exceptional ability to 
capture intricate patterns and discriminative data, 
which are crucial for producing informative fused 
images. 

 The integration of NMF in two stages is the primary 
innovation. In order to improve the fusion process, 
two steps must be taken: first, the fused feature 
representation must be broken down into non-negative 
basis vectors and coefficients; and second, NMF must 
be utilized to extract important patterns from the fused 
feature maps. 

 The non-negativity condition in NMF makes sure that 
the fused images retain the organic shapes and traits 
that are present in the source images, resulting in fused 
images that are both aesthetically pleasing and 
semantically significant. 

This article's remainder is organized as follows: In Section 
II, a summary of related research is provided. Section III 
presents the problem statement. The suggested approach's 
methodology and architecture are explained in Section IV of 
the article. The findings and subsequent discussion are 
covered in Section V. The conclusion is covered in Section VI. 

II. RELATED WORK 

Although multi-model neuroimaging and gene 
identification technologies have advanced, attempts to 
integrate the two in order to investigate the virulence traits of 
schizophrenia (SZ) have been unsuccessful. Researchers 
suggest a unique approach known as grouping dense of joint 
non-negative matrices factorization on orthogonal domain to 
address this problem. The approach combines data from three 
models, single nucleotide polymorphism, and functional 
magnetic resonance imaging to identify risk genes, aberrant 
brain areas, and SZ-related epigenetic elements.  For the 
purpose of eliminating unnecessary characteristics from the 
row of correlation matrix structures, researchers actively place 
diagonal constraints on the foundation matrix. Because data 
from genome-scanning provide extensive group information, 
researchers use three coefficients vectors that are densely 
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packed to enhance the features discovered. Our approach is 
tested using both the made-up and actual Mind Clinical 
Imaging Consortium (MCIC) datasets. Simulation results 
demonstrate that our approach outperforms rival tactics. 
GJNMFO identifies a set of risk genes, epigenetic variables, 
and aberrant brain functioning regions through the use of 
MCIC data in the study. These findings have significant 
economic and ecological ramifications, which science has 
proven [12]. 

For ground-based cloud recognition, deep neural networks 
have recently attracted a lot of attention. The entire focus of 
these techniques, however, is on extrapolating global features 
from visual input, which results in approximations for ground 
structures that are erroneous. The multi-evidence and multi-
modal fusion network (MMFN), which is described in this 
article, is a unique technique for ground-based cloud 
identification that can increase cloud knowledge by fusing 
various signals in an integrated framework. By utilizing the 
attentive network and the main system, MMFN specifically 
uses a number of data points, such as global and local visual 
characteristics, from ground-based clouds images. Local 
visual qualities are gathered using the attention maps of the 
attentive system, which are constructed using fine-tuned 
salient aspects of convolutional stimulating structures. The 
multi-modal networking in MMFN is now studying the multi-
modal properties of ground-based clouds. Researchers 
developed two fusion stages in MMFN to combine multi-
modal features with local and global visual properties in order 
to fully fuse the multi-modal and multi-evidence visual 
qualities. The first multi-modal ground-based cloud database, 
or MGCD, is also made possible by study. It includes both the 
ground-based cloud images themselves as well as the multi-
modal data that goes with each cloud image. When measured 
against state-of-the-art techniques, the MMFN obtains an 
identification performance of 88.63% on MGCD, proving its 
suitability for ground-based cloud recognition. The current 
study forbids the use extra factors, such as cloud basal height, 
for cloud characterization [13]. 

To achieve human-robot collaboration (HRC) in 
manufacturing processes, multimodal robot management must 
be intuitive and trustworthy. In earlier works, multimodal 
robotic control strategies were established. The technologies 
make it possible for human employees to control robots 
naturally without having to write brand-specific programming. 
However, because characteristics are not depicted consistently 
across multiple paradigms, the bulk of multimodal controlling 
robots’ approaches are unreliable. In order to solve this 
problem, the research on reliable multimodal HRC production 
systems suggests a multimodal fusion architecture that makes 
use of deep learning.  The proposed design consists of three 
modalities: verbal authority, hand gesture, and body motion. 
Three single-modal systems' characteristics are first trained to 
be retrieved, after which the characteristics are combined to 
swap representations. Tests show that the proposed 
multimodal fusion paradigm performs superior to the three 
unimodal models. The paper emphasizes the potential for 
applying the suggested multimodal fusion architecture to 
produce dependable HRC systems. The architectural concept 
paradigm wasn't made clear enough [14]. 

