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Abstract—In the ever-evolving realm of infrastructure 

management, the timely and accurate detection of road surface 

damages is imperative for the longevity and safety of 

transportation networks. This research paper introduces a 

pioneering framework centered on the Mask R-CNN (Region-

based Convolutional Neural Networks) model for real-time road 

surface damage detection. The overarching methodology 

encapsulates a deep learning-based approach to discern and 

classify various road aberrations such as potholes, cracks, and 

rutting. The chosen Mask R-CNN architecture, renowned for its 

proficiency in instance segmentation tasks, has been fine-tuned 

and optimized specifically for the unique challenges posed by 

road surfaces under diverse lighting and environmental 

conditions. A diverse dataset, amalgamating urban, suburban, 

and rural roadways under varied climatic conditions, served as 

the foundation for model training and validation. Preliminary 

results have not only underscored the model's robustness in real-

time detection but also its superiority in terms of accuracy and 

computational efficiency when juxtaposed with extant methods. 

Concomitantly, the framework emphasizes scalability and 

adaptability, positing it as a frontrunner for potential integration 

into automated road maintenance systems and vehicular 

navigation aids. This trailblazing endeavor elucidates the 

potentialities of deep learning paradigms in revolutionizing road 

management systems, thus fostering safer and more efficient 

transportation environments. 

Keywords—Deep learning; CNN; random forest; SVM; neural 

network; prediction; analysis 

I. INTRODUCTION 

Road infrastructure remains a pivotal element in the socio-
economic fabric of nations, serving as the backbone of trade, 
transportation, and daily commuting [1]. As urbanization and 
globalization continue to expand, so does the reliance on a 
durable and well-maintained road network. While the necessity 
of pristine road infrastructure is universally recognized, it's 
equally undeniable that roadways are persistently subjected to 
degradation [2]. Factors such as climatic extremes, vehicular 
stress, and natural wear-and-tear all contribute to the 
deterioration of road surfaces [3]. The consequent damages, 
ranging from innocuous surface irregularities to perilous 
potholes, pose significant safety risks to motorists, exacerbate 
vehicular wear, and escalate maintenance costs. Hence, timely 

and accurate damage detection is a sine qua non for effective 
road maintenance and ensuring commuter safety. 

Historically, the task of road surface damage detection was 
primarily relegated to manual inspections. Field engineers and 
surveyors would periodically inspect stretches of road, logging 
visible damages for subsequent repair. However, such methods 
are inherently fraught with shortcomings. Human inspections 
are not only labor-intensive and time-consuming but are also 
marked by subjective biases and are often limited by the 
perceptual constraints of the human eye. Furthermore, large-
scale road networks make manual monitoring a logistical 
challenge, often leading to significant delays between damage 
occurrence and its eventual rectification [4]. 

Emerging from this backdrop, technological solutions 
began to surface, attempting to alleviate the limitations of 
manual inspection. Early endeavors in this direction exploited 
image processing techniques to detect road anomalies [5]. 
While promising, these rudimentary techniques often grappled 
with issues of low accuracy, particularly in diverse 
environmental and lighting conditions [6]. More advanced 
techniques leveraging pattern recognition and machine learning 
offered an uptick in detection capabilities but remained 
hamstrung by their inability to perform adequately in real-time 
scenarios and their frequent misclassifications in complex road 
environments [7]. 

The recent upswing in the adoption of deep learning 
models across diverse domains signaled a transformative 
potential for road damage detection. Deep learning, a subset of 
machine learning, empowers models to learn and make 
decisions from vast amounts of data, often surpassing human-
level performance in specific tasks [8]. In the context of road 
damage detection, Convolutional Neural Networks (CNNs) 
have emerged as a favored tool due to their adeptness in 
handling image data [9]. However, while CNNs are proficient 
in classification tasks, the intricate nature of road damage 
detection demands a more nuanced approach, one capable of 
instance segmentation—a task that goes beyond mere 
classification and seeks to delineate and identify specific 
objects within images. 

