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Abstract—Full truckload (FTL) shipment is one of the largest 

trucking modes. It is an essential part of the transportation 

industry, where the carriers are required to move FTL 

transportation demands (orders) at a minimal cost between pairs 

of locations using a certain number of trucks available at the 

depots. The drivers who pick up and deliver these orders must 

return to their home depots within a given time. In practice, 

satisfying those orders within a given time frame (e.g., one day) 

could be impossible while adhering to all operational constraints. 

As a result, the investigated problem is distinguished by the 

selective aspect, in which only a subset of transportation 

demands is serviced. Furthermore, travel times between nodes 

can be uncertain and vary depending on various possible 

scenarios. The robustness subsequently consists of identifying a 

feasible solution in all scenarios. Therefore, this study introduces 

an MILP-based lexicographic approach to solve a robust 

selective full truckload vehicle routing problem (RSFTVRP). We 

demonstrated the proposed method’s efficiency through 

experimental results on newly generated instances for the 

considered problem. 
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I. INTRODUCTION 

The vehicle routing problem (VRP) is one of the various 
investigated combinatorial optimization problems [1]. Its 
tendency is due to its concrete application in the logistics and 
transportation domains. These fields play an essential role in 
the modern market economy by assuring the movement of 
goods from factories to customers. The FTVRP is a variation 
of the VRP that has previously garnered limited scientific 
interest. This problem has a significant application to the 
truckload industry, where the carriers must service FTL 
transportation demands (known in the literature as orders or 
commodities) at a minimal cost between pairs of locations 
utilizing an available fleet of trucks. They are given a network 
of sites with FTL orders to be shipped between some pairs of 
locations. These orders must be shipped using a certain number 
of trucks available at the depots. The drivers who pick up and 
deliver these orders must return to their home depots 
(domiciles) within a given time. The problem is determining 
the least-cost truck routes so that every order is picked up at its 
source and shipped to its destination. A typical truck would 
leave the depot, pick up a commodity, deliver the commodity, 
travel empty, pick up another commodity, deliver the 
commodity, and so on. Finally, after picking up and delivering 
some orders, the truck returns to its domicile. Moreover, each 
order must be picked between certain hours only. In other 

words, every pickup must only be made between a specific 
pickup time window. Once the order is picked up, it must then 
be delivered to its destination. Depending on the specific 
problem, the delivery can be made at any time or within a 
specified delivery time window only. If a driver reaches a 
pickup location early, he usually has to wait until the open 
time. In some instances, the driver may be paid based on a 
certain hourly rate for staying. The integration of the time 
constraints in the FTL transportation problem gives rise to the 
FTVRP with time windows (FTVRPTW). Furthermore, 
trucking companies can service their clients through numerous 
depots, with each client assigned preferentially to one depot 
(multi-depot FTVRP, FTMDVRP).  

On the one hand, meeting all of the aforementioned 
attributes may prevent the trucks from honoring all orders. 
Therefore, the selective feature of the problem is introduced by 
relaxing the requirement of servicing all transportation 
demands within a limited time (selective FTVRP, SFTVRP). 
The goal may be the maximization of the collected total profit, 
in which a profit is associated with each order, the 
minimization of the whole travelling costs, in which the 
assignment covers as many feasible orders as possible, or the 
optimization of a combination of both. 

On the other hand, travel between a pair of locations might 
be made via multiple paths. However, the optimal one with the 
shortest travel time will usually be traversed. In practice, the 
travel time is uncertain and dependent on specific 
circumstances (peak traffic hours, weather conditions, 
accidents, and so on). As a result, this paper investigates a 
robust selective full truckload multi-depot vehicle routing 
problem with time windows (RSFTMDVRPTW) under 
uncertainty in transportation time as a set of discrete scenarios. 
Each one illustrates an eventual situation that could occur 
throughout the shipping period. In each scenario, we consider 
that a fixed number of edges connecting locations are 
perturbed, and the travel times along those edges differ from 
the ideal ones. In this study, we formulate the 
RSFTMDVRPTW as a mixed-integer linear programming 
(MILP) model under uncertainty and the multi-objective facet, 
which addresses two functions: an economic component to be 
maximized and a component related to the worst observation of 
the total travel time over all scenarios to be minimized. These 
two objectives are conflicting in that increasing profit 
necessitates servicing more commodities, resulting in a longer 
transit time.  