Radar electronic surveillance has new difficulties as a 
result of the emergence of cognitive wireless and electronic 
warfare; recognizing the signal generated by radar is a crucial 
component of this work. Research suggests a new radar signal 
recognition technique that uses non-negative matrix 
factorization network (NMFN) and ensemble learning. This 
system is capable of reliably recognizing radar signals under 
low signal-to-noise ratio conditions. Research investigates a 
method for extracting features based on a convolutional neural 
network at the beginning, which uses transfer learning as a 
way to address the issue of small sizes of samples. In order to 
extract characteristics and eliminate redundant data, 
research also suggests a non-negative matrix factorization 
system. In the third step, research create a feature fusion 
method utilizing stacked autoencoders (SAE), which can 
collect key feature expressions and condense feature 
dimensions. Last but not least, researcher suggests the 
improved artificial bee colony algorithm (IABC) as an 
ensemble learning technique that can increase the recognition 
rate. According to the simulation outcomes, recognition rates 
are 94.23% at 4 dB and 99.82% at 6 dB [15]. 

Dynamic MRI was used as a technique to record the 
body's various organs successive anatomy as they change over 
time. Nevertheless, due to mechanical and physiological 
limitations, its uses are restricted by shorter acquisition times. 
It has been demonstrated that dynamic MRI has spatio-
temporal heterogeneity in its frequency spectrum (k-space). 
Lowering the number of k-space examples can greatly shorten 
the acquisition duration, yet at the expense of introducing 
artefacts into the associated image realm. To speed up the 
whole acquisition procedure, Shashidhar and Subha [16] 
created a cascaded Convolutional Long Short-Term Memory 
(ConvLSTM) framework for T2-weighted dynamic MRI 
patterns restoration from significantly under-sampled k-space 
information. Particularly, a Cartesian inadequate sampling 
mask could be used to under-sample completely sampled 
information obtained from the ADNI dataset. The aliasing 
artefacts caused by inadequate sampling are then eliminated 
using the ConvLSTM framework that has been suggested. In 
order to rebuild the imagery effectively and more accurately 
than CNN-based restoration, the ConvLSTM framework also 
learns the imagery's temporal and spatial connections. The 
utilization of medical databases presents ethical issues about 
data protection and informed approval, like the ADNI 
database. It is crucial to confirm that the research complies 
with ethical standards and has gotten the necessary rights and 
authorization for the use of the data. 

III. PROBLEM STATEMENT 

The requirement for efficient multi-modal image fusion to 
improve image quality and interpretability across many 
applications is the issue this research attempts to solve. 
Integrating data from several sources while preserving the 
accuracy of the original data are difficult. Complex patterns 
and distinguishing traits are frequently difficult to capture 
using traditional techniques. The work suggests a remedy that 
combines the capacities of CNNs and NMF to address this. 
Utilizing CNNs' feature extraction abilities, the idea is to 
produce a fused feature representation that is then improved 
by NMF to uncover useful patterns. Since.the non-negativity 
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requirement in NMF, the fused images are coherent and 
meaningful since their inherent structures are preserved. The 
suggested approach's capacity to maintain crucial diagnostic 
data and improve fusion quality is assessed by quantitative 
metrics and visual evaluations, demonstrating its potential to 
help precise decision-making and analysis in areas like 
medical imaging [17]. 

