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Abstract—Wireless Capsule Endoscopy (WCE) is a diagnostic 

technology for gastrointestinal tract pathology detection. It has 

emerged as an alternative to conventional endoscopy which could 

be distressing to the patient. However, the diagnosis process 

requires to view and analyze hundreds of frames extracted from 

WCE video. This makes the diagnosis tedious. For this purpose, 

researches related to the automatic detection of signs of 

gastrointestinal diseases have been boosted. In this paper, we 

design a pattern recognition system for detecting Multiple 

Bleeding Spots (MBS) using WCE video. The proposed system 

relies on the Deep Learning approach to accurately recognize 

multiple bleeding spots in the gastrointestinal tract. Specifically, 

the You Only Look Once (YOLO) Deep Learning models are 

explored in this paper, namely, YOLOv3, YOLOv4, YOLOv5 

and YOLOv7. The results of experiments showed that YOLOv7 

is the most appropriate model for designing the proposed MBS 

detection system. Specifically, the proposed system achieved a 

mAP of 0.86, and an IoU of 0.8. Moreover, the results of the 

detection were enhanced by augmenting the training data to 

reach a mAP of 0.883. 
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I. INTRODUCTION  

The digestive system disorders have been a concern for 
physicians over years. In fact, millions of people around the 
world suffer from gastrointestinal (GI) diseases. Specifically, 
among more than 73 thousand participants in a worldwide 
study, 40% of them have functional gastrointestinal disorders. 
In addition, disorders such as digestive system cancer are 
considered fatal and a major cause of mortality according to 
2020 United States statistics. Several pathogens can affect the 
gastrointestinal tract such as inflammations, infections, 
cancers, benign tumors, ulcers, and hemorrhoids. Some of 
these pathogens have similar symptoms. Specifically, cancer, 
benign tumors, ulcers, and hemorrhoids may yield Multiple 
Bleeding Spots (MBS) in the gastrointestinal tract. The latter 
symptom consists of a loss of blood in the GI tract because of 
ruptured vessels indicating the presence of an abnormality [1]. 
These MBS appear as small dark red spots or as small light 
spots next to the red dark ones. Fortunately, with the 
emergence of new diagnostic techniques, it is possible for 
physicians to detect GI abnormalities. Endoscopy is the most 
common diagnostic technique for GI tract. Nevertheless, it is 
inconvenient and painful for the patient. In order to alleviate 
this inconvenience, Wireless Capsule Endoscopy (WCE) 
developed in 2000, emerged as a new diagnostic technique. 

The diagnosing process consists of the patient swallowing a 
capsule. The latter contains a camera to record the journey of 
the capsule internally to the GI tract. Then, the physician 
analyses the record to diagnose the patient by looking for 
abnormal spots. WCE generates an eight-hour video. In other 
words, 60,000 frames need to be visualized by the physician. 
However, due to the small size of the lesion region and the 
visual fatigue, the disease diagnosis may be missed at an early 
stage. In light of this, a diagnostic technology related to image 
processing and pattern recognition would help in the rapid and 
accurate detection of the disease. Nevertheless, due to the 
likeness of the MBS and other intestinal characteristics such as, 
bubbles, holes, or small food debris, etc. It is challenging to 
extract visual descriptors able to distinguish MBS pattern from 
the other ones. It is even more arduous due to the background 
clutter. In fact, MBS can occur in all parts of the GI tract 
exhibiting large variety of background in terms of color, and 
texture. One way to tackle this problem is through the use of 
Deep Learning (DL) models which learn automatically suitable 
features. 

In this paper, we develop a multiple bleeding spot detection 
system for Wireless Capsule Endoscopy (WCE) videos. More 
specifically, we design a pattern recognition system based on 
deep learning models that are able to detect the bleeding spots 
through the GI tract. In particular, deep learning models 
adopted for pattern recognition were utilized. These models are 
designed to localize and categorize the object of interest.  For 
this purpose, we employ the You Only Look Once (YOLO) 
deep learning approach [2]. In this regard, we propose to 
compare different versions of YOLO. These are YOLOv3 [3], 
YOLOv4 [4], YOLOv5 [5], and YOLOv7 [6]. 

II. RELATED WORKS 

Recent researches have proposed aided-diagnosis systems 
for bleeding anomalies within the intestinal tract using WCE 
images. They can be categorized into classification-based 
approaches, and detection-based approaches. The former 
approaches classify the whole WCE frame as including 
bleeding spots or not including bleeding spots. Whereas, the 
detection approaches not only classify the frame but also 
localize the bleeding spots within the frame. Moreover, each of 
these two categories bifurcates into conventional and deep 
learning approaches according to the machine learning 
paradigm that have been adopted. More specifically, 
conventional approaches use ―engineered‖ features (also 
referred to as hand crafted features). Alternatively, deep 
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learning approaches automatically extract the feature while 
training the deep learning model. 

A. WCE Frame Classification System 

1) Conventional approaches: The work in [7] propose to 

classify WCE frames into ―Bleeding‖ and ―No Bleeding‖. For 

this purpose, it extracts a hand-crafted feature, namely, the 

color moment feature from WCE frames. Then, it is conveyed 

to a Support Vector Machine (SVM) [8] classifier. The choice 

of the visual feature to be adopted has been made through 

empirical experimentation. In fact, MPEG-7 visual 

descriptors, ―color moment‖, ―Discrete Wavelet Transform‖, 

―Edge Histogram Descriptor‖, ―Gabor‖, and a combination of 

―Discrete Wavelet Transform‖ and ―color moment‖. Similarly, 

the proposed system in [9] extracts hand crafted features. 