Many papers in the literature have been devoted to 
introducing, formulating, and solving FTVRP variants. Among 
them, the SFTVRP was solved using mathematical models, 
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exact solvers, meta-heuristics, and hybrid methods. The 
novelty of the problem under consideration is that the SFTVRP 
is treated in a robust backhaul trucking context while 
considering two objectives. As a result, combining the robust 
and selective aspects helps to bring the model closer to reality. 

The remainder of this study is organized as follows: Section 
II describes some of the related works. Section III then 
formulates the RSFTMDVRPTW, while Section IV describes 
our MILP-based lexicographic approach. Section V presents 
the experimental findings. Finally, Section VI concludes the 
paper and suggests some future research directions. 

II. RELATED WORKS 

Over the last two decades, many researchers have studied 
various FTVRP variants by adding constraints to the 
fundamental problem to better match real-world applications. 
Different approaches are used to solve these variants. 
Interested readers are referred to [2] for a detailed review of 
FTVRPs. To position our study in relation to the literature, we 
classified the various contributions of selective FTVRP 
(SFTVRP) variants based on whether the routes primarily 
contain the FTL shipment, transportation demand selection, 
multiple depots, time window constraints (TWs), and 
uncertainty. Table I outlines the most critical SFTVRP-related 
works and the current study features. 

Ball et al. [3] were the first to introduce the multi-depot 
SFTVRP (SFTMDPDP). The problem consists of constructing 
routes for private vehicles and subcontracting chemical product 
commodities to common carriers with the goal of decreasing 
total cost while meeting a maximum time limit on truck routes. 
For resolving the FTMDPDP, three heuristics are proposed: a 
greedy insertion strategy (GI) and two algorithms based on the 
route-first, cluster-second (RF-CS) technique. Wang and 
Regan [4] investigated an SFTVRP with time windows 
(SFTPDPTW) considering only loading TWs, in which the 
objective is to minimize the empty travelling cost while serving 
the maximum number of orders within their time constraints. 
They devised an iterative strategy for resolving the problem by 
employing the window-partition-based (WPB) algorithm. 
Miori [5] proposed a TS algorithm for solving a similar 
SFTVRPT without TWs and with the same later goal. Li and 
Lu [6] presented a hybrid GA based on improved savings for 
an SFTVRP with split orders and the objective of maximizing 
the total profit. Liu et al. [7] developed a memetic algorithm to 
solve an SFTVRP in collaborative transportation. Another 
SFTVRPT in the collaborative logistics context was presented 
in [8]. The authors formulated the problem as an MILP model 
with the objective function of minimizing the total cost. They 
proposed a branch-and-cut-and-price-based heuristic to solve 
the model. Wang et al. [9] considered an SFTVRP with 
heterogeneous fleet application in the petrochemical industry 
that involves rich features, including multiple loading 
locations, optional orders, and loading dock capacity 

limitations. They presented an MILP mathematical model for 
the problem, which is solved using the commercial solver 
Gurobi. 

Yang et al. [10], Tjokroamidjojo et al. [11], and 
Zolfagharinia and Haughton [12] used some rolling horizon 
approaches (variants of re-optimization or heuristics) to deploy 
dynamic SFTVRP variants. A fraction of orders to be carried in 
a given day become known only a short time before service is 
needed, truck movements are added to the system as the day 
advances, and orders must periodically be reassigned. Li et al. 
[13] addressed a dynamic SFTVRP in a collaborative context 
in which the carrier can dynamically select its collaborative 
requests based on the surplus of its transport capacity in the 
collaborative process. The authors proposed a mixed integer 
programming (MIP) model for the problem, aiming to 
maximize the carrier’s total profits after outsourcing requests. 
The model is solved through CPLEX software. Annouch and 
Bellabdaoui [14] proposed an adaptive GA to solve the open 
FTMDVRPTW with split delivery (FTOVRPTWSD) in the 
liquefied petroleum gas (LPG) distribution industry. The 
FTVRP variant addressed in this study is not selective, and the 
robustness aspect is not considered. 