This is where the Mask R-CNN model [10] enters the fray. 
An evolution of the established R-CNN [11] and Fast R-CNN 
[12] architectures, Mask R-CNN has proven its mettle in 
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instance segmentation tasks across various domains. Its unique 
architecture, which seamlessly integrates the strengths of both 
its predecessors, enables precise object localization and pixel-
wise mask prediction. Such capabilities render it an intriguing 
prospect for the intricacies of road surface damage detection. 

This research paper aims to exploit the prowess of the 
Mask R-CNN model in developing a comprehensive 
framework for real-time road surface damage detection. 
Drawing upon a meticulously curated dataset encompassing a 
myriad of road types and conditions, the study seeks to 
optimize and fine-tune the Mask R-CNN model for this 
specialized task. Moreover, this investigation delves deep into 
the challenges inherent in road damage detection, such as 
variable lighting, shadow effects, wet surfaces, and other 
environmental nuances. By addressing these complexities, the 
paper aims to elevate the discourse on automated road damage 
detection and present a robust, scalable, and efficient solution. 

In doing so, this paper positions itself at the intersection of 
advanced deep learning paradigms and pressing infrastructural 
challenges. It aspires not just to contribute to academic 
discourse but also to catalyze tangible shifts in how road 
maintenance authorities across the globe approach the 
monumental task of road upkeep and safety assurance. By 
marrying the Mask R-CNN model's capabilities with the real-
world demands of road damage detection, this study embarks 
on a journey to redefine the standards of road infrastructure 
management in the age of artificial intelligence. 

II. RELATED WORKS 

The journey of automating road surface damage detection 
has been a progressive one, punctuated by incremental 
innovations and paradigm shifts. As this research navigates the 
waters of the Mask R-CNN model for real-time road surface 
damage detection, it is imperative to contextualize its approach 
within the broader framework of previous efforts in this 
domain. This section endeavors to provide a comprehensive 
review of related works, elucidating the trajectory of 
technological advances that have shaped the discourse on 
automated road damage detection. 

A. Traditional Image Processing Techniques 

The inception of automated methodologies for road surface 
damage detection is deeply rooted in traditional image 
processing techniques. In the nascent stages, simple, yet 
effective algorithms such as edge detection, thresholding, and 
morphological operations were employed to discern road 
anomalies, primarily cracks and potholes. Pioneering research, 
exemplified by the work of [13], and made strides in this 
domain by harnessing wavelet transforms for enhanced crack 
detection. While these early techniques represented a 
significant leap from manual inspection, they were not without 
their limitations. Particularly, their susceptibility to variable 
environmental conditions, such as fluctuating lighting and 
shadows, frequently resulted in a high rate of false positives. 
Consequently, despite their foundational contributions, it 
became evident that more sophisticated approaches were 
needed to achieve the precision and reliability demanded by 
real-world applications in road maintenance. 

B. Machine Learning and Pattern Recognition 

Transitioning from the foundational image processing 
methodologies, the domain witnessed a paradigm shift with the 
advent of machine learning and pattern recognition techniques. 
Here, the emphasis transitioned from raw image manipulation 
to extracting discernible features, which could then be 
classified using algorithms. A seminal contribution in this 
realm was made by [14], who adeptly combined texture-based 
feature extraction with Support Vector Machines (SVM) to 
pinpoint road cracks. This strategy elevated the accuracy of 
detection substantially. However, it also introduced the 
intricacy of manual feature engineering, a labor-intensive 
endeavor with potential for inconsistencies. Despite the 
undeniable advancement in damage detection these methods 
brought about, the challenges they posed emphasized the need 
for more automated and adaptive solutions, paving the way for 
the exploration of deep learning techniques in subsequent 
research. 