IV. PROPOSED FRAMEWORK 

There are multiple steps in the suggested methodology for 
Deep Convolutional Neural Networks (CNNs) to fuse 
multimodal images. The process for Multi-Modal Image 
Fusion using Deep Convolutional Neural Networks and Non-
Negative Matrix Factorization is depicted in Fig. 1. The input 
images are first preprocessed by converting them to a standard 
scale and using the proper transformations to improve image 
details. Then, using a sizable dataset of aligned multi-modal 
images and a fusion-specific loss function, CNN architecture 
is created, consisting of shared and modality-specific 
convolutional layers. From each modality, high-level feature 
maps are retrieved using the trained CNN. NMF is used to 
decompose extracted feature maps into non-negative basis 
vectors and coefficients in the setting of non-negative matrix 
factorization (NMF) feature extraction.  The most 
discriminative basis vectors capturing the essential features of 
each modality are selected, and fusion weights are learned or 
fusion rules are applied to combine them. The fused basis 
vectors are multiplied with the corresponding coefficients to 
reconstruct the fused feature maps, which are then aggregated 
to generate the final fused image. Post-processing techniques 
like denoising or sharpening can be applied for further 
enhancement. This methodology is primarily used for multi-
modal image fusion, where images from different modalities, 
such as infrared and visible, are combined to provide a 
comprehensive understanding of a scene. On the other hand, 
non-multi-modal image fusion is utilized in feature fusion 
scenarios where features from the same modality but captured 
under different conditions, such as exposure or focus, are 
fused to create a more comprehensive feature representation. 

A. Data Collection  

MRI brain images of 1000 datasets including healthy and 
unhealthy are used in the research. Among these 50% of 
images are used as training data and 50% of images are used 
as testing data. The collected brain cancer images were 
existing on the Kaggle depository website [18]. The datasets 
are distributed in Table I. 

B. Data Preprocessing  

Magnetic Resonance Imaging (MRI) imageries were 
impacted by unrelated and erratic noisy data, such as Gaussian 
noise and Speckle sound, which reduced the analysis value of 
those sample imageries. Speckle sounds have a significant 
impact on the contrast resolution of MRI brain imaging. 
Therefore, the original Hannmean filter is used to reduce noise 
in MRI brain images. A Hannmean filter is a filter that 
combines the Hanning window and Mean filters. The 
established Hannmean filter is used to minimize the noise in 
an image as well as any spatial intensity derivatives that may 
be present. In order to exchange each pixel's value with its 
surrounding neighbours' mean image values and ignore the 

unreliable pixel value of their image background, the 
Hannmean filter is used. Noises are produced in MRI brain 
scans by the device's inhomogeneity dis a magnetic region 
afforded by temperature, the malfunction of the scanner, and 
the patient's movement throughout the scanning process. Both 
noiseless methods and image resolution were used to get a 
crisp MRI brain image [19]. 

 

Fig. 1. Proposed framework. 

TABLE I. THE COLLECTED DATASETS 

 Training data Testing data 

Unhealthy 250 250 

Healthy 250 250 

Overall data 500 500 

C. Feature Extraction using CNN 

Deep CNNs are remarkably good at capturing hierarchical 
representations and complicated patterns. In order to begin the 
feature extraction process, a series of deep CNNs are trained 
on a variety of datasets made up of multi-modal images. These 
networks learn to recognize distinguishing elements that are 
pertinent to each input modality since they are designed to the 
specifics of the input modalities. CNNs extract features that 
capture detailed textures, forms, and structures unique to each 
modality by utilizing both low-level and high-level filters. The 
cross-modal linkages are preserved while modality-specific 
subtleties are captured in the learnt features. Concatenating the 
retrieved features from the different CNNs results in the 
formation of the fused feature representation, this completely 
embodies the essence of the multi-modal inputs. The basis for 
further processing, such as the usage of NMF to hone and 
extract more abstract patterns, is this fused feature 
representation. The suggested framework improves the fusion 
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process by utilizing CNNs' advantages in extracting valuable 
features, thereby assisting in the creation of high-quality fused 
images that capture the complimentary information available 
in the multi-modal data. 