In our previous studies, we investigated a mono-objective 
variant of the selective FTMDVRPTW (SFTMDVRPTW) in 
an empty return context. The objective is to maximize the total 
profit of selective routes. The resolution of this problem is 
based on the development of mathematical models, exact 
solvers, meta-heuristics, and hybrid methods. We described a 
mathematical formulation of the SFTMDVRPTW as an MILP 
model [15]. Numerical results on small and medium-size 
instances are presented using the CPLEX solver. To solve 
larger instances, we developed, adapted, and applied some 
heuristic methods: an ant colony system (ACS) [16], a genetic 
algorithm (GA) [17-18], and a reactive tabu search (RTS) [19]. 

To the best of our knowledge, while uncertainty is present 
and relevant, it is rarely addressed for SFTVRP variants. 
Hammami et al. [20] investigated an SFTVRP with uncertain 
clearing prices. They developed an exact non-enumerative 
algorithm to obtain optimal solutions for small instances and a 
two-phase hybrid heuristic to solve larger instances. 

The main contributions of this paper can be summarized as 
follows: 

 Formulate the RSFTMDVRPTW as an MILP model 
under uncertainty and the multi-objective facet, which 
addresses two conflicting functions: an economic 
component to be maximized and a component related to 
the worst observation of total operation time to be 
minimized. 

 Introduce a MILP-based lexicographic method for 
solving the RSFTMDVRPTW. 
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TABLE I. POSITION OF OUR STUDY IN RELATION TO THE FTVRP LITERATURE 

 
Note: Het: Heterogeneous Fleet; MD: Multi-Depot; Cap: Capacitated; SD: Split delivery; S: Selective; D: Dynamic; U: uncertainty; TT: Travel time; #Veh: Number of vehicles; #Ord: Number of served orders; EMV: 

Empty vehicle movements; E: exact; H: heuristic; SSBM: Single solution-based metaheuristic; PBM: Population based metaheuristic; RHA: Rolling horizon planning approach; RF-CS: Route-first, cluster-second.  

III. A MATHEMATICAL FORMULATION OF THE 

RSFTMDVRPTW 

A. Problematic 

This study addresses a variant of the full truck vehicle 
routing problem under uncertainty in transportation time 
(RSFTMDVRPTW). The position of the problem is as follows. 
Assume a set of n orders to be served by a fixed fleet of m 
trucks. Each truck k is characterized by a starting point   , an 

ending point   , an earliest service start date   
    and a latest 

service end date   
   . Each order                is 

characterized by a collection point    (origin) and a delivery 
point    (destination), a profit    (determined on the basis of 
the distance between origin and destination), a loading time 

window    
      

      and an unloading time window 

   
      

    . The travel time for each arc       
{        }  {(       )}  {        }  {       }  is 

described by a set of    scenarios    
 

 (            , where 

each scenario reflects a potential time requirement for a truck 
traversing arc      . 

The problem consists of selecting a subset of orders to be 
served and assigning them to trucks, thus finding an optimal 
sequence of orders assigned to each truck while maximizing 
total profit, minimizing the worst observation of the total travel 
time over all scenarios and respecting availability and time 
window constraints. Fig. 1 depicts a solution representation for 
an RSFTMDVRPTW instance with two trucks and 14 orders. 

B. A discrete Scenario-based MILP Model 

In this section, we propose an MILP model of the 
RSFTMDVRPTW, in which a set of discrete scenarios 
represents the uncertain travel times. The distribution of the 
uncertainty parameters is assumed to be unknown. As a result, 
all scenarios are generated uniformly. Table II defines all data 
and variable notations. Next, the objectives and constraints are 
introduced and explained. 