C. Deep Learning and CNNs 

The renaissance of neural networks, especially 
Convolutional Neural Networks (CNNs), ushered in a new era 
for road damage detection. The beauty of CNNs lies in their 
ability to automatically learn features from raw image data 
without explicit manual feature engineering. Significant 
contributions in this realm include the work of [15], who 
developed a road damage detection and classification system 
based on deep CNNs. Their model was not only adept at 
identifying damages but also categorizing them into types like 
cracks, potholes, and patches. However, while CNNs were 
proficient in classifying damaged regions, delineating the exact 
boundaries of these damages remained a challenge. 

D. R-CNN and its Evolution 

The introduction of Region-based Convolutional Neural 
Networks (R-CNN) signaled a quantum leap in object 
detection tasks. R-CNN and its evolutionary offshoots, Fast R-
CNN and Faster R-CNN, integrated region proposal networks 
with CNNs, allowing precise object localization within images 
[16-18]. In the context of road damage detection, this meant an 
enhanced ability to identify and demarcate specific damaged 
regions within a broader road image. The works of [19] stand 
testament to the efficacy of Faster R-CNN in detecting and 
segmenting road damages. 

E. Instance Segmentation with Mask R-CNN 

Delving deeper into the world of object detection, the Mask 
R-CNN model emerged as a revolutionary tool, bringing the 
nuance of instance segmentation to the fore. Building upon the 
foundation laid by its predecessors, the Faster R-CNN, the 
Mask R-CNN transcended mere object localization, offering 
pixel-wise mask prediction for each identified entity within an 
image [20]. This level of granularity made it an optimal 
candidate for tasks requiring meticulous delineation, such as 
road damage detection. Early explorations into the model's 
applicability, highlighted by studies like those of [21], 
exhibited promising outcomes. The ability of the Mask R-CNN 
to pinpoint and define road surface anomalies with precision 
underscored its potential to set a new benchmark in the 
domain, promising a convergence of accuracy and granularity 
hitherto unseen in earlier methodologies. 
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F. Real-Time Detection Challenges 

While the evolution of detection techniques marked notable 
advancements, the exigencies of real-time processing remained 
a pivotal concern. The operational demands of road 
maintenance necessitate not just accuracy, but also timeliness 
in damage detection. Architectures like YOLO (You Only 
Look Once) and SSD (Single Shot MultiBox Detector), as 
elucidated by researchers such as [22-23], respectively, 
heralded solutions emphasizing real-time object detection. 
Though not tailored explicitly for road anomalies, the 
underlying principles of these frameworks provide invaluable 
insights. They spotlight the intricate balance and potential 
trade-offs between detection speed and accuracy. Such 
considerations are paramount when envisioning a model that 
operates in dynamic real-world settings, reinforcing the need 
for an optimal blend of precision and promptness in any 
prospective road damage detection system. 

G. Adaptive Learning and Transfer Learning 

With vast and diverse road networks, training models from 
scratch becomes computationally expensive. The concept of 
transfer learning, where models pre-trained on large datasets 
are fine-tuned for specific tasks, gained traction. The author in 
[24] explored transfer learning for road damage detection, 
leveraging models initially trained on datasets like ImageNet 
and adapting them to the specific nuances of road images. 

In synthesizing the above, one discerns a clear trajectory: 
from basic image processing to the intricacies of deep learning, 
and from the broad strokes of object detection to the finesse of 
instance segmentation. This research positions itself at this 
evolving frontier, seeking to harness the potential of Mask R-
CNN, not just in terms of detection accuracy but also in 
meeting the demands of real-time processing. 

III. MATERIALS AND METHODS 

A comprehensive review of pertinent literature underscores 
the unparalleled efficacy of deep convolutional neural 
networks (DCNNs) in current scholarly investigations. A 
pivotal initial step involves segmenting roadway imagery to 
demarcate relevant classes, crucial for defect identification. 
Presently, CNN architectures, such as the SegNet [25] and U-
Net [26], are gaining traction for their effectiveness in this 
domain. The challenge arises from the subtle grayscale 
variations in road imagery and the minimal contrast between 
the intended subject and its backdrop, compounded by 
incidental noise and unrelated elements. To navigate these 
challenges, a fully convolutional neural network (FCNN) 
employing an "encoder-decoder" configuration is utilized, 
yielding a binary output image [27]. The FCNN bifurcates into 
a convolutional segment—transforming the primary image into 
a feature-rich representation—and a segment producing the 
segmented output from these features. This architecture 
encompasses a series of convolutional strata, augmented by 
filters and subsequent sub-discretization tiers. By integrating 
upsampling with convolutional stages, the architecture 
reconstructs the initial image dimensions, subsequently crafting 
a likelihood matrix. 