The suggested medical image fusion architecture contains 
three primary phases, which are depicted in Fig. 2. To begin, it 
creates the same-size weight map (m) for source images X and 
Y of arbitrary size using Siamese network architecture. The 
produced weight map X is then subjected to Gaussian gradient 
deconstruction to produce the matching multi-scale sub-
decomposed image Gm, which is used to establish the fusion 
operation in the coefficient calculation merger procedure. The 
top layer and the remaining layers of the sub-decomposed 

image are represented by the symbols 𝐺𝑀,𝑖=𝑁
𝑖,𝑠  𝑎𝑛𝑑 𝐺𝑀,0≤1≤𝑁

𝑖,𝑠
 

[20]. The contrast gradient is used to break down the source 
images X and Y. For the following coefficient fusion 
technique, the multi-scale sub-decomposed images 𝑄𝑥𝑎𝑚𝑑 𝑄𝑦 

are acquired. The top layers of the sub-decomposed images 

𝑄𝑥𝑎𝑚𝑑 𝑄𝑦 are 𝑄𝑋,𝑖=𝑁
𝑖,𝑠  𝑎𝑛𝑑 𝑄𝑌,𝑖=𝑁

𝑖,𝑠
 correspondingly. In order to 

denote the other layers of the sub-decomposed 
images𝑄𝑥𝑎𝑚𝑑 𝑄𝑦, accordingly, research adopts the notation 

𝑄𝑋,𝑖=𝑁
𝑖,𝑠  𝑎𝑛𝑑 𝑄𝑌0≤1≤𝑁

𝑖,𝑠
. Finally, distinct thresholds are 

established, one for the top level and the other for the layers 
that make up sub-decomposed image 𝐹𝑞. 

 

Fig. 2. Multi-modal fusion based deep convolution network. 

The Fig. 2 represents a Multi-Modal Image Fusion based 
Deep Convolution Network, a powerful technique that 
combines information from different image modalities to 
generate a fused image with improved quality and 
interpretability. The network consists of input layers for each 
modality, followed by convolutional layers that extract 
relevant features from the images. Pooling layers down 
sample the feature maps, while fusion layers combines the 
extracted features from different modalities to create a 
comprehensive representation. Fully connected layers further 
transform and abstract the fused features, leading to an output 
layer that generates the final fused image. This architecture 
allows the network to leverage the strengths of each modality 
and enhance the understanding of the scene, making it a 
valuable tool in various applications [21]. 

The suggested technique uses CNN to accomplish an 
estimation of the ideal pixel level of activity and distributed 
weight by obtaining a weighted map of pixel activity details 
from numerous source images. In this study, Siamese 
networks are used to increase the effectiveness of CNN 
instruction. The Siamese system has two divisions. There are 
three convolutional layers and one max-pooling layer on each 

branch. Convolutional neural networks comprise the top two 
layers. The input image's non-negative matrix 
factorization feature extraction is done on the first layer. There 
are more feature maps in the second layer. The top 
convolutional layer extracts the characteristics of the output 
map. In the proposed methodology, a max-pooling layer is 
included as the third layer in the network architecture. This 
layer serves to further reduce the number of parameters and 
remove unnecessary samples from the feature map. By down 
sampling the input feature map, the max-pooling layer retains 
the most significant information while discarding less relevant 
details, effectively reducing the computational complexity. 
Following the max-pooling layer, a fourth layer is introduced 
as a convolution layer. This layer extracts more intricate and 
detailed information from the pooled feature map, capturing 
finer patterns and features. To minimize the training 
complexity and memory usage, a lightweight network 
structure is employed for this convolutional layer [22]. 