More specifically, MPEG-7 features  [10] are considered. 

These are the ―color moments‖, the ―color histogram‖, the 

―local color moments‖, the ―Gabor filter‖, the ―Discrete 

Wavelet Transform‖ (DWT) and the ―Local Binary Pattern‖ 

(LBP) features  [10]. The extracted features are then conveyed 

to a machine learning approach to categorize the frames as 

―Bleeding‖ or ―No Bleeding‖. This is performed by clustering 

each of the training ―Bleeding‖ frames, and the training ―No 

Bleeding‖ frames into similar groups using Fuzzy C-Means 

(FCM) [11]. As such, in the testing phase, the unknown frame 

is compared to the obtained cluster centroids from the training 

phase. It is then assigned to class of the closest centroid.  

2) Deep learning approaches: The authors in  [12] use a 

well-known CNN model that won of the ImageNet Large 

Scale Vision Recognition Competition (ILSVRC). 

Specifically, it exploits LeNet-5 [13] architecture. 

Alternatively, the work in [14] uses deep learning CNN 

models for feature extraction. In particular, VGG-19 [15], 

ResNet50 [16], and InceptionV3 [17] are adopted. Similarly, 

these are well known CNN models which won the ILSVRC 

competition. Nevertheless, inceptionV3 is an evolved version 

of InceptionV1 used in GoogleNet displays the architecture of 

inceptionV3. The obtained features from the three considered 

models are concatenated. Then, a feature selection is 

performed to select the most distinctive features. The selected 

features are conveyed to SVM classifier [8] to categorize the 

frames as ―Bleeding‖ or ―No Bleeding‖. The study in [18] 

proposed a system to diagnose the abnormalities in the GI. 

This study proposed a model which utilizes MobileNet [19]. 

The latter is a lightweight deep learning model. Specifically, it 

uses the independent convolutions for each depth dimension, 

then employs 1 1 pointwise convolution to recover the depth. 

The output of MobileNet  [19] is fed to a custom built 

convolutional neural network model. It is constituted of 64 

filters with a kernel size of 3 3. The resulting feature map is 

passed to a three fully connected layers for classification 

purpose. In  [20] authors proposed to classify WCE frames as 

―Bleeding‖ and ―No Bleeding‖. They employ a customized 

CNN model architecture. It consists of an eight-layer 

convolutional neural network that is composed of three 

convolutional layers (C1-C3), three pooling layers (MP1-

MP3) and two fully connected layers (FC1, FC2). Moreover, 

Support Vector Machine (SVM) [8] classifier is utilized 

instead of  the Softmax layer. 

B. Bleeding Detection System 

1) Conventional approaches: The study in  [21] extracted 

color and texture features. These features are used to generate 

bag of words using K-means clustering algorithm. Next, the 

Expectation Maximization (EM) is employed on the "Bag-of-

Visual-Words" for super-pixel segmentation. From the region 

of interest, geometric features like centroid, area, and 

eccentricity are extracted and fed to the SVM classifier [8]. 

The authors in [22] proposed an approach based on statistical 

color feature analysis. First, the frame is split into blocks. After 

that, dark or light blocks are excluded. Moreover, canny 

operator [23] is applied to discard the edges. Furthermore, 

Wavelet db2 with soft thresholding [24] is applied to reduce 

noise. The Red channel of the RGB color space is exploited to 

detect bleeding regions. More specifically, red ratio is 

computed for individual pixels. Finally, Support Vector 

Machine (SVM) is used to classify WCE frames into bleeding 

and non-bleeding classes. Alternatively, the system described 

in [25] performs semantic segmentation by classifying the 

pixels as a ―Bleeding‖ or ―No Bleeding‖ pixel. This results in 

detecting the bleeding pixel within the frame. More 

specifically, the proposed system in [26] extracts the Red‐

Green‐Blue (RGB) color feature [26] and the Gray‐Level Co‐

occurrence Matrix (GLCM) texture feature [26]. These two 

features are combined and fed to Random Tree (RT) [27], 

Random Forest (RF) [28], and Logistic Model Tree (LMT) 

[29] classifiers.  

2) Deep learning approaches: The authors in [30] use 

AlexNet [31] CNN model to classify the frames as ―Bleeding‖, 

or ―No Bleeding‖. This is a well-known CNN model, which is 

one of the earliest models that won the ILSVRC run by 

ImageNet. Once the bleeding frames are separated, they are 

segmented using SegNet [32] in order to detect the ―Bleeding‖ 

areas. It is a deep learning model designed for image 

segmentation. It is constituted of convolutional stacked auto-

encoder. Similarly, the authors in [33] use U-Net deep learning 

segmentation approach to detect ―Bleeding‖ regions in the 

small intestines. The model architecture has a ―U‖ shape.  The 

model down-samples the input image to a small feature map. 

Next, it up-samples it. The up-sampling process use skip 

connections to benefit from the down-sampling process. In 

fact, at each level, the down-sampled feature map is 

concatenated to the up-sampled one to generate the next up-

sampled feature map. The work in [34] employs a Cascade 

Proposal network to generate region of interest proposals. 