Year TW Het MDCap SD S D type Method

• RF-CS

• Greedy insertion

Min. EMV

Max. #Ord

E • Re-optimization

H • RHA

E • Re-optimization

H • RHA

2010 x Min. cost  Academic PBM Memetic Algorithm

Min. cost  

Max. #Ord

Min. #Veh

2014 x x x Max. profit Service transportation PBM Hybrid Genetic Algorithm

2014 x x x x Max. profit Service transportation H  RHA

2015 x x x Max. profit Service transportation E CPLEX

2017 x x x x Max. profit Academic PBM Ant Colony System

E • Branch-and-Cut

H • Hybrid heuristic

2021 x x x x Min. cost Service transportation E Gurobi

E • CPLEX

PBM • Genetic Algorithm

2021 x Min. cost Academic E Branch-and-cut-and-price

Max. profit

Min. worst TT
E MILP-based lexicographicThis study

Li and Lu [6]

Zolfagharinia and Haughton [12]

Li et al. [13]

El Bouyahyiouy and Bellabdaoui [16]
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Wang et al. [9]

El Bouyahyiouy and Bellabdaoui [17]

Öner and Kuyzu [8]

Authors

Ball et al. [3]

Wang and Regan [4]

Yang et al. [10]

Tjokroamidjojo et al. [11]

Liu et al. [7]

Miori [5]

x x x x Academic

U

x

Academic

2021 x

SSBM Goal programming with TS2011 x

x

2006 x x

Service transportation

Min. cost  Service transportation

HAcademicMin. cost       

Constraints Objective 

fonction
Area

Solution approach

x

Service transportation H WPB

x

Max. profit Service transportation

AcademicMax. profitxxxx2022

1983 x

x

Min. cost  

Reference

x

x

2004 x x

2002 x x
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Fig. 1. An illustration of the RSFTMDVRPTW. 

TABLE II. DECISION VARIABLES AND PARAMETERS OF THE MILP 

MODEL OF THE RSFTMDVRPTW 

Notation Meaning 

  Number of trucks  

   Departure depot of truck k 

  
    Earliest service start time of truck k 

   Arrival depot of truck k 

  
    Latest service end time of truck k  

  Number of commodities 

{       } Set of commodities 

   Collection point (origin) of the commodity    

    Delivery point (destination) of the commodity    

   profit associated with commodity    

  
    Earliest time to load the commodity    

    
    Latest time to load the commodity    

  
    Earliest time to unload the commodity    

    
    

Latest time to perform the unloading of the commodity 

   

   Number of scenarios 

  Set of possible scenarios 

  
 
 

Travel time between collection and delivery points of 

the commodity    under scenario     

   
 

 

Empty travel time from the collection point of 

commodity    to the delivery point of commodity    

under scenario     

   
  

 
Empty travel time from departure depot    to the 

collection point of commodity    under scenario     

      
  

 

Empty travel cost from the delivery point of 

commodity    to the arrival depot    under scenario 

     

  A big number 

Decision variables 

   
  

Binary decision variable that indicates whether the 

truck 𝑘 visits commodity    immediately after 

commodity    

    
  

 
Start time of the loading of commodity    on truck k 

under scenario     

    
  

 
Start time of the unloading of commodity    from 

truck k under scenario     

    
  

 
Amount of time to wait before the loading of 

commodity    of truck k under scenario      

    
  

 
Departure time of service of truck k from its starting 

depot    under scenario    

      
  

 
Arrival time of truck k at its finishing depot    under 

scenario     

The MILP model of the RSFTMDVRPTW is given as 
follows: 

1

1

1 1 1
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,0 0 1,.., , 0,..., 1k
ix k m i n     

 (9) 

1, 0 1,.., , 0,..., 1k
n ix k m i n      

 (10) 
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0, ,     1,..., , 1,...,k
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 0,1 , 0,..., 1, 1,...,k
ij i j n k mx      

 (22) 

, 0, 0,..., , 1,... 1,..., ,,k
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 (23) 

, 0, 1,..., 1, 1,.. 1,...,., ,k

i U St i n k m N       
 (24) 

, 0, 1,..., , 1,... 1,..., ,,k

i L Sw k m Ni n      
 (25) 

0 worstTT 
 (26) 

The problem represents a bi-objective optimization 
problem. The first objective function (1) seeks to maximize the 
total profit obtained from the selected commodities and the 
second objective function (2) aims to minimize the worst total 
operation time of all trucks over all considered scenarios. 