The CrackForest dataset comprises 117 snapshots, 
partitioned into training, testing, and validation subsets. For 
each image, 64x64 segments are extracted arbitrarily from both 
training and test sets. Image quality amplifies with gamma 
correction, enhancing neural network performance. A 95:5 
ratio, emphasizing defects constituting at least 5% of the 
image, is deemed optimal. With 15,200 training fragments 
juxtaposed against 3,968 test fragments, the balance is deemed 
propitious for the deep learning process. The network's 
evaluation employs intersection over union metrics, 
complemented by binary similarity metrics. Weight 
initialization within FCNN layers leverages the Glorot 
technique, normalizing each layer's input distributions, thus 
mitigating internal covariance shifts. Optimization ensues via 
the Adam optimizer. Research concludes that an optimal 25-
epoch training duration—split between an initial 5 epochs and 
a subsequent 20—is effective. Execution of the FCNN 
blueprint leverages both Keras and TensorFlow platforms. 
Upon training completion, the artificial neural network 
undergoes rigorous testing and validation using sample data. 

In this study, an enhanced methodology trained existing 
Mask R-CNN models via TensorFlow's Object Detection API, 
aiming to augment road defect detection efficiency. These 
refined models subsequently underwent rigorous evaluations 
utilizing meticulously curated annotation datasets. 

H. Data Collection and Preparation 

Traditionally, road surface damage detection relied on 
aerial images or imagery sourced from vehicle-mounted 
cameras. Aerial imaging poses practical challenges due to the 
intricacies involved in capturing such images, restricting its 
widespread application. Conversely, using imagery derived 
from vehicle-mounted cameras offers more pragmatic utility, 
considering the ease of data acquisition. This positions 
commonly available devices, like smartphones, as potential 
tools for damage detection, whether the processing occurs in 
situ or is offloaded to a remote server. Consequently, we 
developed a unique dataset encompassing six distinct 
categories of road damage, with each image meticulously 
annotated by hand. 

Fig. 1 presents a visual guide to the diverse damage types, 
denoted by specific class names such as D20. The subsequent 
illustrative table segregates these damages into six primary 
categories, distinguishing between cracks and other 
deformities. Crack-based damages further bifurcate into linear 
and alligator cracks, while other categories span potholes, ruts, 
and anomalies like faded lane markings. Notably, the breadth 
of damage categories explored in our study outstrips the 
limited scopes of prior works. For instance, the approach 
proposed by [28] merely detects potholes under the D40 label, 
while Jana et al. [29] differentiates damages strictly as 
longitudinal or transverse. Further, preceding deep learning 
studies [30-33] primarily focus on identifying the mere 
presence or absence of damage. 
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a) Damage class ―D00‖  

Open hatches 

b) Damage class ―D01‖ 

Construction of the connecting part 

 
c) Damage class ―D20‖ 

Partial asphalt pavement 

d) Damage class ―D40‖ 

Potholes, broken concrete, road cracks 

 
e) Damage class ―D43‖ 

Blurring a road crossing 

f) Damage class ―D44‖ 

Blurring the dividing lines 

Fig. 1. Road damage photos and classes for a model training. 

I. Annotation and Classification for Enhanced Damage 

Detection 

To facilitate a refined categorization, our annotation data 
delineates 12 distinct classifications of road damage and 
associated features captured in the photographs. The Microsoft 
Visual Object Tagging Tool (VoTT) was instrumental in 
annotating these color images. Within each image, specifically 
its lower two-thirds, every discernible feature within our 
predefined classes was segmented and appropriately labeled. 
Table I elucidates the compiled annotation data. 