Specifically, the feature maps from each branch are 
concatenated together in the network's final stage. 
Concatenation gives a more thorough representation by 
allowing the integration of knowledge gained from several 
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branches. The concatenated feature maps are then immediately 
coupled to a two-dimensional vector using a completely 
connected layer. The next bi-directional SoftMax layer uses 
this vector as its input. The two-dimensional vector is 
categorized based on probability values by the bi-directional 
SoftMax layer, which also forecasts the probability 
distribution of several qualities. This forecast is essential for 
estimating the probability that various attributes will appear in 
the input data. In order to predict attributes, the network 
outputs a probabilistic classification by mapping the two-
dimensional vector to the SoftMax layer. Overall, to extract 
and express complicated information from the input data, this 
technology combines max-pooling, convolutional layers, and 
concatenation of feature maps. Accurate attribute prediction 
based on learned representations is made possible by the fully 
connected layer, the bi-directional SoftMax layer, and the 
probability-based categorization. This method is appropriate 
for a variety of applications requiring attribute prediction or 
classification since it minimizes the number of parameters, 
optimizes training complexity, and increases memory 
efficiency [23]. 

This study uses a SoftMax classifier to determine the 
categorization probability using Eq. (1) in order to achieve 
categorization in the DCNN network: 

𝑓(𝑟𝑢) =
𝑒𝑟𝑢

∑ 𝑒𝑟𝑢𝑛
𝑣=1

   (1) 

The mapping between each element of one (𝑟𝑢)will be 
approximately 1 and the rest will be closest to 0, normalizing 
all input matrices if one pi is greater than every other 
component r. The SoftMax loss curve is found as Eq. (2) when 
the number of batches is set to 128: 

𝐵 = ∑ −𝑙𝑜𝑔𝑓(𝑟𝑢)𝑠𝑖𝑧𝑒
𝑢=0   (2) 

Stochastic gradient descent is utilized to minimize the loss 
function with the SoftMax loss value serving as the 
optimization objective. The acceleration loss and weight decay 
are established as the initial parameter values, respectively. 
Consequently, the weights are updated using Eq. (3): 

𝑠𝑢+1 = 𝑠𝑢 + 𝑡𝑢 + 1  (3) 

In Eq. (3) the dynamic factor is defined as 𝑡𝑢 and the 
weight is denoted as 𝑠𝑢 at u

th
 iteration.  

D. NMF for Multi Modal Image Fusion 

By permitting the breakdown of fused feature 
representations into non-negative basis vectors and 
coefficients, NMF plays a crucial role in the field of Multi-
Modal Image Fusion. This decomposition technique perfectly 
reflects the properties of image data, where pixel values are 
always positive. NMF makes it easier to create a fused image 
while maintaining the underlying natural structures and 
attributes existing in the input modalities by imposing this 
non-negativity requirement. The basis vectors, which depict 
fundamental patterns shared by all modalities, identify crucial 
characteristics that are similar to all inputs. By permitting the 
breakdown of fused feature representations into non-negative 
basis vectors and coefficients, NMF plays a crucial role in the 
field of Multi-Modal Image Fusion. This decomposition 
technique perfectly reflects the properties of image data, 

where pixel values are always positive. NMF makes it easier 
to create a fused image while maintaining the underlying 
natural structures and attributes existing in the input 
modalities by imposing this non-negativity requirement. The 
basis vectors, which depict fundamental patterns shared by all 
modalities, identify crucial characteristics that are similar to 
all inputs. 

Non-negative matrix factorization (NMF) is a powerful 
technique for multi modal fusion that aims to decompose a 
given data matrix into two non-negative matrices: a basis 
matrix and a coefficient matrix. In the context of feature 
extraction, NMF allows the extraction of meaningful and 
interpretable features by representing the input data as a linear 
combination of basis vectors. The basis matrix captures the 
fundamental components or patterns present in the data, while 
the coefficient matrix indicates the contribution of each basis 
vector to reconstruct the original data [24]. NMF assures that 
the extracted features are additive and non-competitive by 
applying non-negativity restrictions. This can be helpful for a 
variety of applications, including text mining, audio analysis, 
and image processing. The resulting basis vectors give the 
input data a condensed representation by emphasizing the key 
traits and bringing down the dimensionality, making it easier 
to perform further analysis or classification tasks. Overall, 
NMF-based feature extraction provides a practical method for 
identifying latent characteristics in data, enhancing the 
representation, comprehension, and use of complicated 
datasets [25]. 