These are regions susceptible to include bleeding pattern.  The 

proposed regions are then fed to the Region Proposal Rejection 

(RPR). The latter is a small network consisting of one 

convolutional layer, one fully connected layer, and two output 

layers. It is used to rank the regions based on a score. Its output 



(IJACSA) International Journal of Advanced Computer Science and Applications, 

Vol. 14, No. 9, 2023 

683 | P a g e  

www.ijacsa.thesai.org 

is fed to a detection module which predicts the bounding box 

and the corresponding class. For the testing phase, the unseen 

image is provided to both a Salient Region Segmentation 

(SRS) and a Multiregional Region Combination (MRC). While 

SRS captures the exact location of the regions [34], and MRC 

that gains adequate coverage of the concerned region and apply 

the SRS to locate region of interest's positions. Moreover, 

object boundaries are refined using the Dense Region Fusion 

(DRF) approach by checking the density of a specific area 

[34]. 

C. Discussion  

As it can be noticed, the related works in [7], [9], [12], [14], 
[18], and [20]  classify the frames into ―Bleeding‖ and ―No 
Bleeding‖. While the earliest studies in [7] and [9] are based of 
extracting ―hand crafted‖ features that are fed to a classifier, 
the works in [12], [14], [18], and [20] exploit deep learning 
models befitting therefore from the automatic learning of the 
features. In fact, using deep learning paradigm alleviates the 
problem of selecting the suitable features which is usually 
performed through empirical comparison of the features. 
Nevertheless, classification approaches do not localize the 
bleeding within the frame. Alternatively, the works in [21], 
[22], [25], [30], [33], and [34] perform bleeding detection. In 
particular, the studies in [21], [22], and [25] utilize ―hand 
crafted‖ features. While the work in [21] and [22] splits the 
frame into blocks to transform the problem into a set of local 
problems and identifies in which block the bleeding occurs, the 
work in [25] perform semantic segmentation through pixelwise 
classification. The deep learning detection-based approaches in 
[30] and [33] are segmentation approaches. In fact, they exploit 
well known deep learning segmentation approaches SegNet 
and U-Net. Nevertheless, these two approaches are known to 
be very slow and not suitable for real world applications [35]. 
On the other hand, the work in [34] is not employing 
segmentation. It learns a bounding box to localize the anomaly. 
Specifically, it is based on a customized CNN. Thus, the 
adopted model could be fit the considered datasets. Moreover, 
it includes several modules, namely, SRS, MRC, RPR, and 
detection modules. This is advantageous when compared to 
end-to-end model. In fact, the error inducted by one of these 
modules affects all other modules. Moreover, the error of the 
different modules gets accumulated. 

III. PROPOSED APPROACH 

Computer aided-diagnosis can lessen the visualization task 
and help detecting automatically the MBS.  As shown in the 
related works investigation, MBS aided diagnosis systems are 
based on image processing and machine learning techniques. In 
particular, most of the reported works related to detecting MBS 
employ segmentation techniques. As a result, ―hand crafted‖ 
features for the segmentation task and for the classification task 
are required. This can be alleviated by the use of deep learning 
approaches designed for object detection. Nonetheless, to the 
best of our knowledge, deep learning models have not been 
explored for MBS detection. In particular, the end-to-end state 
of the art YOLO models were not investigated. 

YOLO deep learning detection model outperformed the 
other object detection approaches in many pattern recognition 

applications [36], [37]. Moreover, the success of YOLO model 
and its applicability to real world applications, yield the 
evolution of the model and the publication of different 
versions. However, a throughout comparisons of these versions 
in terms of performance and efficiency needs to be performed. 
In this regard, YOLO model, specifically, its latest versions 
YOLOv3 [3], YOLOv4 [4], YOLOv5 [5], and YOLOv7 [6] are 
investigated for detecting MBS in the GI tract. In the 
following, we describe the four considered models. 

A. YOLOv3 Architecture 

YOLO version 3 (YOLOv3) [3] is an improved version of 
YOLO which seeks to enhance the performance through the 
use of residual blocks and different scale feature maps. Inspired 
by Residual Networks [38] YOLOv3 employs alternatively 
3×3 and 1×1 convolutional layers to form a residual unit. This 
unit aims at avoiding the vanishing gradient problem faced by 
very deep network. YOLOv3 is composed of five residual 
block which incorporate a number of residual units. Since a 
stride of 2 is used at each residual block, the input is down-
sampled five times.  In particular, the last three down-sampled 
feature maps are used for the prediction task. Specifically, after 
the third residual block, the feature map is down-sampled by 
factor 8. It is exploited for small object prediction. On the other 
hand, the output of the fourth residual block is down-sampled 
by a factor of 16, and it is utilized to generate scale 2 feature 
map. The latter is employed for medium object prediction. 
Alternatively, big objects, referred to as scale 1 objects, are 
predicted using the last residual block for which the feature is 
down-sampled by a factor of 32. Furthermore, YOLOv3 
performs feature fusion to benefit from the feature maps at the 
different scales. As such, it up-samples scale 1 feature map and 
concatenate it with scale 2 feature map. The obtained feature 
map is then up-sampled, and concatenate with scale 3 feature 
map [38]. 