Among these classifications, ―Scratches on Markings‖ 
emerged as the most prevalent, boasting 3,360 segments. This 
was closely followed by "Linear Cracks" at 3,080 segments. 
On the rarer end, "Grid Cracks in Patchings" registered the 
least at 252 segments, succeeded by ―Stains‖, ―Manholes‖, and 

―Potholes‖. For analytical rigor, the data segments were 
stratified into training, validation, and testing datasets at a 
proportion of 0.6:0.2:0.2, respectively. 

In our comprehensive research, we established a refined 
taxonomy of annotation data that encompasses 12 unique 
classifications pertinent to road damage and its corresponding 
features as depicted in the photographic evidence. The 
intricacies of the annotation process were adeptly managed 
using the Microsoft Visual Object Tagging Tool (VoTT), 
which proved pivotal for effective categorization within the 
color images. A keen focus was directed towards the inferior 
two-thirds of each image. Within this portion, every feature 
that aligned with our pre-established categories was diligently 
segmented and given an appropriate label. For a detailed 
scholarly overview, readers are directed to Table I, which 
presents a thorough synthesis of the amassed annotation data. 
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TABLE I. ROAD IMAGES ANNOTATION DATA 

Class ID Classes Training Validation Testing Total 

1 Linear crack 3080 660 660 4400 

2 Grid crack 658 141 141 940 

3 Pavement joins 854 183 183 1220 

4 Patchings 448 96 96 640 

5 Fillings 1344 288 288 1920 

6 Pot-holes 406 87 87 580 

7 Manholes 336 72 72 480 

8 Stains 266 57 57 380 

9 Shadow 1190 255 255 1700 

10 Pavement markings 1414 303 303 2020 

11 Scratches on markings 3360 720 720 4800 

12 Grid crack in patchings 252 54 54 360 

0 Total 13608 2916 2916 19440 

Among these classifications, ―Scratches on Markings‖ 
emerged as the most prevalent, boasting 3,360 segments. This 
was closely followed by "Linear Cracks" at 3,080 segments. 
On the rarer end, "Grid Cracks in Patchings" registered the 
least at 252 segments, succeeded by ―Stains‖, ―Manholes‖, and 
―Potholes‖. For analytical rigor, the data segments were 
stratified into training, validation, and testing datasets at a 
proportion of 0.6:0.2:0.2, respectively. 

IV. PROPOSED NETWORK 

In pursuit of an integrated solution for crack identification 
and their granular pixel-wise delineation, the contemporary 
Mask R-CNN convolutional network architecture was chosen. 
Delving into its foundation and operational mechanics, one 
finds that the Mask R-CNN is rooted in a lineage of 
convolutional neural networks designed for localized region 
processing. This lineage encompasses the Region-based 
Convolutional Neural Network (R-CNN), its subsequent 
iterations in Fast R-CNN, and the even more refined Faster R-
CNN. 

Fig. 2 portrays our adoption of the Mask R-CNN 
architecture tailored for road surface damage identification. At 
its core, the Mask R-CNN framework is intrinsically intricate 
in its block configuration. The initial phase involves the input 
image being processed through the network, highlighting a 

feature map. Common feature extractors employed for this 
purpose include VGG-16, the 50-layer Residual Neural 
Network (ResNet50), and the more extensive 101-layer 
Residual Neural Network (ResNet101), with layers focused on 
classification being omitted. An evolutionary distinction of this 
architecture, setting it apart from earlier iterations, is the 
incorporation of the Feature Pyramid Network (FPN) 
methodology. This technique is pivotal in harvesting feature 
maps across varied scales. Within this paradigm, consecutive 
layers of the network, characterized by descending dimensions, 
are perceived as a stratified "pyramid", where lower tier maps 
are high-resolution, and the apex tiers possess enhanced 
semantic abstraction. 