For the assessment of non-negative matrices, the non-
negative matrix factorization is used. 𝐴 ∈ 𝑈𝐺×𝑈

+  and 𝐵 ∈ 𝑈𝑈×𝐽
+  

in which the two-matrix multiplication is similar to non-
negative matrix 𝐶 ∈ 𝑈𝐺×𝑈

+  could be computed using the Eq. 
(4): 

𝐶 = 𝐴𝐵 + 𝐹    (4) 

Where 𝐹 ∈ 𝑈𝐺×𝑗 is an error matrix. The cost function 

connecting C and AB is minimized to predict the matrix of A 
and B as: 

𝐴 = arg min𝐴 𝑌 (𝐶|𝐴𝐵)  𝑓𝑜𝑟 𝑓𝑖𝑥𝑒𝑑 𝐵 (5) 

𝐵 = arg min𝐵 𝑌 (𝐶|𝐴𝐵)  𝑓𝑜𝑟 𝑓𝑖𝑥𝑒𝑑 𝐴 (6) 

In Eqs. (5) and (6) the space between the two matrices of 
K and L is defined as V(K|L).  

The magnitude spectrogram of the signals is frequently 
used as the input matrix I in various applications of non-
negative matrix factorization (NMF) for acoustic signals. In 
this instance, the frequency content of the acoustic wave over 
time is represented by the matrix I. Two non-negative 
matrices, A and B, are created by factorizing the matrix V. The 
spectrum features are represented by the matrix A, where each 
column vector represents a particular frequency structure or 
spectral component. The matrix B, on the other hand, reflects 
the temporal activations of acoustical events. Each row vector 
in this matrix represents the temporal envelope of a particular 
event. Research has been able to roughly reconstitute the 
magnitude spectrogram by multiplying matrices A and B. 
Consider a musical signal made up of three musical events to 
demonstrate this idea. Each column vector in matrix A would 
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be able to represent a different spectral pattern or frequency 
structure connected to the occurrences. The temporal 
envelopes of the various musical events would be represented 
by the row vectors of the matrix B, which would show how 
their amplitudes changed over time.  

A conversion phase is used during the image testing and 
fusion process on the entirely linked layer to allow processing 
of sources of any size. The fully connected layer is converted 
into two identical convolutional layers with the same kernel 
size. Afterwards, the network may process any size images X 
and Y together in order to create a dense prediction map I. 
Each forecast Is on the map has a two-dimensional vector with 
values ranging from 0 to 1. To make the weights assigned to 
corresponding image blocks simpler, if one dimension of a 
prediction is larger than the other, it is normalized to 1 while 
the other dimension is set to 0.  This ensures that the weight of 
every image block is decreased with an output dimension 
value of 1. In their related image blocks, two close forecasts in 
S have overlapped areas. The mean value of the overlapping 
image blocks is obtained by adding the weights of the images 
in these overlapped sections. With the help of this method, the 
network can be fed images of any size, both X and Y, and a 
weight map W of the same size is produced. This makes sure 
that each image block's weight is reduced with an output 
dimension value of 1. The linked image blocks of the two 
close forecasts in I have overlap sections. The weights of the 
images in these overlapped portions are added to determine 
the mean value of the overlapping image blocks. Using this 
method, the system can produce a weight map W that is the 
same size as an image and accept images of any size, X and Y 
[19]. 

V. RESULT AND DISCUSSION  

Accuracy, Recall, Precision, F1-score, False Detection 
rate, Sensitivity, and Specificity are a few of the metrics used 
to verify the effectiveness of the projected model. True 
positive (tp), false negative (fn), false positive (fp), and true 
negative (tn) values are the fundamental variables that need to 
be computed.  