Constraints (3) ensure that for all scenarios, the total 
operation time (empty travel time (first term), full travel time 
(second, third, and fourth terms), and waiting time before 
loading and unloading commodities (fifth term)) needed by all 
trucks does not exceed        . Constraints (4) and (5) imply 
that each collection and delivery location can be visited at most 
once. Constraint (6) guarantee that each truck must begin its 
journey from its starting depot. Constraints (7) ensure the 
conservation of flow; once a truck has packed an order, it must 
unload it at the corresponding delivery location. Constraint (8) 
guarantee that each truck finishes its route at the arrival depot. 
Constraints (9) and (10) ensure that each truck cannot return to 
its departure depot and cannot visit any point after its arrival 
depot. Inequalities (11)-(21) are used to compute the truck start 
time, the start time of the loading/unloading of commodities, 
and the time to wait at loading points in all scenarios. The time 
window constraints are respected using Inequalities (11)-(14). 
Constraints (15) require, at a commodity level, that the 
unloading time be greater than the sum of the loading time and 
the time from the commodity’s collection location to its 
delivery location. Constraints (16) and (17) impose that loading 
a commodity onto a truck can only start after the truck has left 
its departure depot. Constraints (18) and (19) ensure that a 
truck can only pick up the next commodity after unloading the 
previous one, and displacement occurs. Constraints (20) and 
(21) guarantee that a truck can only unload a commodity if it 
can arrive at the arrival depot before the latest service end time. 
Finally, constraints (22)-(26) specify the appropriate values for 
decision variables. 

IV. MILP-BASED LEXICOGRAPHIC APPROACH FOR THE 

RSFTMDVRPTW 

Multi-objective optimization (MOO) problems involve 
optimizing more than one objective function simultaneously, 
which is usually in conflict, so improving one leads to 
worsening another. The lexicographic approach is a widely 
used solution method for MOO [21]. Fig. 2 depicts a general 
example of the lexicographic method in which the decision 
maker begins by ranking the objective functions in order of 
importance and then solves sequentially mono-objective 
problems starting with the most critical function and 
progressing to the least critical function. The lexicographic 
approach, similar to other methods (epsilon constraint, 
weighted sum, and so on), does not require any parameter 
configurations. Moreover, once the decision maker has 
prioritized one objective function over the other, it can provide 
a Pareto-optimal solution for the MOO problem. 
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Fig. 2. Principles of the lexicographic optimization approach. 

In this study, we use a lexicographic method based on the 
MILP formulation already defined. The selective aspect 
facilitates the ranking of the objective functions. This ranking 
was chosen on the grounds that maximizing the profit can 
reflect a higher quality of service, as well as on the grounds 
that beginning with the minimization of total travel time will 
generate a solution where no delivery commodity is assigned to 
trucks, where each route of a truck 𝑘 will be the shortest path 
from departure point    to end depot    to obtain the lowest 
travel time. Therefore, we maximize the first objective    (the 
collected profit) first and then minimize the second objective    
(the total travel time) based on the obtained solution for   . As 
a result, the original MILP model is transformed into two 
sequential models      and      as follows: 

          
         

                  Subject to                      

          
         

                       {
                   

     
  

V. COMPUTATIONAL EXPERIMENTS 

The computational experiments were performed using the 
AMPL programming language with CPLEX solver (version 
12.7) on a laptop computer Intel Pentium Core i7- 4790 with 
3.6 GHz and 16 GB of RAM memory. 

The experiments are conducted across adapted 
SFTMDVRPTW instances proposed by EL Bouyahyiouy and 
Bellabdaoui [17], which are generated based on three classes 
       of Solomon’s VRPTW benchmark instances [22]. 
‘ ’ means that the points are clustered, ‘ ’ indicates that the 
points are random, and ‘  ’ denotes that the points are both 
clustered and random. 