B. YOLOv4 Architecture 

YOLOv4 [4] is the fourth version of the YOLO model 
family. YOLOv4 model architecture is composed of multiple 
sections. Namely, they are the Input, the Backbone, the Neck, 
and the Head (dense prediction, and the sparse prediction). The 
backbone and the neck sections are responsible for feature 
extraction and aggregation, respectively. In particular, the CNN 
deep learning model, CSPDarkNet53 [39], is used as a feature 
extractor in the backbone section. Alternatively, Spatial 
Pyramid Pooling (SPP) and Path Aggregation Network 
(PANet) were utilized in the neck section to fuse the features 
using Bag of Specials (BoS). Finally, the head which is 
responsible for both localizing the object in the image and 
classifying it, amounts to YOLOv3 models. It consists of two 
stage detectors. The first one is the one stage object detector 
and the second one is the one is the two-stage object detector 
[4]. Compared to the previous versions of YOLO, YOLOv4 
mainly introduced two additional concepts. Bag of Freebies 
(BoF) and Bag of Specials (BoS). Bag of freebies are a set of 
techniques that alters the training framework or perform data 
augmentation. Many techniques can be incorporated for the 
purpose of enhancing the model performance without  
affecting on the inference cost [10].  Alternatively, BoS are 
strategies such as enlarging the receptive field, integrating 
features, incorporating attention modules, or post-processing. 
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These strategies aim at significantly enhancing the 
performance of accuracy at the expense of increasing the 
inference cost [4]. 

C. YOLOv5 Architecture 

YOLOv5 [5] is implemented using PyTorch which allows 
faster training [40]. As such, YOLOv5 allows rapid detection 
with the same accuracy as YOLOv4. Specifically, YOLOv5 
has been proved to have higher performance than YOLOv4 
under certain circumstances and partly gained confidence in 
the computer vision community besides YOLOv4. YOLOv5 
model architecture is similar to YOLOv4 architecture. It 
employs CSPDarknet53 [40] for the backbone section as 
feature extractor. The latter aims at addressing the gradient in 
deep networks and decreases the inference time through the use 
of cross-layer connections between the network's front and 
back layers. Moreover, it seeks improving the accuracy and 
utilizing lightweight model. Furthermore, the SPP module 
referring to the Spatial Pyramid Pooling module, performs 
maximum pooling with several kernel sizes and then fuses the 
features by concatenating them together. Additionally, 
YOLOv5 exploits Path Aggregation Network (PANet) in the 
neck section as feature aggregator to increase the flow of 
information and to enhance the object localization.  Besides, 
PANet incorporates a Feature Pyramid Network (FPN) [41]. 
On the other hand, the head is designed in the same way as 
YOLOv3 and YOLOv4. Specifically, it produces three 
different scale feature maps. The CSP network in the backbone 
is made up from one or more residual units, whereas the CSP 
network in the neck is made up of new module called CBL 
modules that replace the residual units. The CBL module 
consist of Convolution layers, Batch normalization layers, and 
Leaky ReLU activation function modules [42]. YOLOv5 
introduces a new layer referred to as Focus layer [43].  It takes 
the place of the first three layers of YOLOv3. Therefore, it 
reduces the GPU requirement and decreases the number of 
layers. 

D. YOLOv7 Architecture 

The most recent YOLO architecture, YOLOv7 [44], is 
based on YOLOv4 version. The main modifications consist of 
(i) the introduction of the Extended Efficient Layer 
Aggregation Network (E-ELAN), (ii) the incorporation of 
model scaling component, (iii) the use of planned re-
parameterized convolution, (iv) the employment of auxiliary 
head, and (v) the exploration of label assigner mechanism. E-
ELAN is a computational component in YOLOv7 backbone 
part. It enhances the prediction performance continuously by 
employing ―expand, shuffle, merge cardinality‖. Alternatively, 
the model scaling optimizes the number of layers, the number 
of channels, the number of stages in the feature pyramid, and 
the resolution of the input image in order to meet the 
requirements of various problems. Nevertheless, YOLOv7 
introduces a new model scaling paradigm which optimizes the 
scaling factors jointly, not independently one from the other. 
Similarly, YOLOv7 modifies RepConv by discarding the 
identity connection. In fact, it uses RepConvN in order to 
prevent the presence of identity connection for re-parametrized 
convolution. Moreover, YOLOv7 exploits the Deep 
Supervision training technique. More specifically, YOLOv7 
uses an auxiliary head in the intermediate layers to guide the 

training. The head responsible for the final prediction is 
referred to as lead head. Additionally, to further enhance the 
training, YOLOv7 outputs soft labels instead of hard one 
referring to the ground truth. 

We propose to compare the performance between different 
YOLO approaches which are YOLOv3 [3], YOLOv4 [4], 
YOLOv5 [5], and YOLOv7 [6] in recognizing in recognizing 
―Bleeding‖ spots. For this purpose, the considered models need 
to be trained. Therefore, each YOLO model is fed with images 
indicating the bleeding areas, if any. Specifically, the 
coordinates of the bounding boxes surrounding the MBS 
patterns are provided as input along with the ―Bleeding‖ 
images. They consist of the upper left corner coordinates (X, 
Y), the width, and the height of each box. Concerning the 
―Non-Bleeding‖ images, no boundary box is specified. To 
determine the best version of YOLO, the considered YOLO 
models are evaluated using the test set. Specifically, the 
different models are tested in terms of the inference time, MBS 
localization and classification. The best performing model is 
adopted to build the required system. 

IV. EXPERIMENT 

Kvasir-Capsule dataset [45] is considered in this project. It 
is a dataset of WCE videos collected from clinical 
examinations performed at the Department of Medicine, 
Bærum Hospital, and Vestre Viken Hospital Trust in Norway. 
It consists of 406 ―Bleeding‖ images representing bleeding 
spots of different size, color, and texture. In addition, it 
includes 34338 ―Non-Bleeding‖ images representing normal 
GI tract frames (without bleeding). According to [46], it is not 
recommended to add images without region of interest (―non-
bleeding‖ images) to the training set. More specifically, ―non-
bleeding‖ images should not exceed more than 10% of the total 
number of images in the training set. As such, only 328 non-
bleeding images are first considered. This results in the 
distribution reported in Table I, where the images are divided 
into 60% for training, 20% for validation, and 20% testing sets. 
Nevertheless, in order to get a glimpse of the models’ 
performance on the real-world, 6000 non-bleeding images are 
used in the test set. More specifically, both test sets which are 
the test set after omitting most of non-bleeding images (Test 1) 
and the test set that containing 6000 background images (Test 
2) are assessed. 