Post this feature map extraction, the Region Proposals 
Network (RPN) segment takes center stage. Its primary 
objective is to pinpoint hypothesized regions within the image 
that potentially harbor objects. This is achieved by sliding a 
3x3 neural network window over the feature map, with the 
output anchored on predefined 'k anchors' – essentially 
frameworks with specified dimensions and orientations. For 
every such anchor, the RPN forecasts the object's presence and, 
if detected, fine-tunes the coordinates of the object's bounding 
box. This stage's ultimate goal revolves around spotlighting 
regions brimming with potential object presence. 
Consecutively, overlapping regions are eliminated, courtesy of 
the non-maximum suppression operation. 

 

Fig. 2. Proposed mask R-CNN model for road surface damage detection. 
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In the subsequent phase, the Region of Interest (ROI) Align 
mechanism comes into play, selecting values pertinent to these 
regions from the feature maps and standardizing them to a 
uniform size. These harmonized values then undergo final 
processes including classification, adjustment of bounding box 
coordinates, and mask prediction. Notably, the emergent mask, 
despite its considerably diminished size, retains real values. 
Once the mask is scaled congruent to the object's dimensions, 
the precision achieved is commendable. 

V. EVALUATION 

To ascertain the efficacy of the suggested model, it's 
evaluated against key metrics, specifically the mean average 
precision (MaP) and the average recall (AR), both scrutinized 
at varying thresholds of intersection over union (IoU). In 
scenarios involving classification paired with object 
localization and detection, the ratio derived from the areas of 
the bounding boxes frequently serves as a determinant metric, 
reflecting the accuracy of the bounding box placement. 

Embedded within the Mask RCNN is a region proposal 
network layer, adept at executing parallel inferences 
concerning class categorization, segmentation, and mask 
territories, leading to a resultant of six distinctive loss metrics. 
Complementing these inherent model-specific metrics, both 
average precisions and average recalls, benchmarked at an IoU 
value of 0.5, are employed across all twelve delineated road 
object categories, as referenced in [34]. 

)(

)(

BAS

BAS
IoU






  (1) 

Given A as the forecasted bounding box and B as the 
reference bounding box, the Intersection over Union (IoU) 
serves as a metric. The IoU value stands at zero when the 
bounding boxes do not intersect, and reaches its zenith of one 
when the bounding boxes perfectly coincide. 

A pivotal aim of evaluation is maximizing the detection of 
instances within a given population using a screening method. 
It's imperative that false negatives are curtailed, even if it 
necessitates an uptick in false positives. This emphasis 
necessitates the careful consideration of three fundamental 
metrics: the true positive rate (TPR), false positive rate (FPR), 
and overall accuracy (ACC). Within the realm of medical 
terminologies, TPR often finds its synonym in sensitivity 
(SEN) and is represented as seen in equation (2), as 
documented in [35]. 

P

TP
SENTPR 

  (2) 

Let TP represent the count of true positives, while P 
signifies the total positive instances in the dataset. 

The quantification of the subsequent metric, the false 
positive rate, is articulated in equation (3), as delineated in 
[36]: 

N

FP
FPR 

  (3) 

Where N denotes the aggregate count of negative cases in 
the population and FP symbolizes the number of false 
positives. Furthermore, the true negative instances are also 
represented by N. However, a more intuitive understanding of 
this metric is the fraction of true negatives out of the actual 
negative cases. In medical terminology, this metric is often 
referred to as specificity (SPEC), articulated as equation (4), as 
cited in [37]: 

FPR
N

TN
SPECTNR  1

 (4) 

Ultimately, the metric of accuracy encapsulates the 
equilibrium between true positive and true negative outcomes. 
This metric becomes particularly insightful when there exists 
an imbalance between positive and negative instances within 
the dataset. This is quantitatively represented in equation (5), 
as referenced in [38]: 

NP

TNTP
ACC






  (5) 

VI. EXPERIMENTAL RESULTS 

Within this segment, the experimental findings are 
bifurcated into two distinct subsections. The initial subsection 
elucidates the results pertaining to road damage detection, 
followed by an exposition on road damage segmentation 
outcomes. The subsequent section delves into the real-time 
performance of the proposed model, accompanied by visual 
demonstrations. This encompasses both original imagery and 
annotated representations of road conditions. In the third 
subsection, a comprehensive assessment of the model is 
presented, detailing evaluative metrics such as precision, recall, 
and F-score for the respective categories of road surface 
impairments. 