A. Accuracy 

It gauges how precisely the system paradigm functions. In 
general, it refers to the ratio of correctly observed 
measurements to all data. The accuracy is presented in Eq. (7) 
as, 

npnp

np

fftt

tt
Accuracy






  (7) 

B. Precision 

The number of right positive estimates multiplied by the 
total number of positive guesses is used to measure precision. 
It is the percentage of precisely fused multi-modal medical 
images. Using Eq. (8), the precision is calculated as, 
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C. Recall 

Recall is defined as the ratio of true positives and false 
negatives to correct positive forecasts. It indicates the 
percentage of predictions that were accurate. multiple-modal 
image fusion. Eq. (9) is used to represent recall: 
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D. Sensitivity 

It is a measure of the proportion of correctly foretold true 
positives. Eq. (10) is used to calculate sensitivity as,  
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E. Specificity 

The degree gauges how many precisely identifiable true 
negatives there are. Eq. (11) is used to calculate the specificity 
value as, 

np
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t
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TABLE II. COMPARISON OF PERFORMANCE METRICS 

Methods 

Accuracy 
(%) 

 

Precision 
(%) 

Recall 
(%) 

F1-Score 
(%) 

Wavelet 
Transform 

98.34 93.12 94.36 98.33 

Fuzzy 
Logic 

97.55 96.77 95.76 97.52 

PCA 98.11 98.14 97.87 96.85 

Proposed 
CNN-NMF 

99.12 98.56 98.33 98.25 

 

Fig. 3. Comparison of existing and proposed methods. 
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The Table II displays the accuracy, precision, recall, and 
F1-score performance evaluation of several image fusion 
techniques. The suggested CNN-NMF fusion strategy stands 
out among the tested techniques with the best accuracy of 
99.12%, illustrating its capacity to successfully integrate 
multi-modal data. Additionally, this approach achieves 
impressive accuracy, recall, and F1-score values of 98.56%, 
98.33%, and 98.25%, demonstrating its competence in 
accurately recognizing positive cases and minimizing false 
positives and negatives. The proposed CNN-NMF approach 
outperforms competing techniques like Wavelet Transform, 
Fuzzy Logic, and PCA, but it also has the potential to improve 
multi-modal image fusion tasks by capturing intricate patterns 
and preserving the integrity of the original data. It is depicted 
in Fig. 3. 

TABLE III. MEDICAL IMAGE FUSION COMPARISON 

Method
s 

Tsallis 
entrop

y 

Gradient
-based 
quality 

Informatio
n ratio 

Mutual 
informatio

n 

Processin
g Time 

MST-
SR 

64% 39% 36% 97% 15.05 

NSCT-
PC 

71% 44% 40% 90% 3.77 

ASR 66% 35% 39% 68% 6.15 

CNN-
LIU 

62% 62% 28% 87% 14.58 

Propose
d 

98% 45% 41% 92% 12.86 

For the fused model with trainable and non-trainable 
weights, Fig. 4 and 5 displays the training accuracy and loss. 
Fig. 4 and 5 can be compared, and it is obvious that the model 
with trainable weights exhibits a faster improvement in 
accuracy and loss than the model with non-trainable weights. 
However, both networks achieve a point of convergence after 
around 40 epochs, with a training accuracy of about 98.07% 
and a loss of 0.0496. The fused model achieves a remarkable 
accuracy of 99.58% for the test dataset. These results show 
that both models eventually perform at a similar level in terms 
of accuracy and loss, however the model with trainable 
weights shows faster early development 

A comparison of various methodologies based on various 
evaluation indicators and processing time is presented in Table 
III and Fig. 6. The NSCT-PC, CNN-LIU, ASR, MST-SR, and 
proposed algorithms are the ones that were tested.  The 
Proposed technique receives the best score of 98% for Tsallis 
entropy, demonstrating its efficacy in maintaining information 
during the fusion process. While MST-SR, ASR, and CNN-
LIU score lower with 64%, 66%, and 62% correspondingly, 
NSCT-PC comes in second with 71%. CNN-LIU receives the 
greatest score for gradient-based quality (62%), demonstrating 
its capacity to catch fine gradients in the fused image. The 
Proposed technique and ASR score 45% and 35%, 
respectively, whereas NSCT-PC scores 44%. The Proposed 
method achieves a 41% information ratio, showing a balanced 
preservation and utilisation of information. Following with 
40% is NSCT-PC, followed by ASR with 39% and CNN-LIU 
with 28%. The Proposed technique receives a 92% for mutual 
information, demonstrating a high degree of mutual 
dependence between the input images in the fused result. 