The available Ground Truth consists of labeling the whole 
image as including bleeding or not. Nevertheless, in order to 
train YOLO, a different ground truth should be provided. In 
fact, the coordinates of the bounding boxes surrounding the 
bleeding spots should be fed to model to be trained. As such, 
the dataset is labeled using labeling software tool [47]. As a 
result, 960 bleeding regions are considered. 

TABLE I. DATASET DISTRIBUTION 

 
Training 

set 

Validatio

n set 

Testing set 

without 

additional non-

bleeding (Test 1) 

Testing set with 

additional non- 

bleeding 

(Test 2) 

Bleeding 231 75 100 100 

Non-

bleeding 
328 108 86 6000 
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Two performance measures are considered to evaluate the 
performance of YOLOv3 [3], YOLOv4 [4], YOLOv5 [5], and 
YOLOv7 [6] in terms of recognizing MBS. Specifically, we 
considered Intersection over Union (IoU) [48] and mean 
Average Precision (mAP) [49], since the localization and the 
categorization of the object of interest are assessed using these 
performance measures. Moreover, Floating Point Operations 
per second (FLOP) [50] is also considered to compare the time 
efficiency of the considered YOLO models. Fig. 1 shows a 
comparison between the performances of the considered 
YOLO models on Test 2 in terms of both mAP and IoU. 

As illustrated in Fig. 1, YOLOv3 performs better than 
YOLOv4 and YOLOv5 in terms of recognition with mAP 
equal to 0.828. This is an expected outcome since the 
architecture of YOLOv3 consists of residual blocks. One of 
them is exploited specifically for small object detections which 
concord with the small pattern of the bleeding spots. Moreover, 
in terms of IoU, YOLOv4 achieves an IoU of 0.736 which is 
better than 0.589 for YOLOv3 and 0.727 for YOLOv5. In fact, 
YOLOv4 is better in localizing bleeding spots since it 
incorporates two stage detectors. The first one is called the one 
stage object detector and the second one is the two-stage object 
detector. Nevertheless, YOLOv5 exploits path aggregation 
network that enhances the model localization ability. 
Alternatively, YOLOv7 achieved the highest IoU and mAP 
equal to 0.8 and 0.86 respectively. This makes YOLOv7 the 
most appropriate model to design the proposed approach. 

 

Fig. 1. Performance comparison of YOLOv3, YOLOv4, YOLOv5, and 

YOLOv7 in terms of mAP and IoU. 

Moreover, data augmentation is employed to increase the 
size of the training data set conveyed to the best performance 
model, namely YOLOv7 [6] . This is achieved by adding more 
images to train the model. These images were created by 
flipping and rotating existing training images. The augmented 
dataset contains ―1056‖ images. The performance of YOLOv7 
without using the augmented data is compared with its 
performance when training the model with additional data. 
Table II depicts the performance of YOLOv7 when including 
and excluding data augmentation. As it can be seen, the 
augmented dataset improved YOLOv7 performance in terms of 
mAP. 

Furthermore, we compare YOLOv3 [3], YOLOv4 [4], 
YOLOv5 [5] and YOLOv7 [6] in terms of space complexity. It 
refers to the space needed to store and train the model. Table 
III shows the space memory for each model. As depicted, 

YOLOv5 requires less space memory due to its optimized 
implementation, while YOLOv4 needs more space memory.  

TABLE II. PERFORMANCE COMPARISON OF YOLOV7 [6] WHEN USING 

DATA AUGMENTATION AND WITHOUT USING IT 

 mAP IoU FLOPs 

Test results using 

data augmentation 
0.883 0.81 188.9G 

Test results 

without data 

augmentation 

0.86 0.8 188.9G 

TABLE III. PERFORMANCE ANALYSIS IN TERMS OF SPACE COMPLEXITY 

Model Space 

YOLOv3 Redmon and Farhadi, 

―YOLOv3.‖ 
123.5 MB 

YOLOv4  Bochkovskiy, Wang, and 

Liao, ―YOLOv4.‖ 
491.6 MB 

YOLOv5 ―Releases • 

Ultralytics/Yolov5.‖ 
14.4 MB 

YOLOv7 Wang, Bochkovskiy, and 

Liao, ―YOLOv7.‖ 
142 MB 

As illustrated in in Fig. 1, YOLOv7 exceeds the other 
models in terms of test result, yet there is no significant 
increase in term of time complexity. It is noticeable that 
YOLOv4 consumed more time when training the model. On 
the other hand, when training YOLOv5 it took the least time, 
and that is predictable since YOLOv5 uses less floating-point 
operations. Regarding the time considered to train all four 
models, Table IV reports the training and testing times per 
image when using Google Collaboratory to train all models. 