In this study, the tests were restricted to the   problem 
class since it is most relevant to the FTVRP variant and the 
most difficult to solve. We used eight different instances from 
the datasets of El Bouyahyiouy and Bellabdaoui [17] with two 
different types of time windows (                and 
                ). We have adapted these instances to 
the RSFTMDVRPTW by adding a number of scenarios. A 
fixed number of arbitrary edges is selected in each scenario, 
and their travelling times are perturbed. Therefore, 96 new 
instances are generated and solved with the MILP-based 
lexicographic method. 

Each instance is labelled as              , where: 

   is the instance ID. 

   gives the number of orders,   {     }. 

   gives the number of trucks,   {   }. 

    denotes the number of scenarios, 

     {         }. 

   denotes the uncertainty level,   {       } . The 
travel time on each perturbed edge for each scenario 
varies on the interval                                
            , where        denotes the Euclidean 
distance between any two points (shortest time) 

   denotes the number of perturbed edges for every 
scenario, representing     or     of the total edges 
for each instance. 

Table III summarizes the results performed on the 96 
generated instances.         denotes the worst observation of 
the total travel time over all scenarios, and CPU represents the 
running time for CPLEX. For each instance, CPLEX is run for 
two-hour-time limits. 

Table III shows the following observations: 

 The proposed MILP-based lexicographic method 
performs well in all instances with 20 commodities 
where the CPLEX solver can provide optimal solutions 
in a relatively short time. When the number of 
commodities is increased to 50, CPLEX is unable to 
solve some instances optimally within 2 hours. 

 As expected, the CPU time is significantly impacted by 
the number of commodities, the width of the time 
windows, and, in particular, the selective aspect (i.e., 
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the number of unselected commodities in the obtained 
optimal solution). In all cases, as the number of 
unselected orders grows, the trucks cannot select some 
orders, resulting in increased CPU time. 

 Furthermore, the number of scenarios and the 
uncertainty level directly affect the CPU time. As the 
values of these two parameters grow, so does the 
difficulty of resolving the instances.  

 If the uncertainty level is set to 100, the travel time will 
likely be doubled. Utilizing many scenarios can 
diminish the uncertainty of travel time, resulting in 
more conservative estimates of the total worst-case 
travel time for all assumed scenarios. 

 When comparing two different instances, a larger 
number of perturbed edges does not always imply a 
lower profit because those edges are selected randomly 
(e.g.,                    and 
                   have optimal profits of 5852 
and 5841, respectively). 

The robust aspect can significantly increase the problem’s 
complexity, impacting the CPU time required to obtain a 
Pareto-optimal solution. Furthermore, the reported solutions 
are still worse than or equal to the non-robust solutions 
computed employing just the ideal scenario [17]. However, the 
feasibility of the obtained solution, over all scenarios, is the 
main advantage of robust optimization. 

TABLE III. RESULTS OF THE PROPOSED MILP-BASED LEXICOGRAPHIC METHOD ON THE 92 GENERATED INSTANCES 

Instance 𝑷𝒓𝒐𝒇𝒊𝒕 𝑻𝑻𝒘𝒐𝒓𝒔𝒕. CPU (s) Instance 𝑷𝒓𝒐𝒇𝒊𝒕 𝑻𝑻𝒘𝒐𝒓𝒔𝒕. CPU (s) 