Following with 90% is NSCT-PC, and CNN-LIU comes in at 
87%. The scores for MST-SR and ASR are lower, at 97% and 
68%, respectively. In terms of processing speed, NSCT-PC 
performs the best with a time of 3.77. The Proposed approach 
achieves 12.86, whereas ASR comes in second with 6.15. The 
processing times for MST-SR and CNN-LIU are 15.05 and 
14.58, respectively. The Proposed method achieves 
competitive scores for gradient-based quality and stands out in 
terms of Tsallis entropy, information ratio, and mutual 
information. A promising method for multi-modal image 
fusion, it surpasses competing techniques in most assessment 
measures despite taking a little longer to process data than 
NSCT-PC. 

 

Fig. 4. Training accuracy. 

 

Fig. 5. Training loss. 

F. Discussion  

The proposed research offers a novel method for multi-
modal image fusion within the context of modern computer 
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vision that makes use of both Deep CNNs and NMF's 
advantages. Deep CNNs have been shown to be adept at 
extracting minute details and identifying subtle patterns in 
images, making them an invaluable tool for working with 
multi-modal data. The paper suggests using these deep CNNs 
in a two-stage fusion process. First, the neural networks are 
trained to extract significant features from various modalities, 
and then the features that were extracted are concatenated to 
provide a thorough fused picture of the input data. This 
method stands out due to the creative ways in which NMF is 
applied in two different phases: first, to break down the fused 
representations of features into non-negative basic vector and 
coefficients, and subsequently, to further extract significant 
patterns from the resulting fused feature maps. The inherent 
non-negativity requirement in NMF guarantees the 
preservation of organic structures and inherent qualities in the 
source images, producing fused images that are visually 
beautiful and semantically comprehensible. The method excels 
at extracting critical information from many modalities, as 
shown by a visual analysis of the fused images. Its amazing 
accuracy also stands out as a noteworthy accomplishment, 
beating other fusion techniques and demonstrating its better 
performance and resilience. As a result of the partnership 
between deep CNNs and NMF, this work offers an appealing 
method for multi-modal picture fusion that yields a reliable 
and highly precise fusion technique. The suggested method 
successfully collects and combines data from several 
modalities, producing combined images that are not only 
aesthetically pleasing but also semantically relevant. This is 
made possible by successfully merging both cutting-edge deep 
learning methods with matrix factorization techniques. This 
multi-modal fusion invention is poised to make major strides 
in a number of sectors that depend on picture processing and 
interpretation and where it is crucial to accurately extract 
complementing information from many sources. 

 

Fig. 6. Objective evaluation comparison. 

VI. CONCLUSION 

In this research, a unique and efficient multi-modal image 
fusion approach that makes use of Deep CNNs and NMF is 
provided. The suggested method tackles the fundamental 
problem of improving image quality and interpretability 
through fusion by taking use of current developments in deep 
learning and matrix factorization techniques. Deep CNNs have 
been shown to be effective in extracting features from a 
variety of input modalities, underscoring its importance in this 
situation by capturing complex patterns and discriminative 
data necessary for successful fusion. The approach creates 
information-rich representations that are then smoothly 
merged via the fusion process by training a series of deep 
CNNs on a variety of datasets. By allowing the extraction of 
crucial patterns from fused feature representations while 
conserving the inherent structures of the source images, the 
dual-stage integration of NMF represents a singular invention. 
This preservation, which is grounded in NMF's non-negativity 
condition, produces fused images that are both aesthetically 
cohesive and semantically understandable. The visual proof of 
information effectively collected from many modalities 
supports the approach's potential even more. This study's 
overall findings represent a substantial improvement in multi-
modal image fusion, with potential applications in industries 
that need precise data integration and image enhancement. 
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