TABLE IV. PERFORMANCE ANALYSIS IN TERMS OF TRAINING AND 

TESTING TIME COMPLEXITY 

Model Training Time (s) Testing Time (ms) 

YOLOv3 Redmon and 

Farhadi, ―YOLOv3.‖ 
6.5295 0.00026 

YOLOv4  

Bochkovskiy, Wang, 
and Liao, ―YOLOv4.‖ 

23.07 0.00837 

YOLOv5 ―Releases • 

Ultralytics/Yolov5.‖ 
3.8103 0.00031 

YOLOv7 Wang, 
Bochkovskiy, and 

Liao, ―YOLOv7.‖ 

11.0554 0.00124 

V. CONCLUSION AND FUTURE WORKS 

The arduousness of MBS diagnosis through the 
burdensome visualization of an eight-hour WCE video of the 
GI tract has led to the development of aided-diagnosis system. 
They are based on pattern recognition techniques to detect 
MBS. In this paper, we proposed to design an aided- diagnosis 
for MBS detection from WCE video. It is based on deep 
learning pattern recognition model. In particular, different 
versions of YOLO model are investigated. Four YOLO models 
are trained and tested. The comparison and the analysis of the 
obtained results yielded the selection of the most suitable 
YOLO model for MBS recognition from WCE videos of the 
GI tract. Namely, YOLOv7 outperformed the other models. 

As future works, the proposed system can be implemented 
to an applicable and more convenient user-friendly system that 
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can be used by physicians. Additionally, the performance of 
the proposed system can be further enhanced by collecting 
more WCE data to train the model. 

REFERENCES 

[1] T. Wilkins, B. Wheeler, and M. Carpenter, ―Upper Gastrointestinal 
Bleeding in Adults: Evaluation and Management,‖ Am. Fam. Physician, 
vol. 101, no. 5, pp. 294–300, Mar. 2020. 

[2] J. Redmon, S. Divvala, R. Girshick, and A. Farhadi, ―You Only Look 
Once: Unified, Real-Time Object Detection,‖ in 2016 IEEE Conference 
on Computer Vision and Pattern Recognition (CVPR), Jun. 2016, pp. 
779–788. doi: 10.1109/CVPR.2016.91. 

[3] J. Redmon and A. Farhadi, ―YOLOv3: An Incremental Improvement.‖ 
arXiv, Apr. 08, 2018. Accessed: Oct. 16, 2022. [Online]. Available: 
http://arxiv.org/abs/1804.02767 

[4] A. Bochkovskiy, C.-Y. Wang, and H.-Y. M. Liao, ―YOLOv4: Optimal 
Speed and Accuracy of Object Detection.‖ arXiv, Apr. 22, 2020. 
Accessed: Oct. 16, 2022. [Online]. Available: 
http://arxiv.org/abs/2004.10934 

[5] ―Releases • ultralytics/yolov5,‖ GitHub. 
https://github.com/ultralytics/yolov5/releases (accessed Oct. 17, 2022). 

[6] C.-Y. Wang, A. Bochkovskiy, and H.-Y. M. Liao, ―YOLOv7: Trainable 
bag-of-freebies sets new state-of-the-art for real-time object detectors.‖ 
arXiv, Jul. 06, 2022. Accessed: Oct. 08, 2022. [Online]. Available: 
http://arxiv.org/abs/2207.02696 

[7] S. Alotaibi, S. Qasim, O. Bchir, and M. M. Ben Ismail, ―Empirical 
Comparison of Visual Descriptors for Multiple Bleeding Spots 
Recognition in Wireless Capsule Endoscopy Video,‖ in Computer 
Analysis of Images and Patterns, R. Wilson, E. Hancock, A. Bors, and 
W. Smith, Eds., in Lecture Notes in Computer Science. Berlin, 
Heidelberg: Springer, 2013, pp. 402–407. doi: 10.1007/978-3-642-
40246-3_50. 

[8] Y. Liu and Y. F. Zheng, ―One-against-all multi-class SVM classification 
using reliability measures,‖ in Proceedings. 2005 IEEE International 
Joint Conference on Neural Networks, 2005., Jul. 2005, pp. 849–854 
vol. 2. doi: 10.1109/IJCNN.2005.1555963. 

[9] O. Bchir, M. M. Ben Ismail, and N. AlZahrani, ―Multiple bleeding 
detection in wireless capsule endoscopy,‖ Signal Image Video Process., 
vol. 13, no. 1, pp. 121–126, Feb. 2019, doi: 10.1007/s11760-018-1336-3. 

[10] M. Verma, B. Raman, and S. Murala, ―Multi-resolution Local extrema 
patterns using discrete wavelet transform,‖ in 2014 Seventh International 
Conference on Contemporary Computing (IC3), Aug. 2014, pp. 577–
582. doi: 10.1109/IC3.2014.6897237. 

[11] J. C. Bezdek, R. Ehrlich, and W. Full, ―FCM: The fuzzy c-means 
clustering algorithm,‖ Comput. Geosci., vol. 10, no. 2, pp. 191–203, Jan. 
1984, doi: 10.1016/0098-3004(84)90020-7. 

[12] R. Shahril, A. Saito, A. Shimizu, and S. Baharun, ―Bleeding 
Classification of Enhanced Wireless Capsule Endoscopy Images using 
Deep Convolutional Neural Network,‖ p. 18. 

[13] Y. LeCun, L. Bottou, Y. Bengio, and P. Ha, ―Gradient-Based Learning 
Applied to Document Recognition,‖ p. 46, 1998. 

[14] A. Caroppo, A. Leone, and P. Siciliano, ―Deep transfer learning 
approaches for bleeding detection in endoscopy images,‖ Comput. Med. 
Imaging Graph., vol. 88, p. 101852, Mar. 2021, doi: 
10.1016/j.compmedimag.2020.101852. 