A. Road Damage Detection Results 

Leveraging the intricacies of the Mask R-CNN 
architectural framework, we developed a nuanced system 
tailored for road damage detection. This state-of-the-art 
approach is adept at swiftly and accurately discerning multiple 
forms of roadway degradation, encompassing anomalies like 
cracks and spalling, as evidenced in the images procured using 
digital photographic equipment. To facilitate an insightful 
understanding and comparison of the system's performance, 
Table II meticulously catalogs the results of the damage 
detection endeavor. This tabulation emphasizes evaluative 
metrics, notably precision, recall, and the F1-score, 
underscoring the robustness and precision of the devised 
methodology. 

B. Road Damage Detection Results 

In the process of isolating the segment of the image 
associated with the roadway, pixels within the road mask are 
accentuated. Subsequently, an 8-connected region search 
algorithm is employed on the resultant binary mask. The region 
boasting the highest pixel count is subsequently identified as 
the coverage mask, as depicted in a gray shade in Fig. 3. 
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TABLE II. EVALUATION OF THE PROPOSED METHOD BY CLASSES 

Model Precision Recall 
F1-

score 

Proposed model 0.9214 0.9876 0.9571 

Fully convolutional encoder–decoder 

network [39] 
0.9130 0.9410 0.9270 

Deep learning-based semantic segmentation 

[40] 
0.8340 0.6855 0.7524 

UNet-based concrete crack detection 
CrackUnet19 [41] 

0.9145 0.8867 0.9004 

Two-step light gradient boosting machine 

[42] 
0.6801 0.7578 0.6950 

Semantic segmentation using deep learning 
[43] 

0.4044 0.7847 0.4994 

Automated vision-based detection [44] 0.9236 0.8928 0.9079 

 

Fig. 3. Marked up road images. 

To assess the proficiency of the devised methodology for 
defect detection, a curated dataset comprising 50 authentic 
images showcasing road cracks was meticulously assembled. 
Fig. 4 juxtaposes the outcomes of manual crack delineation 
against the segmentation outcomes achieved through the 
proposed neural network's granular pixel-wise selection on an 
actual image. 

 

Fig. 4. Marked up pixel-wise selection of road images. 

Fig. 5 presents the outcomes of model evaluation over 100 
epochs. In Fig. 5, the accuracy and validation accuracy of the 
advanced model are delineated. It can be inferred from the data 
that our model achieves an approximate accuracy of 90% 
within 60 epochs, indicative of its robustness and applicability 
in real-world scenarios. 

Fig. 6 depicts the training and validation loss associated 
with the model. The observed minimal loss suggests that the 
model is poised to commit minimal errors in practical 
applications. 

 

Fig. 5. Accuracy in road damage detection. 

 

Fig. 6. Loss in road damage detection. 

Various strategies employing deep learning paradigms aim 
to enhance road safety. Contemporary research offers 
innovative solutions to this issue [45]. For instance, [46] 
introduced a Vehicle Re-Identification technique to address 
challenges stemming from significant intra-class variances due 
to changing vehicle viewpoints during motion and pronounced 
inter-class resemblances due to analogous appearances. Our 
model is tailored to identify road surface imperfections using 
smartphone cameras or any equipment capable of capturing 
real-time road footage. Based on the results from the conducted 
experiments, it can be posited that deep learning techniques 
hold promise in addressing road safety and security challenges. 