                 2760 740 99.88                  5942* 2175* 5726.6 

                 2743 783 152.52                  5925 2218 6277.47 

                  2710 867 175.88                   5892 2302 6981,85 

                  2750 920 206.91                   5932 2355 6984,030 

                 2760 814 229.75                  5939 2249 6425.61 

                 2730 858 292.39                  5780 2293 6535.11 

                  2740 907 306.93                   5734 2342 7200 

                  2650 959 378.85                   5816 2394 6896.57 

                  2710 823 490.02                   5822* 2258 7200 

                  2760 863 557.05                   5759 2298 6615.23 

                   2740 922 621.41                    5841 2357 6841.13 

                   2740 952 687.18                    5852 2387 6558.90 

                 1769 735 19.5                  5717 2180 6874.16 

                 1757 778 72.14                  5700* 2223 6926.8 

                  1753 862 95.5                   5667* 2307 6950.16 

                  1747 915 126.53                   5707* 2360 6981.19 

                 1744 809 149.37                  5717* 2254 7200 

                 1714 853 212.01                  5687* 2298 7200 

                  1749 902 226.55                   5697* 2347 6236.75 

                  1759 954 298.47                   5607* 2399 7200 

                  1759 818 409.64                   5667* 2263 7147.10 

                  1755 858 476.67                   5717* 2303 7200 

                   1739 917 541.03                    5697 2362 7155.41 

                   1724 947 606.8                    5667 2392 7182.44 

                 3020 1220 17.7                  6008* 3372* 5500.5 

                 3020 1263 70.34                  5991 3415 5553.14 

                  3020 1347 93.7                   5958 3499 5576.5 

                  3020 1400 124.73                   5998 3552 5607.53 

                 3020 1294 147.57                  6008 3446 5630.37 

                 3020 1338 210.21                  5978 3490 5693.01 

                  3020 1387 224.75                   5988 3539 5707.55 

                  3020 1439 296.67                   5898 3591 5779.47 

                  3020 1303 407.84                   5958 3455 5890.64 

                  3020 1343 474.87                   6008 3495 5957.67 

                   3020 1402 539.23                    5988 3554 6022.03 

                   2970 1432 605                    5988 3584 6087.8 

                 2819 1219 15.9                  5840 3530 5099.16 

                 2802 1262 68.54                  5820* 3354* 6702.54 
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                  2769 1346 91.9                   5780* 3438* 6649.9 

                  2809 1399 122.93                   5830* 3491 6856.93 

                 2819 1293 128.77                  5770* 3385 6779.77 

                 2809 1337 215.41                  5740* 3429 7200 

                  2749 1386 310.95                   5700* 3311 7200 

                  2799 1438 332.87                   5700* 3478 6928.87 

                  2789 1302 424.04                   5720* 3394 7165.04 

                  2809 1342 500.07                   5710* 3434 6877.07 

                   2759 1401 520.43                    5720* 3576 7189.43 

                   2789 1431 560.2                    5700* 3523 7190.23 

* Indicates a feasible solution 

VI. CONCLUSIONS AND FUTURE RESEARCH 

In this work, we have studied an essential variant of the full 
truck vehicle routing problem under uncertainty in 
transportation time, notably a robust selective full truckload 
multi-depot vehicle routing problem with time windows 
(RSFTMDVRPTW), in which a set of discrete scenarios 
represents uncertain travel times. We have proposed a discrete 
scenario-based MILP model for the RSFTMDVRPTW under 
the multi-objective facet, which addresses two conflicting 
functions: an economic component to be maximized and a 
component related to the worst observation of total operation 
time to be minimized. To solve the RSFTMDVRPTW, we 
have used an MILP-based lexicographic method, which 
maximizes the collected profit first and then minimizes the 
worst observation of total travel time based on the obtained 
solution for the first objective. 

The considered approach was solved using CPLEX 12.6 
and tested on 96 newly generated instances of up to 50 orders 
and five trucks adapted from the literature. The encouraging 
results demonstrate that the proposed lexicographic method 
provides a plausible Pareto-optimal solution for all instances 
with 20 commodities within an acceptable computing time. 
However, when the number of commodities is increased to 50, 
CPLEX cannot solve some instances optimally within 2 hours. 
Indeed, we remarked that the selective aspect, the values of the 
number of scenarios, and the uncertainty level strongly impact 
the proposed lexicographic method. Furthermore, the reported 
solutions are still worse than or equal to the nonrobust 
solutions computed employing only the ideal scenario. 
However, the feasibility of the solution over all scenarios is the 
main advantage of robust optimization. 

As the problem is quite complex, only small instances can 
be solved optimally by CPLEX. Therefore, in future works, we 
will design an efficient metaheuristic algorithm to solve large 
instances of the problem with a large number of scenarios. 
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