[15] K. Simonyan and A. Zisserman, ―Very Deep Convolutional Networks 
for Large-Scale Image Recognition.‖ arXiv, Apr. 10, 2015. Accessed: 
Oct. 17, 2022. [Online]. Available: http://arxiv.org/abs/1409.1556 

[16] S. Mukherjee, ―The Annotated ResNet-50,‖ Medium, Aug. 18, 2022. 
https://towardsdatascience.com/the-annotated-resnet-50-a6c536034758 
(accessed Oct. 21, 2022). 

[17] C. Szegedy, V. Vanhoucke, S. Ioffe, J. Shlens, and Z. Wojna, 
―Rethinking the Inception Architecture for Computer Vision.‖ arXiv, 
Dec. 11, 2015. doi: 10.48550/arXiv.1512.00567. 

[18] F. Rustam et al., ―Wireless Capsule Endoscopy Bleeding Images 
Classification Using CNN Based Model,‖ IEEE Access, vol. PP, pp. 1–
1, Feb. 2021, doi: 10.1109/ACCESS.2021.3061592. 

[19] A. Pujara, ―Image Classification With MobileNet,‖ Analytics Vidhya, 
Jul. 15, 2020. https://medium.com/analytics-vidhya/image-classification-
with-mobilenet-cc6fbb2cd470 (accessed Oct. 21, 2022). 

[20] X. Jia and M. Q.-H. Meng, ―A deep convolutional neural network for 
bleeding detection in Wireless Capsule Endoscopy images,‖ in 2016 
38th Annual International Conference of the IEEE Engineering in 
Medicine and Biology Society (EMBC), Orlando, FL, USA: IEEE, Aug. 
2016, pp. 639–642. doi: 10.1109/EMBC.2016.7590783. 

[21] P. Sivakumar and B. M. Kumar, ―A novel method to detect bleeding 
frame and region in wireless capsule endoscopy video,‖ Clust. Comput., 
vol. 22, no. S5, pp. 12219–12225, Sep. 2019, doi: 10.1007/s10586-017-
1584-y. 

[22] S. Suman et al., Detection and Classification of Bleeding Region in 
WCE Images using Color Feature. 2017. doi: 
10.1145/3095713.3095731. 

[23] F. Wu, C. Zhu, J. Xu, M. W. Bhatt, and A. Sharma, ―Research on image 
text recognition based on canny edge detection algorithm and k-means 
algorithm,‖ Int. J. Syst. Assur. Eng. Manag., vol. 13, no. S1, pp. 72–80, 
Mar. 2022, doi: 10.1007/s13198-021-01262-0. 

[24] P. V. V. Kishore, A. S. C. S. Sastry, A. Kartheek, and Sk. H. Mahatha, 
―Block based thresholding in wavelet domain for denoising ultrasound 
medical images,‖ in 2015 International Conference on Signal Processing 
and Communication Engineering Systems, Guntur, India: IEEE, Jan. 
2015, pp. 265–269. doi: 10.1109/SPACES.2015.7058262. 

[25] K. Pogorelov et al., ―Bleeding detection in wireless capsule endoscopy 
videos — Color versus texture features,‖ J. Appl. Clin. Med. Phys., vol. 
20, no. 8, pp. 141–154, 2019, doi: 10.1002/acm2.12662. 

[26] C. Sri Kusuma Aditya, M. Hani’ah, R. R. Bintana, and N. Suciati, ―Batik 
classification using neural network with gray level co-occurence matrix 
and statistical color feature extraction,‖ in 2015 International Conference 
on Information & Communication Technology and Systems (ICTS), 
Surabaya: IEEE, Sep. 2015, pp. 163–168. doi: 
10.1109/ICTS.2015.7379892. 

[27] S. Kalmegh, ―Analysis of WEKA Data Mining Algorithm REPTree, 
Simple Cart and RandomTree for Classification of Indian News,‖ vol. 2, 
no. 2, p. 9. 

[28] E. K. Sahin, I. Colkesen, and T. Kavzoglu, ―A comparative assessment 
of canonical correlation forest, random forest, rotation forest and logistic 
regression methods for landslide susceptibility mapping,‖ Geocarto Int., 
vol. 35, no. 4, pp. 341–363, Mar. 2020, doi: 
10.1080/10106049.2018.1516248. 

[29] M. Abedini, B. Ghasemian, A. Shirzadi, and D. T. Bui, ―A comparative 
study of support vector machine and logistic model tree classifiers for 
shallow landslide susceptibility modeling,‖ Environ. Earth Sci., vol. 78, 
no. 18, p. 560, Sep. 2019, doi: 10.1007/s12665-019-8562-z. 

[30] T. Ghosh and J. Chakareski, ―Deep Transfer Learning for Automated 
Intestinal Bleeding Detection in Capsule Endoscopy Imaging,‖ J. Digit. 
Imaging, vol. 34, no. 2, pp. 404–417, Apr. 2021, doi: 10.1007/s10278-
021-00428-3. 

[31] A. Krizhevsky, I. Sutskever, and G. E. Hinton, ―ImageNet classification 
with deep convolutional neural networks,‖ Commun. ACM, vol. 60, no. 
6, pp. 84–90, May 2017, doi: 10.1145/3065386. 