Table III presents the metrics associated with the model 
concerning bounding boxes and segmentation masks. For 
bounding boxes, the metrics for mAP at various IoU thresholds 
(IoU=.50:.05:.95), mAP (IoU=.50), and mAP (IoU=.75) 
register as 0.2432, 0.4382, and 0.2482, respectively. In 
contrast, these metrics for segmentation masks are discerned to 
be 0.1600, 0.3257, and 0.1279, marking a noticeable decline. 
The Precision mAP (small) for minuscule objects manifests as 
markedly lower values, being 0.0365 and 0.0133 for bounding 
boxes and segmentation masks, respectively, especially when 
juxtaposed against the Precision mAP for larger and medium-
sized entities. The Average Recall metrics for small, medium, 
and large entities on bounding boxes are quantified as 0.1166, 
0.3132, and 0.4717 respectively, whereas the corresponding 
values for segmentation masks are 0.1021, 0.2528, and 0.2732. 
Pertaining to our designated damage categories such as linear 
cracks (denoted as Crack1), grid cracks (labelled as Crack2), 
potholes, scratches on road markings, and grid cracks in 
surface repairs, the detection precision metrics at an IoU 
threshold of .50 are 0.4085, 0.4958, 0.5714, 0.5934, and 
0.4000, respectively. 
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TABLE III. EVALUATION OF THE PROPOSED METHOD BY CLASSES 

Classes 
Precision @ 0.5 IoU 

(Bounding box) 

Recall @ 0.5 IoU 

(Bounding box) 

Recall @ 0.5 IoU 

(Segmentation) 

Recall @ 0.5 IoU 

(Segmentation) 

Linear crack 0.5383 0.3847 0.3583 0.2639 

Grid crack 0.6256 0.7140 0.5920 0.6744 

Pavement joins 0.4900 0.5179 0.2498 0.2531 

Patchings 0.7644 0.5584 0.8161 0.5843 

Fillings 0.6071 0.4667 0.3040 0.2528 

Pot-holes 0.7012 0.4155 0.7012 0.4155 

Manholes 0.9596 0.8798 0.9596 0.8798 

Stains 0.1798 0.1484 0.1191 0.1282 

Shadow 0.5273 0.4317 0.3285 0.2713 

Pavement markings 0.7522 0.7460 0.5065 0.5002 

Scratches on markings 0.7232 0.7531 0.4863 0.4944 

Grid crack in patchings 0.5298 0.2474 0.7298 0.3063 

VII. CONCLUSION 

This research delved deeply into the realm of road surface 
damage detection, harnessing the potential of the Mask R-CNN 
architecture. The imperative need to develop robust, accurate, 
and real-time systems for detecting and classifying road 
damages stems from the crucial role such systems play in 
ensuring roadway safety and aiding in timely maintenance. A 
cornerstone of infrastructure management, road health 
significantly impacts both economic metrics and public safety. 

The Mask R-CNN model showcased its prowess in 
detecting various types of surface damages with commendable 
precision. Emphasis was placed on understanding its structural 
nuances and ensuring optimal parameter selection to refine the 
resultant models. Features like the Region Proposals Network 
and the integration of the Feature Pyramid Network brought 
depth and versatility to the proposed method, allowing it to 
contend with complex road scenarios. 

Key metrics used in assessing the model, including mAP 
and Average Recall across varying IoU thresholds, offered 
insightful perspectives into the model's performance. The 
observed results were heartening, with the model showcasing 
proficiency, especially in differentiating between minor and 
significant road damage categories. 

Comparative analyses with extant literature reinforced the 
efficacy of the proposed approach, especially considering the 
challenges posed by real-time, on-ground situations. The 
model's capacity to work with images and footage from 
commonplace devices, such as smartphones, stands testament 
to its applicability in real-world scenarios, democratizing road 
damage detection to a broader user base. 

In summation, while the world of deep learning and neural 
networks continues to evolve, the application of these 
technologies in solving pertinent, real-world challenges, as 
showcased in this study, remains paramount. The presented 
work not only contributes a robust solution to road surface 
damage detection but also lays down a pathway for further 
refinement and innovation in the domain. As future directions, 
the integration of more advanced architectures and real-time 
response mechanisms can further elevate the impact and utility 
of such systems in global infrastructure management. 
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