[32] V. Badrinarayanan, A. Kendall, and R. Cipolla, ―SegNet: A Deep 
Convolutional Encoder-Decoder Architecture for Image Segmentation.‖ 
arXiv, Oct. 10, 2016. Accessed: Oct. 21, 2022. [Online]. Available: 
http://arxiv.org/abs/1511.00561 

[33] P. Coelho, A. Pereira, A. Leite, M. Salgado, and A. Cunha, ―A Deep 
Learning Approach for Red Lesions Detection in Video Capsule 
Endoscopies,‖ in Image Analysis and Recognition, A. Campilho, F. 
Karray, and B. ter Haar Romeny, Eds., in Lecture Notes in Computer 
Science, vol. 10882. Cham: Springer International Publishing, 2018, pp. 
553–561. doi: 10.1007/978-3-319-93000-8_63. 

[34] L. Lan, C. Ye, C. Wang, and S. Zhou, ―Deep Convolutional Neural 
Networks for WCE Abnormality Detection: CNN Architecture, Region 
Proposal and Transfer Learning,‖ IEEE Access, vol. 7, pp. 30017–
30032, 2019, doi: 10.1109/ACCESS.2019.2901568. 

[35] M. Z. Alom, C. Yakopcic, M. Hasan, T. M. Taha, and V. K. Asari, 
―Recurrent residual U-Net for medical image segmentation,‖ J. Med. 
Imaging, vol. 6, no. 01, p. 1, Mar. 2019, doi: 10.1117/1.JMI.6.1.014006. 



(IJACSA) International Journal of Advanced Computer Science and Applications, 

Vol. 14, No. 9, 2023 

687 | P a g e  

www.ijacsa.thesai.org 

[36] T. Diwan, G. Anirudh, and J. V. Tembhurne, ―Object detection using 
YOLO: challenges, architectural successors, datasets and applications,‖ 
Multimed. Tools Appl., Aug. 2022, doi: 10.1007/s11042-022-13644-y. 

[37] ―(9) (PDF) KVASIR: A Multi-Class Image Dataset for Computer Aided 
Gastrointestinal Disease Detection.‖ https://www. 
researchgate.net/publication/316215961_KVASIR_A_Multi-
Class_Image_Dataset_for_Computer_Aided_Gastrointestinal_Disease_
Detection (accessed Oct. 31, 2022). 

[38] Ju, Luo, Wang, Hui, and Chang, ―The Application of Improved YOLO 
V3 in Multi-Scale Target Detection,‖ Appl. Sci., vol. 9, no. 18, p. 3775, 
Sep. 2019, doi: 10.3390/app9183775. 

[39] N. Kwak and D. Kim, ―Object detection technology trend and 
development direction using deep learning,‖ Int. J. Adv. Cult. Technol., 
vol. 8, no. 4, pp. 119–128, Dec. 2020, doi: 
10.17703/IJACT.2020.8.4.119. 

[40] M. Sozzi, S. Cantalamessa, A. Cogato, A. Kayad, and F. Marinello, 
―Automatic Bunch Detection in White Grape Varieties Using YOLOv3, 
YOLOv4, and YOLOv5 Deep Learning Algorithms,‖ Agronomy, vol. 
12, no. 2, Art. no. 2, Feb. 2022, doi: 10.3390/agronomy12020319. 

[41] T.-K. Nguyen, L. Vu, V. Vu, T.-D. Hoang, S.-H. Liang, and M.-Q. Tran, 
―Analysis of Object Detection Models on Duckietown Robot Based on 
YOLOv5 Architectures,‖ vol. 4, pp. 17–12, Mar. 2022. 

[42] X. Xu, X. Zhang, and T. Zhang, ―Lite-YOLOv5: A Lightweight Deep 
Learning Detector for On-Board Ship Detection in Large-Scene 
Sentinel-1 SAR Images,‖ Remote Sens., vol. 14, no. 4, p. 1018, Feb. 
2022, doi: 10.3390/rs14041018. 

[43] K. Patel, C. Bhatt, and P. L. Mazzeo, ―Deep Learning-Based Automatic 
Detection of Ships: An Experimental Study Using Satellite Images,‖ J. 
Imaging, vol. 8, no. 7, p. 182, Jun. 2022, doi: 10.3390/jimaging8070182. 

[44] G. Boesch, ―YOLOv7: The Most Powerful Object Detection Algorithm 
(2022 Guide),‖ viso.ai, Aug. 11, 2022. https://viso.ai/deep-
learning/yolov7-guide/ (accessed Oct. 08, 2022). 

[45] P. H. Smedsrud et al., ―Kvasir-Capsule, a video capsule endoscopy 
dataset,‖ Sci. Data, vol. 8, no. 1, Art. no. 1, May 2021, doi: 
10.1038/s41597-021-00920-z. 

[46] ―how to use Background images in training? • Issue #2844 • 
ultralytics/yolov5.‖ https://github.com/ultralytics/yolov5/issues/2844 
(accessed Feb. 07, 2023). 

[47] ―heartexlabs/labelImg.‖ Heartex, Oct. 30, 2022. Accessed: Oct. 30, 
2022. [Online]. Available: https://github.com/heartexlabs/labelImg 

[48] Naoki, ―Object Detection: Intersection over Union (IoU),‖ Medium, Oct. 
08, 2022. https://naokishibuya.medium.com/object-detection-
intersection-over-union-iou-f7b91555eb5f (accessed Oct. 26, 2022). 

[49] B. Wang, ―A Parallel Implementation of Computing Mean Average 
Precision.‖ arXiv, Jun. 19, 2022. Accessed: Oct. 22, 2022. [Online]. 
Available: http://arxiv.org/abs/2206.09504 

[50] ―Floating-Point Operation - an overview | ScienceDirect Topics.‖ 
https://www.sciencedirect.com/topics/computer-science/floating-point-
operation (accessed Oct. 30, 2022). 

 


